1
|
Gylten JD, Persons JE, Miller BJ, An Q, Tanas MR, Chen SJT. Lower Levels of TAZ Expression Associated with Post-Surgical Wound Healing Complications in Soft Tissue Sarcoma Patients Treated with Preoperative Radiation. Biomedicines 2025; 13:344. [PMID: 40002757 PMCID: PMC11853470 DOI: 10.3390/biomedicines13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Pre-operative radiation (Pre-RT) decreases local recurrence following soft tissue sarcoma (STS) resection but carries the risk of wound healing complications (WHCs). This study evaluated skin specimens and clinical characteristics of STS patients to (1) compare patients with and without Pre-RT, (2) compare Pre-RT patients with and without WHCs, and (3) explore associations between clinical characteristics and WHCs. Methods: This retrospective study included 54 adults who underwent STS resection with primary closure (Pre-RT n = 30). A pathologist who was blinded to the clinical outcomes evaluated the skin specimens microscopically. Results: Irradiated skin had lower vessel density and was more likely to lack hair follicles and sebaceous glands, consistent with the effects of radiation. Irradiated skin was also more likely to include plasma cells. Irradiated skin demonstrated higher mean TAZ H-scores; however, within the Pre-RT subset, those patients who developed WHCs demonstrated comparatively lower TAZ. Conclusions: This novel finding may suggest that higher TAZ in irradiated skin reflects a response to injury but that comparatively lower TAZ in irradiated skin might contribute to WHCs. Future studies should consider more focused evaluation of TAZ in STS resections with Pre-RT as they may help to predict WHCs when used in combination with other histologic factors and could suggest a therapeutic target.
Collapse
Affiliation(s)
- Jacob D. Gylten
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Jane E. Persons
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin J. Miller
- Department of Orthopedic Surgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Qiang An
- Department of Orthopedic Surgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Munir R. Tanas
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
2
|
Cui J, Wang TJ, Zhang YX, She LZ, Zhao YC. Molecular biological mechanisms of radiotherapy-induced skin injury occurrence and treatment. Biomed Pharmacother 2024; 180:117470. [PMID: 39321513 DOI: 10.1016/j.biopha.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Radiotherapy-Induced Skin Injury (RISI) is radiation damage to normal skin tissue that primarily occurs during tumor Radiotherapy and occupational exposure. The risk of RISI is high due to the fact that the skin is not only the first body organ that ionizing radiation comes into contact with, but it is also highly sensitive to it, especially the basal cell layer and capillaries. Typical clinical manifestations of RISI include erythema, dry desquamation, moist desquamation, and ulcers, which have been established to significantly impact patient care and cancer treatment. Notably, our current understanding of RISI's pathological mechanisms and signaling pathways is inadequate, and no standard treatments have been established. Radiation-induced oxidative stress, inflammatory responses, fibrosis, apoptosis, and cellular senescence are among the known mechanisms that interact and promote disease progression. Additionally, radiation can damage all cellular components and induce genetic and epigenetic changes, which play a crucial role in the occurrence and progression of skin injury. A deeper understanding of these mechanisms and pathways is crucial for exploring the potential therapeutic targets for RISI. Therefore, in this review, we summarize the key mechanisms and potential treatment methods for RISI, offering a reference for future research and development of treatment strategies.
Collapse
Affiliation(s)
- Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yu-Xuan Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
3
|
Lawrence J, Seelig D, Demos-Davies K, Ferreira C, Ren Y, Wang L, Alam SK, Yang R, Guedes A, Craig A, Hoeppner LH. Radiation dermatitis in the hairless mouse model mimics human radiation dermatitis. Sci Rep 2024; 14:24819. [PMID: 39438583 PMCID: PMC11496547 DOI: 10.1038/s41598-024-76021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Over half of all people diagnosed with cancer receive radiation therapy. Moderate to severe radiation dermatitis occurs in most human radiation patients, causing pain, aesthetic distress, and a negative impact on tumor control. No effective prevention or treatment for radiation dermatitis exists. The lack of well-characterized, clinically relevant animal models of human radiation dermatitis contributes to the absence of strategies to mitigate radiation dermatitis. Here, we establish and characterize a hairless SKH-1 mouse model of human radiation dermatitis by correlating temporal stages of clinical and pathological skin injury. We demonstrate that a single ionizing radiation treatment of 30 Gy using 6 MeV electrons induces severe clinical grade 3 peak toxicity at 12 days, defined by marked erythema, desquamation and partial ulceration, with resolution occurring by 25 days. Histopathology reveals that radiation-induced skin injury features temporally unique inflammatory changes. Upregulation of epidermal and dermal TGF-ß1 and COX-2 protein expression occurs at peak dermatitis, with sustained epidermal TGF-ß1 expression beyond resolution. Specific histopathological variables that remain substantially high at peak toxicity and early clinical resolution, including epidermal thickening, hyperkeratosis and dermal fibroplasia/fibrosis, serve as specific measurable parameters for in vivo interventional preclinical studies that seek to mitigate radiation-induced skin injury.
