1
|
Bredenbruch S, Müller C, Nvenankeng HA, Schröder L, Zeisel AC, Medina RC, Tiso T, Blank LM, Grundler FMW, Schleker ASS. The biological activity of bacterial rhamnolipids on Arabidopsis thaliana and the cyst nematode Heterodera schachtii is linked to their molecular structure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106103. [PMID: 39277425 DOI: 10.1016/j.pestbp.2024.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/18/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
Rhamnolipids (RLs) are amphiphilic compounds of bacterial origin that offer a broad range of potential applications as biosurfactants in industry and agriculture. They are reported to be active against different plant pests and pathogens and thus are considered promising candidates for nature-derived plant protection agents. However, as these glycolipids are structurally diverse, little is known about their exact mode of action and, in particular, the relation between molecular structure and biological activity against plant pests and pathogens. Engineering the synthesis pathway in recombinant Pseudomonas putida strains in combination with advanced HPLC techniques allowed us to separately analyze the activities of mixtures of pure mono-RLs (mRLs) and of pure di-RL (dRLs), as well as the activity of single congeners. In a model system with the plant Arabidopsis thaliana and the plant-parasitic nematode (PPN) Heterodera schachtii we demonstrate that RLs can significantly reduce infection, whereas their impact on the host plant varied depending on their molecular structure. While mRLs reduced plant growth even at a low concentration, dRLs showed a neutral to beneficial impact on plant development. Treating plants with dRLs triggered an increased reactive oxygen species (ROS) production, indicating the activation of stress-response signaling and possibly plant defense. Pretreatment of plants with mRLs or dRLs prior to application of flagellin (flg22), a known ROS inducer, further increased the ROS response to flg22. While dRLs stimulated an elevated flg22-induced ROS peak, a pretreatment with mRLs resulted in a prolonged synthesis of ROS indicating a generally elevated stress level. Neither mRLs nor dRLs induced the expression of plant defense marker genes of salicylic acid, jasmonic acid, and ethylene pathways. Detailed studies on dRLs revealed that even high concentrations up to 755 ppm of these molecules have no lethal impact on H. schachtii infective juveniles. Infection assays with individual dRL congeners showed that the C10-C8 acyl chained dRL was the only congener without effect, while dRLs with C10-C12 and C10-C12:1 acyl chains were most efficient in reducing nematode infection even at concentrations below 2 ppm. As determined by phenotyping and ROS measurements, A. thaliana reacted more sensitive to long-chained dRLs in a concentration-dependent manner. Our experiments show a clear structure-activity relation for the effect of RLs on plants. In conclusion, functional assessment and analysis of the mode of action of RLs in plants and other organisms require careful consideration of their molecular structure and composition.
Collapse
Affiliation(s)
- Sandra Bredenbruch
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Conrad Müller
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany
| | - Henry A Nvenankeng
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Lukas Schröder
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Antonia C Zeisel
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Rainier C Medina
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany.
| | - Florian M W Grundler
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany.
| | - A Sylvia S Schleker
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany.
| |
Collapse
|
2
|
Maschke RW, Seidel S, Rossi L, Eibl D, Eibl R. Disposable Bioreactors Used in Process Development and Production Processes with Plant Cell and Tissue Cultures. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:119-144. [PMID: 38538838 DOI: 10.1007/10_2024_249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The bioreactor is the centerpiece of the upstream processing in any biotechnological production process. Its design, the cultivation parameters, the production cell line, and the culture medium all have a major influence on the efficiency of the process and the result of the cultivation. Disposable bioreactors have been used for the past 20 years, playing a major role in process development and commercial production of high-value substances at medium scales.Our review deals with scalable, disposable bioreactors that have proven to be useful for the cultivation of plant cell and tissue cultures. Based on the definitions of terms and a categorization approach, the most commonly used, commercially available, disposable bioreactor types are presented below. The focus is on wave-mixed, stirred, and orbitally shaken bioreactors. In addition to their instrumentation and bioengineering characteristics, cultivation results are discussed, and emerging trends for the development of disposable bioreactors for plant cell and tissue cultures are also addressed.
