1
|
Al-Mansour FSH, Almasoudi HH, Albarrati A. Mapping molecular landscapes in triple-negative breast cancer: insights from spatial transcriptomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04057-3. [PMID: 40119898 DOI: 10.1007/s00210-025-04057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The tumor microenvironment (TME) of triple-negative breast cancer (TNBC) is a highly heterogeneous and very aggressive form of the disease that has few suitable treatment options; however, spatial transcriptomics (ST) is a powerful tool for elucidation of the TME in TNBC. Because of its spatial context preservation, ST has a unique capability to map tumor-stroma interactions, immune infiltration, and therapy resistance mechanisms (which are key to understanding TNBC progression), compared with conventional transcriptomics. This review shows the use of ST in TNBC, its utilization in spatial biomarker identification, intratumoral heterogeneity definition, molecular subtyping refinement, and prediction of immunotherapy responses. Recent insight from ST-driven insights has explained the key spatial patterns on immune evasion, chemotherapy resistance, racial disparities of TNBC, and aspects for patient stratification and therapeutic decision. With the integration of ST with the subjects of proteomics and imaging mass cytometry, this approach has been enlarged and is now applied in precision medicine and biomarker discovery. Recently, advancements in AI-based spatial analysis for tumor classification, identification of biomarkers, and creation of therapy prediction models have occurred. However, continued developments in ST technologies, computational tools, and partnerships amongst multiple centers to facilitate the integration of ST into clinical routine practice are needed to unlock novel therapeutic targets.
Collapse
Affiliation(s)
- Fares Saeed H Al-Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ali Albarrati
- Rehabilitation Sciences Department, College of Applied Medical Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Luna-García V, de Folter S. Laser-Assisted Microdissection and High-Throughput RNA Sequencing of the Arabidopsis Gynoecium Medial and Lateral Domains. Bio Protoc 2024; 14:e5056. [PMID: 39282231 PMCID: PMC11393044 DOI: 10.21769/bioprotoc.5056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/18/2024] Open
Abstract
For obtaining insights into gene networks during plant reproductive development, having transcriptomes of specific cells from developmental stages as starting points is very useful. During development, there is a balance between cell proliferation and differentiation, and many cell and tissue types are formed. While there is a wealth of transcriptome data available, it is mostly at the organ level and not at specific cell or tissue type level. Therefore, methods to isolate specific cell and tissue types are needed. One method is fluorescent activated cell sorting (FACS), but it has limitations such as requiring marker lines and protoplasting. Recently, single-cell/nuclei isolation methods have been developed; however, a minimum amount of genetic information (marker genes) is needed to annotate/predict the resulting cell clusters in these experiments. Another technique that has been known for some time is laser-assisted microdissection (LAM), where specific cells are microdissected and collected using a laser mounted on a microscope platform. This technique has advantages over the others because no fluorescent marker lines must be made, no marker genes must be known, and no protoplasting must be done. The LAM technique consists in tissue fixation, tissue embedding and sectioning using a microtome, microdissection and collection of the cells of interest on the microscope, and finally RNA extraction, library preparation, and RNA sequencing. In this protocol, we implement the use of normal slides instead of the membrane slides commonly used for LAM. We applied this protocol to obtain the transcriptomes of specific tissues during the development of the gynoecium of Arabidopsis. Key features • Laser-assisted microdissection (LAM) allows the isolation of specific cells or tissues. • Normal slides can be used for LAM. • It allows the identification of the transcriptional profiles of specific tissues of the Arabidopsis gynoecium.