Collapse
Affiliation(s)
- Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA.
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA.
- Department of Radiation Oncology, Medical School, University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 55455, USA.
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA.
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA
| | - Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
| | - Clara Ferreira
- Department of Radiation Oncology, Medical School, University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
- Department of Urology, Northwestern University, 303 E Superior Street, Chicago, IL, 60611, USA
| | - Li Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Sk Kayum Alam
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
- Department of Urology, Northwestern University, 303 E Superior Street, Chicago, IL, 60611, USA
| | - Alonso Guedes
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
| | - Angela Craig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA
- Hennepin Healthcare Research Institute, 701 Park Ave, Suite S3, Minneapolis, MN, 55415, USA
| | - Luke H Hoeppner
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA.
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
4
|
Boothe PF, Kumar VP, Kong Y, Wang K, Levinson H, Mu D, Brown ML. Radiation Induced Skin Fibrosis (RISF): Opportunity for Angiotensin II-Dependent Intervention. Int J Mol Sci 2024; 25:8261. [PMID: 39125831 PMCID: PMC11312688 DOI: 10.3390/ijms25158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Medical procedures, such as radiation therapy, are a vital element in treating many cancers, significantly contributing to improved survival rates. However, a common long-term complication of such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy may achieve long-term remission, resulting in a significant number of survivors managing the aftereffects of their treatment. This article delves into the intricate relationship between RISF, reactive oxygen species (ROS), and angiotensin II (Ang II) signaling. It proposes the underlying mechanisms and examines potential treatments for mitigating skin fibrosis. The primary goal is to offer essential insights in order to better care for and improve the quality of life of cancer survivors who face the risk of developing RISF.
Collapse
Affiliation(s)
- Patricia F. Boothe
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Howard Levinson
- The Center for Plastic Surgery at Sentara, 301 Riverview Ave. #400, Norfolk, VA 23510, USA;
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
- Leroy T. Canoles Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
5
|
Brooks KA, Gross JH. Radiotherapy-induced Pathology of the Ear. Otolaryngol Clin North Am 2023; 56:977-985. [PMID: 37414656 DOI: 10.1016/j.otc.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Acute radiotherapy (RT)-induced external ear soft tissue changes start with erythema and dry desquamation and may progress to moist desquamation and epidermal ulceration. Chronic RT-induced changes include epithelial atrophy and subcutaneous fibrosis. Although RT-induced radiation dermatitis has been well studied, interventions for soft tissue disease involving the external auditory canal (EAC) warrant investigation. Medical management includes topical steroid treatment for EAC radiation dermatitis and topical antibiotic therapy for suppurative otitis externa. Hyperbaric oxygen and pentoxifylline-vitamin E therapy have shown promise for other applications, but their clinical effect on soft tissue EAC disease is currently undefined.