Collapse
Affiliation(s)
- Rüdiger W Maschke
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Stefan Seidel
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland.
| | - Lia Rossi
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Dieter Eibl
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Regine Eibl
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| |
Collapse
|
3
|
Jantean L, Okada K, Kawakatsu Y, Kurotani KI, Notaguchi M. Measurement of reactive oxygen species production by luminol-based assay in Nicotiana benthamiana, Arabidopsis thaliana and Brassica rapa ssp. rapa. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:415-420. [PMID: 37283611 PMCID: PMC10240919 DOI: 10.5511/plantbiotechnology.22.0823a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS) are critical for plant biological processes. As signaling molecules, ROS regulate plant growth and development through cell expansion, elongation, and programmed cell death. Furthermore, ROS production is induced by microbe-associated molecular patterns (MAMPs) treatment and biotic stresses, and contributes to plant resistance to pathogens. Thus, MAMP-induced ROS production has been an indicator for plant early immune responses or stress responses. One of widely used methods for the measurement is a luminol-based assay to measure extracellular ROS production with a bacterial flagellin epitope (flg22) as a MAMP elicitor. Nicotiana benthamiana is susceptible to a wide variety of plant pathogenic agents and therefore commonly used for ROS measurements. On the other hand, Arabidopsis thaliana, many of genetical lines of which are available, is also conducted to ROS measurements. Tests in an asterid N. benthamiana and a rosid A. thaliana can reveal conserved molecular mechanisms in ROS production. However, the small size of A. thaliana leaves requires many seedlings for experiments. This study examined flg22-induced ROS production in another member of the Brassicaceae family, Brassica rapa ssp. rapa (turnip), which has large and flat leaves. Our experiments indicated that 10 nM and 100 nM flg22 treatments induced high ROS levels in turnip. Turnip tended to have a lower standard deviation in multiple concentrations of flg22 treatment. Therefore, these results suggested that turnip can be a good material from the rosid clade for ROS measurement.
Collapse
Affiliation(s)
- Lalita Jantean
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kentaro Okada
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
4
|
Huang L, Li Z, Zhang X. Radiotracers for Nuclear Imaging of Reactive Oxygen Species: Advances Made So Far. Bioconjug Chem 2022; 33:749-766. [PMID: 35467335 DOI: 10.1021/acs.bioconjchem.2c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are a cluster of highly reactive and short-lived oxygen-containing molecules that lead to metabolic disorders where production exceeds catabolism in an organism. Many specific radiotracers for positron/single-photon emission tomography have been developed to reveal the discrepancy of ROS levels in normal and damaged tissues and further clarify the relationship between ROS and diseases. This review summarizes the advances achieved for the development of ROS radiotracers to date. The structure design, radiosynthesis, and imaging performance of existing radiotracers are discussed with the individual ROS-response mechanisms highlighted.
Collapse
Affiliation(s)
- Lumei Huang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| |
Collapse
|
5
|
Hao G, Tiley H, McCormick S. Chitin Triggers Tissue-Specific Immunity in Wheat Associated With Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2022; 13:832502. [PMID: 35222488 PMCID: PMC8864176 DOI: 10.3389/fpls.2022.832502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Fusarium graminearum is one of the primary causal agents of Fusarium head blight (FHB) on wheat and barley. FHB reduces grain yield and contaminates grain with various mycotoxins, including deoxynivalenol (DON). DON acts as a virulence factor to promote the fungus passing the rachis node and spreading throughout the head of wheat but not barley. Reactive oxygen species (ROS) are one of the earliest defense responses during plant and pathogen interactions. However, the complex roles of ROS during FHB development remain unclear. We investigated immune responses in wheat triggered by chitin, a major component of fungal cell walls. Although no ROS burst was detected in chitin-treated wheat leaves from eight tested varieties, a robust ROS peak was triggered by chitin in tested barley leaves. Interestingly, ROS were induced by chitin in wheat rachises and rachis nodes, which are critical barriers for FHB spread in wheat. We demonstrated that ROS were induced in wheat rachis nodes from both FHB susceptible and resistant wheat varieties. Further, we showed different defense gene expression patterns in rachis nodes and wheat heads treated with chitin, and wheat heads inoculated with F. graminearum. Our study showed the tissue-specific immune responses induced by chitin in wheat, which may play an important role during F. graminearum infection.
Collapse
|
6
|
Saeed B, Trujillo M. Analysis of Immunity-Related Oxidative Bursts by a Luminol-Based Assay. Methods Mol Biol 2022; 2494:339-346. [PMID: 35467219 DOI: 10.1007/978-1-0716-2297-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid production of reactive oxygen species (ROS) in response to biotic and abiotic cues is a conserved hallmark of plant responses. The detection and quantification of ROS generation during immune responses is an excellent readout to analyze signaling triggered by the perception of pathogens. The assay described here is easy to employ and versatile, allowing its use in a multitude of variations. For example, ROS production can be analyzed using different tissues including whole seedlings, roots, leaves, protoplasts, and cultured cells, which can originate from different ecotypes or mutants. Samples can be tested in combination with any ROS-inducing elicitors, such as the FLS2-activating peptide flg22, but also lipids or even abiotic stresses. Furthermore, early (PAMP-triggered) and late (effector-triggered) ROS production induced by virulent and avirulent bacteria, respectively, can also be assayed.
