1
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
2
|
Li M, Cao L, Mwimba M, Zhou Y, Li L, Zhou M, Schnable PS, O'Rourke JA, Dong X, Wang W. Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. Proc Natl Acad Sci U S A 2019; 116:23840-23849. [PMID: 31676549 PMCID: PMC6876155 DOI: 10.1073/pnas.1708508116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant circadian clock evolved to increase fitness by synchronizing physiological processes with environmental oscillations. Crop fitness was artificially selected through domestication and breeding, and the circadian clock was identified by both natural and artificial selections as a key to improved fitness. Despite progress in Arabidopsis, our understanding of the crop circadian clock is still limited, impeding its rational improvement for enhanced fitness. To unveil the interactions between the crop circadian clock and various environmental cues, we comprehensively mapped abiotic stress inputs to the soybean circadian clock using a 2-module discovery pipeline. Using the "molecular timetable" method, we computationally surveyed publicly available abiotic stress-related soybean transcriptomes to identify stresses that have strong impacts on the global rhythm. These findings were then experimentally confirmed using a multiplexed RNA sequencing technology. Specific clock components modulated by each stress were further identified. This comprehensive mapping uncovered inputs to the plant circadian clock such as alkaline stress. Moreover, short-term iron deficiency targeted different clock components in soybean and Arabidopsis and thus had opposite effects on the clocks of these 2 species. Comparing soybean varieties with different iron uptake efficiencies suggests that phase modulation might be a mechanism to alleviate iron deficiency symptoms in soybean. These unique responses in soybean demonstrate the need to directly study crop circadian clocks. Our discovery pipeline may serve as a broadly applicable tool to facilitate these explorations.
Collapse
Affiliation(s)
- Meina Li
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Lijun Cao
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Musoki Mwimba
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708
- Department of Biology, Duke University, Durham, NC 27708
| | - Yan Zhou
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
| | - Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
- College of Life Sciences, Capital Normal University, 100048 Beijing, China
| | | | - Jamie A O'Rourke
- Department of Agronomy, Iowa State University, Ames, IA 50011
- Corn Insects and Crop Genetics Research Unit, Agricultural Research Service, US Department of Agriculture, Ames, IA 50011
| | - Xinnian Dong
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708;
- Department of Biology, Duke University, Durham, NC 27708
| | - Wei Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011;
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| |
Collapse
|
3
|
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation. Genes (Basel) 2018; 9:genes9120616. [PMID: 30544736 PMCID: PMC6315869 DOI: 10.3390/genes9120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.
Collapse
|