Collapse
Affiliation(s)
- Kaitlyn A Brooks
- Department of Otolaryngology-Head and Neck Surgery, Emory University, Atlanta, GA 30308, USA
| | - Jennifer H Gross
- Department of Otolaryngology-Head and Neck Surgery, Emory University, Atlanta, GA 30308, USA.
| |
Collapse
|
6
|
King SN, Kaissieh N, Haxton C, Shojaei M, Malott L, Devara L, Thompson R, Osman KL, Millward J, Blackburn M, Lever TE. Radiation induced changes in profibrotic markers in the submental muscles and their correlation with tongue movement. PLoS One 2023; 18:e0287044. [PMID: 37352202 PMCID: PMC10289304 DOI: 10.1371/journal.pone.0287044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/29/2023] [Indexed: 06/25/2023] Open
Abstract
Swallowing impairment is a major complication of radiation treatment for oropharyngeal cancers. Developing targeted therapies that improve swallowing outcomes relies on an understanding of the mechanisms that influence motor function after radiation treatment. The purpose of this study was to determine whether there is a correlation between radiation induced changes in tongue movement and structural changes in irradiated submental muscles, as well as assess other possible causes for dysfunction. We hypothesized that a clinically relevant total radiation dose to the submental muscles would result in: a) quantifiable changes in tongue strength and displacement during drinking two months post treatment; and b) a profibrotic response and/or fiber type transition in the irradiated tissue. Sprague-Dawley adult male rats received radiation to the submental muscles at total dose-volumes known to provoke dysphagia in humans. A clinical linear accelerator administered 8 fractions of 8Gy for a total of 64Gy. Comparisons were made to sham-treated rats that received anesthesia only. Swallowing function was assessed using videofluoroscopy and tongue strength was analyzed via force lickometer. TGFβ1 expression was analyzed via ELISA. The amount of total collagen was analyzed by picrosirius red staining. Immunofluorescence was used to assess fiber type composition and size. Significant changes in licking function during drinking were observed at two months post treatment, including a slower lick rate and reduced tongue protrusion during licking. In the mylohyoid muscle, significant increases in TGFβ1 protein expression were found post radiation. Significant increases in the percentage of collagen content were observed in the irradiated geniohyoid muscle. No changes in fiber type expression were observed. Results indicate a profibrotic transition within the irradiated swallowing muscles that contributes to tongue dysfunction post-radiation treatment.
Collapse
Affiliation(s)
- Suzanne N. King
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Nada Kaissieh
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Chandler Haxton
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Marjan Shojaei
- Department of Radiation Oncology, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Luke Malott
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Lekha Devara
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Rebecca Thompson
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Kate L. Osman
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Jessica Millward
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Megan Blackburn
- Department of Radiation Oncology, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Teresa E. Lever
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| |
Collapse
|
7
|
Higashino M, Aihara T, Ozaki A, Hu N, Isohashi K, Ono K, Nihei K, Kurisu Y, Kawata R. Successful salvage surgery of the residual tumor after boron neutron capture therapy (BNCT): A case report. Appl Radiat Isot 2022; 189:110420. [DOI: 10.1016/j.apradiso.2022.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
|
8
|
Aberrant stromal tissue factor localisation and mycolactone-driven vascular dysfunction, exacerbated by IL-1β, are linked to fibrin formation in Buruli ulcer lesions. PLoS Pathog 2022; 18:e1010280. [PMID: 35100311 PMCID: PMC8846541 DOI: 10.1371/journal.ppat.1010280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/15/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease caused by subcutaneous infection with Mycobacterium ulcerans and its exotoxin mycolactone. BU displays coagulative necrosis and widespread fibrin deposition in affected skin tissues. Despite this, the role of the vasculature in BU pathogenesis remains almost completely unexplored. We hypothesise that fibrin-driven ischemia can be an ‘indirect’ route to mycolactone-dependent tissue necrosis by a mechanism involving vascular dysfunction. Here, we tracked >900 vessels within contiguous tissue sections from eight BU patient biopsies. Our aim was to evaluate their vascular and coagulation biomarker phenotype and explore potential links to fibrin deposition. We also integrated this with our understanding of mycolactone’s mechanism of action at Sec61 and its impact on proteins involved in maintaining normal vascular function. Our findings showed that endothelial cell dysfunction is common in skin tissue adjacent to necrotic regions. There was little evidence of primary haemostasis, perhaps due to mycolactone-dependent depletion of endothelial von Willebrand factor. Instead, fibrin staining appeared to be linked to the extrinsic pathway activator, tissue factor (TF). There was significantly greater than expected fibrin staining around vessels