Collapse
Affiliation(s)
- Bushra Saeed
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - Marco Trujillo
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Heyman L, Ferrarini E, Sanchez L, Barka EA, Höfte M. A sensitive chemiluminescence method for quantification of the oxidative burst in grapevine cells and rice roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110892. [PMID: 33902853 DOI: 10.1016/j.plantsci.2021.110892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Roots are prominent plant-microbe interaction sites and of great biological relevance for many studies. The root response is of interest when searching for potential systemic resistance inducers. Screening of elicitors often focuses on the oxidative burst, the rapid and transient production of Reactive Oxygen Species (ROS). However, to our knowledge, no high-throughput, sensitive methods have been developed for the quantification of ROS released by roots. Here, we report on the development of an L-012-based chemiluminescence bioassay to quantitatively determine the oxidative burst following elicitation events in roots. Rice and grapevine were used as monocot and dicot models. We demonstrate that chitosan, a recognized elicitor in rice cells, was able to elicit ROS production in rice roots. Chitosan also triggered a strong oxidative burst in grapevine cell suspension cultures, while grapevine roots were not responsive. Although this method is broadly applicable, the L-012 probe requires careful consideration of solvents and plant species. Insufficient extracellular ROS, quenching, and the interference of solvents with the probe can undermine the assay sensitivity.
Collapse
Affiliation(s)
- Lisa Heyman
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Enrico Ferrarini
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Lisa Sanchez
- RIBP-EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France.
| | - Essaid Ait Barka
- RIBP-EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France.
| | - Monica Höfte
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Sivapackiam J, Liao F, Zhou D, Shoghi KI, Gropler RJ, Gelman AE, Sharma V. Galuminox: Preclinical validation of a novel PET tracer for non-invasive imaging of oxidative stress in vivo. Redox Biol 2020; 37:101690. [PMID: 33039825 PMCID: PMC7648173 DOI: 10.1016/j.redox.2020.101690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/07/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) is a well-established indicator of ongoing tissue inflammation. However, there is a scarcity of molecular imaging probes capable of providing noninvasive sensitive detection of ROS for allowing longitudinal studies of disease pathology and/or monitoring therapeutic efficacy of ROS scavengers. Herein, we report synthesis and chemical characterization of a novel metalloprobe, Galuminox, a moderately fluorescent agent that detects superoxide and hydrogen peroxide generation. Using live-cell fluorescence imaging analysis, Galuminox demonstrates ability to detect superoxide and monitor effects of ROS-attenuating agents, such as Carvedilol, Dexrazoxane, and mitoTempo in lung epithelial A549 cells. Furthermore, LPS stimulation of A549 cells that either express the mitochondria targeted fluorescent protein Keima or are stained with MitoSOX, a mitochondria-specific superoxide probe, indicates preferential co-localization of Galuminox with mitochondria producing elevated amounts of superoxide. Dynamic PET/CT scans 45 min post tail-vein administration of 68Ga-Galuminox show 4-fold higher uptake and stable retention in lungs of LPS treated mice compared to their saline-only treated counterparts. Post preclinical PET imaging, quantitative biodistribution studies also correlate with 4-fold higher retention of the radiotracer in lungs of LPS treated mice compared with their saline-only treated control counterparts. Consistent with these observations, lung cells isolated from LPS-treated mice demonstrated elevated ROS production deploying CellROX, the ROS probe. Finally, Galuminox uptake correlates with histological and physiological evidence of acute lung injury as evident by polynuclear infiltration, thickening of the alveolar epithelial membranes and increased bronchioalveolar lavage protein content. Taken collectively, these data indicate that 68Ga-Galuminox tracer uptake is a measure of ROS activity in acutely injured lungs and suggests its potential utility in monitoring oxidative stress in other diseases.