Collapse
Affiliation(s)
- Valentín Luna-García
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| |
Collapse
|
3
|
Chen C, Ge Y, Lu L. Opportunities and challenges in the application of single-cell and spatial transcriptomics in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1185377. [PMID: 37636094 PMCID: PMC10453814 DOI: 10.3389/fpls.2023.1185377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
Single-cell and spatial transcriptomics have diverted researchers' attention from the multicellular level to the single-cell level and spatial information. Single-cell transcriptomes provide insights into the transcriptome at the single-cell level, whereas spatial transcriptomes help preserve spatial information. Although these two omics technologies are helpful and mature, further research is needed to ensure their widespread applicability in plant studies. Reviewing recent research on plant single-cell or spatial transcriptomics, we compared the different experimental methods used in various plants. The limitations and challenges are clear for both single-cell and spatial transcriptomic analyses, such as the lack of applicability, spatial information, or high resolution. Subsequently, we put forth further applications, such as cross-species analysis of roots at the single-cell level and the idea that single-cell transcriptome analysis needs to be combined with other omics analyses to achieve superiority over individual omics analyses. Overall, the results of this review suggest that combining single-cell transcriptomics, spatial transcriptomics, and spatial element distribution can provide a promising research direction, particularly for plant research.
Collapse
Affiliation(s)
- Ce Chen
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yining Ge
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Becker A, Yamada Y, Sato F. California poppy ( Eschscholzia californica), the Papaveraceae golden girl model organism for evodevo and specialized metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1084358. [PMID: 36938015 PMCID: PMC10017456 DOI: 10.3389/fpls.2023.1084358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
California poppy or golden poppy (Eschscholzia californica) is the iconic state flower of California, with native ranges from Northern California to Southwestern Mexico. It grows well as an ornamental plant in Mediterranean climates, but it might be invasive in many parts of the world. California poppy was also highly prized by Native Americans for its medicinal value, mainly due to its various specialized metabolites, especially benzylisoquinoline alkaloids (BIAs). As a member of the Ranunculales, the sister lineage of core eudicots it occupies an interesting phylogenetic position. California poppy has a short-lived life cycle but can be maintained as a perennial. It has a comparatively simple floral and vegetative morphology. Several genetic resources, including options for genetic manipulation and a draft genome sequence have been established already with many more to come. Efficient cell and tissue culture protocols are established to study secondary metabolite biosynthesis and its regulation. Here, we review the use of California poppy as a model organism for plant genetics, with particular emphasis on the evolution of development and BIA biosynthesis. In the future, California poppy may serve as a model organism to combine two formerly separated lines of research: the regulation of morphogenesis and the regulation of secondary metabolism. This can provide insights into how these two integral aspects of plant biology interact with each other.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Lab, Institute of Botany, Hustus-Liebig-University, Giessen, Germany
| | - Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Science, Kyoto, Japan
- Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
5
|
Liu C, Leng J, Li Y, Ge T, Li J, Chen Y, Guo C, Qi J. A spatiotemporal atlas of organogenesis in the development of orchid flowers. Nucleic Acids Res 2022; 50:9724-9737. [PMID: 36095130 PMCID: PMC9508851 DOI: 10.1093/nar/gkac773] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Development of floral organs exhibits complex molecular mechanisms involving the co-regulation of many genes specialized and precisely functioning in various tissues and developing stages. Advance in spatial transcriptome technologies allows for quantitative measurement of spatially localized gene abundance making it possible to bridge complex scenario of flower organogenesis with genome-wide molecular phenotypes. Here, we apply the 10× Visium technology in the study of the formation of floral organs through development in an orchid plant, Phalaenopsis Big Chili. Cell-types of early floral development including inflorescence meristems, primordia of floral organs and identity determined tissues, are recognized based on spatial expression distribution of thousands of genes in high resolution. In addition, meristematic cells on the basal position of floral organs are found to continuously function in multiple developmental stages after organ initiation. Particularly, the development of anther, which primordium starts from a single spot to multiple differentiated cell-types in later stages including pollinium and other vegetative tissues, is revealed by well-known MADS-box genes and many other downstream regulators. The spatial transcriptome analyses provide comprehensive information of gene activity for understanding the molecular architecture of flower organogenesis and for future genomic and genetic studies of specific cell-types.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Leng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yonglong Li