that had TF staining within the stroma, and this correlated with the distance it extended from the vessel basement membrane. TF-induced fibrin deposition in these locations would require plasma proteins outside of vessels, therefore we investigated whether mycolactone could increase vascular permeability in vitro. This was indeed the case, and leakage was further exacerbated by IL-1β. Mycolactone caused the loss of endothelial adherens and tight junctions by the depletion of VE-cadherin, TIE-1, TIE-2 and JAM-C; all Sec61-dependent proteins. Taken together, our findings suggest that both vascular and lymphatic vessels in BU lesions become “leaky” during infection, due to the unique action of mycolactone, allowing TF-containing structures and plasma proteins into skin tissue, ultimately leading to local coagulopathy and tissue ischemia. To date, the debilitating skin disease Buruli ulcer remains a public health concern and financial burden in low or middle-income countries, especially in tropical regions. Late diagnosis is frequent in remote areas, perhaps due to the painlessness of the disease. Hence patients often present with large, destructive opened ulcers leading to delayed wound closure or even lifelong disability. The infectious agent produces a toxin called mycolactone that drives the disease. We previously found evidence that the vascular system is disrupted by mycolactone in these lesions, and now we have further explored potential explanations for these findings by looking at the expression of vascular markers in BU. In a detailed analysis of patient skin punch biopsies, we identified distinct expression patterns of certain proteins and found that tissue factor, which initiates the so-called extrinsic pathway of blood clotting, is particularly important. Mycolactone is able to disrupt the barrier function of the endothelium, further aggravating the diseased phenotype, which may explain how clotting factors access the tissue. Altogether, such localised hypercoagulation in Buruli ulcer skin lesions may contribute to the development of the lesion.
Collapse
|
9
|
Gans I, El Abiad JM, James AW, Levin AS, Morris CD. Administration of TGF-ß Inhibitor Mitigates Radiation-induced Fibrosis in a Mouse Model. Clin Orthop Relat Res 2021; 479:468-474. [PMID: 33252888 PMCID: PMC7899598 DOI: 10.1097/corr.0000000000001286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiation-induced fibrosis is a long-term adverse effect of external beam radiation therapy for cancer treatment that can cause pain, loss of function, and decreased quality of life. Transforming growth factor beta (TGF-β) is believed to be critical to the development of radiation-induced fibrosis, and TGF-β inhibition decreases the development of fibrosis. However, no treatment exists to prevent radiation-induced fibrosis. Therefore, we aimed to mitigate the development of radiation-induced fibrosis in a mouse model by inhibiting TGF-β. QUESTION/PURPOSES Does TGF-β inhibition decrease the development of muscle fibrosis induced by external beam radiation in a mouse model? METHODS Twenty-eight 12-week-old male C57BL/6 mice were assigned randomly to three groups: irradiated mice treated with TGF-βi, irradiated mice treated with placebo, and control mice that received neither irradiation nor treatment. The irradiated mice received one 50-Gy fraction of radiation to the right hindlimb before treatment initiation. Mice treated with TGF-c (n = 10) received daily intraperitoneal injections of a small-molecule inhibitor of TGF-β (1 mg/kg) in a dimethyl sulfoxide vehicle for 8 weeks (seven survived to histologic analysis). Mice treated with placebo (n = 10) received daily intraperitoneal injections of only a dimethyl sulfoxide vehicle for 8 weeks (10 survived to histologic analysis). Control mice (n = 8) received neither radiation nor TGF-β treatment. Control mice were euthanized at 3 months because they were not expected to exhibit any changes related to treatment. Mice in the two treatment groups were euthanized 9 months after radiation, and the quadriceps of each thigh was sampled. Masson's trichome stain was used to assess muscle fibrosis. Slides were viewed at 10 × magnification using bright-field microscopy, and in a blinded fashion, five representative images per mouse were used to quantify fibrosis. The mean ± SD fibrosis pixel densities in the TGF-βi and radiation-only groups were compared using Mann-Whitney U tests. The ratio of fibrosis to muscle was calculated using the mean fibrosis per slide in the TGF-βi group to standardize measurements. Alpha was set at 0.05. RESULTS The mean (± SD) percentage of fibrosis per slide was greater in the radiation-only group (1.2% ± 0.42%) than in the TGF-βi group (0.14% ± 0.09%) (odds ratio 0.12 [95% CI 0.07 to 0.20]; p < 0.001). Among control mice, mean fibrosis was 0.05% ± 0.02% per slide. Mice in the radiation-only group had 9.1 times the density of fibrosis as did mice in the TGF-βi group. CONCLUSION Our study provides preliminary evidence that the fibrosis associated with radiation therapy to a quadriceps muscle can be reduced by treatment with a TGF-β inhibitor in a mouse model. CLINICAL RELEVANCE If these observations are substantiated by further investigation into the role of TGF-β inhibition on the development of radiation-induced fibrosis in larger animal models and humans, our results may aid in the development of novel therapies to mitigate this complication of radiation treatment.