Collapse
Affiliation(s)
| | - Fuyi Liao
- Departments of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dequan Zhou
- Departments of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, USA; Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, 63105, USA
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, USA; Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, 63105, USA
| | - Andrew E Gelman
- Departments of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, 63105, USA.
| |
Collapse
|
9
|
Basa S, Nampally M, Honorato T, Das SN, Podile AR, El Gueddari NE, Moerschbacher BM. The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers. J Am Chem Soc 2020; 142:1975-1986. [PMID: 31895979 DOI: 10.1021/jacs.9b11466] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of β-1,4-linked glucosamine (deacetylated/D) and N-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially acetylated chitosan oligosaccharides from a chitosan polymer (DA = 35%, DPw = 905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4-DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective. We then compared all four monoacetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as bona fide information-carrying molecules.
Collapse
Affiliation(s)
- Sven Basa
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Malathi Nampally
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Talita Honorato
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Subha N Das
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany.,University of Hyderabad , Department of Plant Sciences, School of Life Sciences , Hyderabad , India
| | - Appa R Podile
- University of Hyderabad , Department of Plant Sciences, School of Life Sciences , Hyderabad , India
| | - Nour E El Gueddari
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Bruno M Moerschbacher
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| |
Collapse
|
10
|
Dacy A, Haider N, Davis K, Hu W, Tang L. Design and evaluation of an imager for assessing wound inflammatory responses and bioburden in a pig model. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-9. [PMID: 31515974 PMCID: PMC6739619 DOI: 10.1117/1.jbo.25.3.032002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Our work details the development and characterization of a portable luminescence imaging device for detecting inflammatory responses and infection in skin wounds. The device includes a CCD camera and close-up lens integrated into a customizable 3D printed imaging chamber to create a portable light-tight imager for luminescence imaging. The chamber has an adjustable light portal that permits ample ambient light for white light imaging. This imager was used to quantify in real time the extent of two-dimensional reactive oxygen species (ROS) activity distribution using a porcine wound infection model. The imager was used to successfully visualize ROS-associated luminescent activities in vitro and in vivo. Using a pig full-thickness cutaneous wound model, we further demonstrate that this portable imager can detect the change of ROS activities and their relationship with vasculature in the wound environment. Finally, by analyzing ROS intensity and distribution, an imaging method was developed to distinguish infected from uninfected wounds. We discovered a distinct ROS pattern between bacteria-infected and control wounds corresponding to the microvasculature. The results presented demonstrate that this portable luminescence imager is capable of imaging ROS activities in cutaneous wounds in a large animal model, indicating suitability for future clinical applications.
Collapse
Affiliation(s)
- Ashley Dacy
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Nowmi Haider
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Kathryn Davis
- University of Texas Southwestern Medical Center, Department of Plastic Surgery, Dallas, Texas, United States
| | - Wenjing Hu
- Progenitec Inc., Arlington, Texas, United States
| | - Liping Tang
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| |
Collapse
|
11
|
Nietzel T, Elsässer M, Ruberti C, Steinbeck J, Ugalde JM, Fuchs P, Wagner S, Ostermann L, Moseler A, Lemke P, Fricker MD, Müller-Schüssele SJ, Moerschbacher BM, Costa A, Meyer AJ, Schwarzländer M. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H 2 O 2 and thiol redox integration and elucidates intracellular H 2 O 2 dynamics during elicitor-induced oxidative burst in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:1649-1664. [PMID: 30347449 DOI: 10.1111/nph.15550] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/13/2018] [Indexed: 05/04/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is ubiquitous in cells and at the centre of developmental programmes and environmental responses. Its chemistry in cells makes H2 O2 notoriously hard to detect dynamically, specifically and at high resolution. Genetically encoded sensors overcome persistent shortcomings, but pH sensitivity, silencing of expression and a limited concept of sensor behaviour in vivo have hampered any meaningful H2 O2 sensing in living plants. We established H2 O2 monitoring in the cytosol and the mitochondria of Arabidopsis with the fusion protein roGFP2-Orp1 using confocal microscopy and multiwell fluorimetry. We confirmed sensor oxidation by H2 O2 , show insensitivity to physiological pH changes, and demonstrated that glutathione dominates sensor reduction in vivo. We showed the responsiveness of the sensor to exogenous H2 O2 , pharmacologically-induced H2 O2 release, and genetic interference with the antioxidant machinery in living Arabidopsis tissues. Monitoring intracellular H2 O2 dynamics in response to elicitor exposure reveals the late and prolonged impact of the oxidative burst in the cytosol that is modified in redox mutants. We provided a well defined toolkit for H2 O2 monitoring in planta and showed that intracellular H2 O2 measurements only carry meaning in the context of the endogenous thiol redox systems. This opens new possibilities to dissect plant H2 O2 dynamics and redox regulation, including intracellular NADPH oxidase-mediated ROS signalling.