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, China
| | - Tingting Ge
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, China
| | - Jinglong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yamao Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunce Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Li M, Guo D, Chen X, Lu X, Huang X, Wu Y. Transcriptome profiling and co-expression network analysis of lncRNAs and mRNAs in colorectal cancer by RNA sequencing. BMC Cancer 2022; 22:780. [PMID: 35842644 PMCID: PMC9288709 DOI: 10.1186/s12885-022-09878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are widely involved in the pathogenesis of cancers. However, biological roles of lncRNAs in occurrence and progression of colorectal cancer (CRC) remain unclear. The current study aimed to evaluate the expression pattern of lncRNAs and messenger RNAs (mRNAs). Methods RNA sequencing (RNA-Seq) in CRC tissues and adjacent normal tissues from 6 CRC patients was performed and functional lncRNA-mRNA co-expression network was constructed afterwards. Gene enrichment analysis was demonstrated using DAVID 6.8 tool. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to validate the expression pattern of differentially expressed lncRNAs. Pearson correlation analysis was applied to evaluate the relationships between selected lncRNAs and mRNAs. Results One thousand seven hundred and sixteenth differentially expressed mRNAs and 311 differentially expressed lncRNAs were screened out. Among these, 568 mRNAs were up-regulated while 1148 mRNAs down-regulated, similarly 125 lncRNAs were up-regulated and 186 lncRNAs down-regulated. In addition, 1448 lncRNA–mRNA co-expression pairs were screened out from 940,905 candidate lncRNA-mRNA pairs. Gene enrichment analysis revealed that these lncRNA-related mRNAs are associated with cell adhesion, collagen adhesion, cell differentiation, and mainly enriched in ECM-receptor interaction and PI3K-Akt signaling pathways. Finally, RT-qPCR results verified the expression pattern of lncRNAs, as well as the relationships between lncRNAs and mRNAs in 60 pairs of CRC tissues. Conclusions In conclusion, these results of the RNA-seq and bioinformatic analysis strongly suggested that the dysregulation of lncRNA is involved in the complicated process of CRC development, and providing important insight regarding the lncRNAs involved in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09878-6.
Collapse
Affiliation(s)
- Mingjie Li
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China.,Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, China
| | - Dandan Guo
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, China
| | - Xijun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, China
| | - Xinxin Lu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaoli Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, China
| | - Yan'an Wu
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China. .,Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
7
|
Transcription Factor Action Orchestrates the Complex Expression Pattern of CRABS CLAW in Arabidopsis. Genes (Basel) 2021; 12:genes12111663. [PMID: 34828269 PMCID: PMC8653963 DOI: 10.3390/genes12111663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
Angiosperm flowers are the most complex organs that plants generate, and in their center, the gynoecium forms, assuring sexual reproduction. Gynoecium development requires tight regulation of developmental regulators across time and tissues. How simple on and off regulation of gene expression is achieved in plants was described previously, but molecular mechanisms generating complex expression patterns remain unclear. We use the gynoecium developmental regulator CRABS CLAW (CRC) to study factors contributing to its sophisticated expression pattern. We combine in silico promoter analyses, global TF-DNA interaction screens, and mutant analyses. We find that miRNA action, DNA methylation, and chromatin remodeling do not contribute substantially to CRC regulation. However, 119 TFs, including SEP3, ETT, CAL, FUL, NGA2, and JAG bind to the CRC promoter in yeast. These TFs finetune transcript abundance as homodimers by transcriptional activation. Interestingly, temporal–spatial aspects of expression regulation may be under the control of redundantly acting genes and require higher order complex formation at TF binding sites. Our work shows that endogenous regulation of complex expression pattern requires orchestrated transcription factor action on several conserved promotor sites covering almost 4 kb in length. Our results highlight the utility of comprehensive regulators screens directly linking transcriptional regulators with their targets.