Collapse
Affiliation(s)
- Itai Gans
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Jad M El Abiad
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Aaron W James
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Adam S Levin
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Carol D Morris
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| |
Collapse
|
10
|
Deng J, Wulff-Burchfield EM, Murphy BA. Late Soft Tissue Complications of Head and Neck Cancer Therapy: Lymphedema and Fibrosis. J Natl Cancer Inst Monogr 2020; 2019:5551348. [PMID: 31425591 DOI: 10.1093/jncimonographs/lgz005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer and its treatment result in soft tissue damage secondary to lymphedema and fibrosis. Lymphedema is the result of pathological accumulation of interstitial fluid in tissues. It is caused by the inability of the lymphatic system to transport lymph fluid from the tissues to the central circulatory system and is manifested clinically by tissue swelling. Fibrosis is defined as an overaccumulation of fibrotic tissues within the skin and soft tissues after a single or repetitive injury and is characterized by hardening of the soft tissues with associated loss of elasticity. Lymphedema and fibrosis are common yet overlooked late effects of head and neck cancer and its therapy. They may result in profound long-term symptom burden, loss of critical functions, and altered quality of life. The following review will discuss the current pathobiology, clinical manifestations, and future directions for research related to lymphedema and fibrosis.
Collapse
Affiliation(s)
- Jie Deng
- School of Nursing, University of Pennsylvania, Philadelphia, PA
| | | | | |
Collapse
|
11
|
da Silva Santin M, Koehler J, Rocha DM, Dos Reis CA, Omar NF, Fidler Y, de Miranda Soares MA, Gomes JR. Initial damage produced by a single 15-Gy x-ray irradiation to the rat calvaria skin. Eur Radiol Exp 2020; 4:32. [PMID: 32500235 PMCID: PMC7272528 DOI: 10.1186/s41747-020-00155-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calvaria skin has a reduced thickness, and its initial damage produced by irradiation was scarcely reported. We aimed to identify the initial effects of x-ray irradiation in the rat calvaria skin. METHODS After approval by the Animal Ethical Committee, calvaria skin sections of five Wistar rats per time point were evaluated on days 4, 9, 14, and 25 following a single 15-Gy x-ray irradiation of the head. The control group was composed of five rats and evaluated on day 4. Sections were assessed using hematoxylin-eosin and Masson's trichrome staining for morphology, inflammation, and fibrosis. Fibrosis was also evaluated by the collagen maturation index from Picrosirius red staining and by cell proliferation using the immunohistochemistry, after 5-bromo-2-deoxyuridine intraperitoneal injection. RESULTS In irradiated rats, we observed a reduction in epithelial cell proliferation (p = 0.004) and in matrix metalloproteinase-9 expression (p < 0.001), an increase in the maturation index, and with a predominance in the type I collagen fibers, on days 9 and 14 (1.19 and 1.17, respectively). A progressive disorganization in the morphology of the collagen fibers at all time points and changes in morphology of the sebaceous gland cells and hair follicle were present until day 14. CONCLUSIONS The initial damage produced by a single 15-Gy x-ray irradiation to the rat calvaria skin was a change in the normal morphology of collagen fibers to an amorphous aspect, a temporary absence of the sebaceous gland and hair follicles, and without a visible inflammatory process, cell proliferation, or fibrosis process in the dermis.