Collapse
Affiliation(s)
- Thomas Nietzel
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Marlene Elsässer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Cristina Ruberti
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Janina Steinbeck
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Philippe Fuchs
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Stephan Wagner
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Lara Ostermann
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- BioSC, c/o Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Philipp Lemke
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- BioSC, c/o Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
12
|
A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Sci Rep 2016; 6:38018. [PMID: 27901067 PMCID: PMC5128826 DOI: 10.1038/srep38018] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022] Open
Abstract
To successfully survive in plants, endophytes need strategies to avoid being detected by the plant immune system, as the cell walls of endophytes contain easily detectible chitin. It is possible that endophytes “hide” this chitin from the plant immune system by modifying it, or oligomers derived from it, using chitin deacetylases (CDA). To explore this hypothesis, we identified and expressed a CDA from Pestalotiopsis sp. (PesCDA), an endophytic fungus, in E. coli and characterized this enzyme and its chitosan oligomer products. We found that when PesCDA modifies chitin oligomers, the products are partially deacetylated chitosan oligomers with a specific acetylation pattern: GlcNAc-GlcNAc-(GlcN)n-GlcNAc (n ≥ 1). Then, in a bioactivity assay where suspension-cultured rice cells were incubated with the PesCDA products (processed chitin hexamers), we found that, unlike the substrate hexamers, chitosan oligomer products no longer elicited the plant immune system. Thus, this endophytic enzyme can prevent the endophyte from being recognized by the plant immune system; this might represent a more general hypothesis for how certain fungi are able to live in or on their hosts.
Collapse
|
13
|
Li J, Hong Z, Liu H, Zhou J, Cui L, Yuan S, Chu X, Yu P. Hydrogen-Rich Saline Promotes the Recovery of Renal Function after Ischemia/Reperfusion Injury in Rats via Anti-apoptosis and Anti-inflammation. Front Pharmacol 2016; 7:106. [PMID: 27148060 PMCID: PMC4840252 DOI: 10.3389/fphar.2016.00106] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose: Hydrogen is a proven novel antioxidant that selectively reduces hydroxyl radicals. In this study, we investigated the effects of hydrogen-rich saline solution on the prevention of renal injury induced by ischemia/reperfusion (I/R) and on renal function recovery. Methods: A rat model of renal I/R injury was induced by 45 min occlusion of the left renal pedicle, followed by 108 h reperfusion. The right kidney was surgically removed. Then, 0.9% NaCl solution (1 ml/kg) or hydrogen-rich saline solution (HRSS; 1 ml/kg) was injected into the abdominal cavity at 4 h intervals. We assessed the influence of HRSS or control saline solution on the recovery of renal function after I/R injury. Kidney tissues were taken at different time points (24, 36, 48, 72, and 108 h after reperfusion) and frozen (-80°C). Kidney cell apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive staining. Additionally, the apoptotic factors (Bcl-2, Bax, caspase-3, caspase-9, and caspase-8) and the pro-inflammatory cytokines (IL-6 and TNF-α) were measured in the kidney tissues. Finally, serum blood urea nitrogen (BUN) and creatinine (Cr) levels were measured. Results: Histological analyses revealed a marked reduction of interstitial congestion, edema and hemorrhage in renal tissue after HRSS treatment compared to saline treatment. After I/R injury, BUN, Cr, Bcl-2, caspase-3, caspase-9, caspase-8, IL-6, and TNF-α were all significantly increased, while Bax expression was decreased. HRSS remarkably reversed these changes. Moreover, BUN and Cr decreased more rapidly in the rats treated with HRSS compared to the rats treated with control saline solution. Conclusions: HRSS showed a protective effect in the prevention of renal injury and could promote renal function recovery after I/R injury in rats. HRSS might partially exert its role through an anti-apoptotic and anti-inflammatory action in kidney cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Burn and Plastic Surgery, Jinling HospitalNanjing, China; Department of Nephrology, Yongchuan Hospital of Chongqing Medical UniversityChongqing, China
| | - Zhijian Hong
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Hong Liu
- Department of Nephrology, Hospital of Traditional Chinese Medicine Chongqing, China
| | - Jihong Zhou
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Lei Cui
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Siming Yuan
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Xianghua Chu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University Qingdao, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| |
Collapse
|