Collapse
|
8
|
Jorrin Novo JV. Proteomics and plant biology: contributions to date and a look towards the next decade. Expert Rev Proteomics 2021; 18:93-103. [PMID: 33770454 DOI: 10.1080/14789450.2021.1910028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION This review presents the view of the author, that is opinionable and even speculative, on the field of proteomics, its application to plant biology knowledge, and translation to biotechnology. Written in a more academic than scientific style, it is based on past original and review articles by the author´s group, and those published by leading scientists in the last two years. AREAS COVERED Starting with a general definition and references to historical milestones, it covers sections devoted to the different platforms employed, the plant biology discourse in the protein language, challenges and future prospects, ending with the author opinion. EXPERT OPINION In 25 years, five proteomics platform generations have appeared. We are now moving from proteomics to Systems Biology. While feasible with model organisms, proteomics of orphan species remains challenging. Proteomics, even in its simplest approach, sheds light on plant biological processes, central dogma, and molecular bases of phenotypes of interest, and it can be translated to areas such as food traceability and allergen detection. Proteomics should be validated and optimized to each experimental system, objectives, and hypothesis. It has limitations, artifacts, and biases. We should not blindly accept proteomics data and just create a list of proteins, networks, and avoid speculative biological interpretations. From the hundred to thousand proteins identified and quantified, it is important to obtain a focus and validate some of them, otherwise it is merely. We are starting to have the protein pieces, so let, from now, build the proteomics and biological puzzle.
Collapse
Affiliation(s)
- J V Jorrin Novo
- Dpt. Biochemistry and Molecular Biology, Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, ETSIAM, University of Cordoba, Cordoba , Spain
| |
Collapse
|
9
|
Kivivirta KI, Herbert D, Roessner C, de Folter S, Marsch-Martinez N, Becker A. Transcriptome analysis of gynoecium morphogenesis uncovers the chronology of gene regulatory network activity. PLANT PHYSIOLOGY 2021; 185:1076-1090. [PMID: 33793890 PMCID: PMC8133673 DOI: 10.1093/plphys/kiaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 05/12/2023]
Abstract
The gynoecium is the most complex organ formed by the flowering plants. It encloses the ovules, provides a surface for pollen contact and self-incompatibility reactions, allows pollen tube growth, and, post fertilization, develops into the fruit. Consequently, the regulation of gynoecium morphogenesis is complex and appropriate timing of this process in part determines reproductive success. However, little is known about the global control of gynoecium development, even though many regulatory genes have been characterized. Here, we characterized dynamic gene expression changes using laser-microdissected gynoecium tissue from four developmental stages in Arabidopsis. We provide a high-resolution map of global expression dynamics during gynoecium morphogenesis and link these to the gynoecium interactome. We reveal groups of genes acting together early and others acting late in morphogenesis. Clustering of co-expressed genes enables comparisons between the leaf, shoot apex, and gynoecium transcriptomes, allowing the dissection of common and distinct regulators. Furthermore, our results lead to the discovery of genes with putative transcription factor activity (B3LF1, -2, DOFLF1), which, when mutated, lead to impaired gynoecium expansion, illustrating that global transcriptome analyses reveal yet unknown developmental regulators. Our data show that genes encoding highly interacting proteins, such as SEPALLATA3, AGAMOUS, and TOPLESS, are expressed evenly during development but switch interactors over time, whereas stage-specific proteins tend to have fewer interactors. Our analysis connects specific transcriptional regulator activities, protein interactions, and underlying metabolic processes, contributing toward a dynamic network model for gynoecium development.
Collapse
Affiliation(s)
- Kimmo I Kivivirta
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Denise Herbert
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Clemens Roessner
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Stefan de Folter
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Unidad de Genómica Avanzada (UGA-LANGEBIO), CP 36824 Irapuato, Mexico
| | | | - Annette Becker
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
- Author for communication:
| |
Collapse
|