Collapse
Affiliation(s)
- Matheus da Silva Santin
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - José Koehler
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil.,Southern Paraná Oncology Institute (ISPON), Cel. Francisco Ribas, 638 - Ponta Grossa, Paraná, Brazil
| | - Danilo Massuia Rocha
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Camila Audrey Dos Reis
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Nadia Fayez Omar
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Yasmin Fidler
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | | | - José Rosa Gomes
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil.
| |
Collapse
|
12
|
Borrelli MR, Shen AH, Lee GK, Momeni A, Longaker MT, Wan DC. Radiation-Induced Skin Fibrosis: Pathogenesis, Current Treatment Options, and Emerging Therapeutics. Ann Plast Surg 2019; 83:S59-S64. [PMID: 31513068 PMCID: PMC6746243 DOI: 10.1097/sap.0000000000002098] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiotherapy (RT) has become an indispensable part of oncologic treatment protocols for a range of malignancies. However, a serious adverse effect of RT is radiodermatitis; almost 95% of patients develop moderate to severe skin reactions following radiation treatment. In the acute setting, these can be erythema, desquamation, ulceration, and pain. Chronically, soft tissue atrophy, alopecia, and stiffness can be noted. Radiodermatitis can delay oncologic treatment protocols and significantly impair quality of life. There is currently a paucity of effective treatment options and prevention strategies for radiodermatitis. Importantly, recent preclinical and clinical studies have suggested that fat grafting may be of therapeutic benefit, reversing detrimental changes to soft tissue following RT. This review outlines the damaging effects of RT on the skin and soft tissue as well as discusses available treatment options for radiodermatitis. Emerging strategies to mitigate detrimental, chronic radiation-induced changes are also presented.
Collapse
Affiliation(s)
- Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Abra H. Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Gordon K. Lee
- Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Palo Alto, California
| | - Arash Momeni
- Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, Palo Alto, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
13
|
Chen Y, Zhang Q, Wu Y, Branch-Brooks CD, Butler CE. Short-term influences of radiation on musculofascial healing in a laparotomy rat model. Sci Rep 2019; 9:11896. [PMID: 31417127 PMCID: PMC6695398 DOI: 10.1038/s41598-019-48201-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Preoperative radiation is associated with an increased risk of wound complications. However, the influences of radiation on musculofascial wound healing remains unclear. The purpose of the study was to investigate the short-term effects of preoperative local radiation on the musculofascial healing of laparotomy incisions in a rat model. Eighteen Fischer 344 rats received radiation doses of 0, 10, or 20 Gy to the abdominal wall and underwent laparotomy 4 weeks later. Two weeks after laparotomy, samples of irradiated muscle were harvested for mechanical tests, histological (Hematoxylin & Eosin, and Masson's Trichrome) and immunohistochemical analyses using KI67, CD31, TGF-β, and MYOD1 antibodies. The elastic modulus (EM), maximum strain (MS), and ultimate tensile strength (UTS) in the 20-Gy group were significantly weaker than those in the 0-Gy group. The EM and UTS in the 20-Gy group were significantly lower than those in the 10-Gy group. The UTS and MS in the 10-Gy group were significantly lower than those in the 0-Gy group. The mean number of inflammatory cells per mm2 in the 20-Gy group was significantly larger than those in the 10- and 0-Gy groups. The mean numbers of CD31-, KI67-, and MYOD1-positive cells, the optical density of TGF-β, and the microvessel density in the 20-Gy group were significantly smaller than those in the 10- and 0-Gy groups. These results indicated that radiation delays musculofascial healing and decreases mechanical strength of the laparotomy incision by creating a chronic inflammatory environment, inhibiting cell proliferation, angiogenesis, granulation maturation, collagen deposition, and muscular regeneration in a dose-dependent manner. The impaired biomechanical, histological and molecular properties may be associated with the higher risk of wound complications in patients who undergo radiotherapy prior to laparotomy.
