1
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
2
|
Tzorakoleftheraki SE, Koletsa T. The Complex Role of Mast Cells in Head and Neck Squamous Cell Carcinoma: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1173. [PMID: 39064602 PMCID: PMC11279237 DOI: 10.3390/medicina60071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy influenced by various genetic and environmental factors. Mast cells (MCs), typically associated with allergic responses, have recently emerged as key regulators of the HNSCC tumor microenvironment (TME). This systematic review explores the role of MCs in HNSCC pathogenesis and their potential as prognostic markers and therapeutic targets. Materials and Methods: A systematic search was conducted in the PubMed, Scopus and ClinicalTrials.gov databases until 31 December 2023, using "Mast cells" AND "Head and neck squamous cell carcinoma" as search terms. Studies in English which reported on MCs and HNSCC were included. Screening, data extraction and analysis followed PRISMA guidelines. No new experiments were conducted. Results: Out of 201 articles, 52 studies met the inclusion criteria, 43 of which were published between 2020 and 2023. A total of 28821 HNSCC and 9570 non-cancerous tissue samples had been examined. MC density and activation varied among normal tissues and HNSCC. Genetic alterations associated with MCs were identified, with specific gene expressions correlating with prognosis. Prognostic gene signatures associated with MC density were established. Conclusions: MCs have arisen as multifaceted TME modulators, impacting various aspects of HNSCC development and progression. Possible site-specific or HPV-related differences in MC density and activation should be further elucidated. Despite conflicting findings on their prognostic role, MCs represent promising targets for novel therapeutic strategies, necessitating further research and clinical validation for personalized HNSCC treatment.
Collapse
Affiliation(s)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Yu J, Fu R, Buhe A, Xu B. Quercetin attenuates lipopolysaccharide-induced hepatic inflammation by modulating autophagy and necroptosis. Poult Sci 2024; 103:103719. [PMID: 38603936 PMCID: PMC11017357 DOI: 10.1016/j.psj.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Lipopolysaccharide (LPS) from Gram-negative bacteria initially induces liver inflammation with proinflammatory cytokines expressions. However, the underlying hepatoprotective mechanism of quercetin on LPS-induced hepatic inflammation remains unclear. Specific pathogen-free chicken embryos (n = 120) were allocated control vehicle, PBS with or without ethanol vehicle, LPS (125 ng/egg) with or without quercetin treatment (10, 20, or 40 nmol/egg, respectively), quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated abovementioned solutions via the allantoic cavity. At embryonic d 19, the livers of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, and immunohistochemistry investigation. We found that the liver presented inflammatory response (heterophils infiltration) after LPS induction. The LPS-induced mRNA expressions of inflammation-related factors (TLR4, TNFα, IL-1β, IL-10, IL-6, MYD88, NF-κB1, p38, and MMP3) were upregulated after LPS induction when compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. Quercetin significantly decreased the immunopositivity to TLR4 and MMP3 in the treatment group when compared with the LPS group. Quercetin could significantly downregulate the mRNA expressions of autophagy-related genes (ATG5, ATG7, Beclin-1, LC3A, and LC3B) and necroptosis-related genes (Fas, Bcl-2, Drp1, and RIPK1) after LPS induction. Quercetin significantly decreased the immunopositivity to LC3 in the treatment group when compared with the LPS group; meanwhile, quercetin significantly decreased the protein expressions of LC3-I, LC3-II, and the rate of LC3-II/LC3-I. In conclusions, quercetin can alleviate hepatic inflammation induced by LPS through modulating autophagy and necroptosis.
Collapse
Affiliation(s)
- Jinhai Yu
- Camellia Research Institute, The Innovation Institute of Agricultural Technology, Department of Life Science, Shangrao Normal University, Shangrao 334001, China.
| | - Rong Fu
- Department of Literature and Media, Shangrao Normal University, Shangrao 334001, China
| | - Amin Buhe
- Department of Cancer Surgery, Beijing Shijitan Hospital Affiliated with Capital Medical University, Beijing 100038, China
| | - Bing Xu
- Camellia Research Institute, The Innovation Institute of Agricultural Technology, Department of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|