Collapse
Affiliation(s)
- Youbai Chen
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Plastic and Reconstructive Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yewen Wu
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cynthia D Branch-Brooks
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles E Butler
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Investigation of serum proteome homeostasis during radiation therapy by a quantitative proteomics approach. Biosci Rep 2019; 39:BSR20182319. [PMID: 31300526 PMCID: PMC6663990 DOI: 10.1042/bsr20182319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022] Open
Abstract
The purpose of the present study is to analyze the serum proteome of patients receiving Radiation Therapy (RT) at different stages of their treatment to discovery candidate biomarkers of the radiation-induced skin lesions and the molecular pathways underlying the radiation signatures. Six stages of RT treatment were monitored from patients treated because of brain cancer: before starting the treatment, during the treatment (four time points), and at 4 weeks from the last RT dose. Serum samples were analyzed by a proteomics approach based on the Data Independent Acquisition (DIA) mass spectrometry (MS). RT induced clear changes in the expression levels of 36 serum proteins. Among these, 25 proteins were down- or up-regulated significantly before the emergence of skin lesions. Some of these were still deregulated after the completion of the treatment. Few days before the appearance of the skin lesions, the levels of some proteins involved in the wound healing processes were down-regulated. The pathway analysis indicated that after partial body irradiation, the expression levels of proteins functionally involved in the acute inflammatory and immune response, lipoprotein process and blood coagulation, were deregulated.
Collapse
|
15
|
Song J, Zhang H, Wang Z, Xu W, Zhong L, Cao J, Yang J, Tian Y, Yu D, Ji J, Cao J, Zhang S. The Role of FABP5 in Radiation-Induced Human Skin Fibrosis. Radiat Res 2017; 189:177-186. [PMID: 29215326 DOI: 10.1667/rr14901.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced skin fibrosis is a detrimental and chronic disorder that occurs after radiation exposure. The molecular changes underlying the pathogenesis of radiation-induced fibrosis of human skin have not been extensively reported. Technical advances in proteomics have enabled exploration of the biomarkers and molecular pathogenesis of radiation-induced skin fibrosis, with the potential to broaden our understanding of this disease. In this study, we compared protein expression in radiation-induced fibrotic human skin and adjacent normal tissues using iTRAQ-based proteomics technology. We identified 186 preferentially expressed proteins (53 upregulated and 133 downregulated) between radiogenic fibrotic and normal skin tissues. The differentially expressed proteins included keratins (KRT5, KRT6A, KRT16 and KRT17), caspase-14, fatty acid-binding protein 5 (FABP5), SLC2A14 and resistin. Through bioinformatic analysis of the proximal promoters, common motifs and corresponding transcriptional factors were identified that associate with the dysregulated proteins, including PAX5, TBX1, CLOCK and AP2D. In particular, FABP5 (2.15-fold increase in fibrotic skin tissues), a transporter of hydrophobic fatty acids, was investigated in greater detail. Immunohistochemistry confirmed that the protein level of FABP5 was increased in fibrotic human skin tissues, especially in the epidermis. Overexpression of FABP5 resulted in nuclear translocation of SMAD2 and significant activation of the profibrotic TGF-β signaling pathway in human fibroblast WS1 cells. Moreover, exogenous FABP5 (FABP5-EGFP) could be incorporated by skin cells and intensify TGF-β signaling, indicating a communication between the microenvironment and skin fibrosis. Taken together, our findings illustrate the molecular changes during radiation-induced human skin fibrosis and the critical role of FABP5 in activating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jianyuan Song
- a Fujian Medical University Union Hospital, Fuzhou 350001, China.,b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Huojun Zhang
- c Department of Radiation Oncology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Wang
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wanglei Xu
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Li Zhong
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jinming Cao
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Yang
- d Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China; and
| | - Ye Tian
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Daojiang Yu
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jiang Ji
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jianping Cao
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Hartwig S, Preissner S, Voss JO, Hertel M, Doll C, Waluga R, Raguse JD. The feasibility of cold atmospheric plasma in the treatment of complicated wounds in cranio-maxillo-facial surgery. J Craniomaxillofac Surg 2017; 45:1724-1730. [DOI: 10.1016/j.jcms.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 11/28/2022] Open
|
17
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
18
|
Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017; 8:62742-62758. [PMID: 28977985 PMCID: PMC5617545 DOI: 10.18632/oncotarget.18409] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Effective radiotherapy for cancer has relied on the promise of maximally eradicating tumor cells while minimally killing normal cells. Technological advancement has provided state-of-the-art instrumentation that enables delivery of radiotherapy with great precision to tumor lesions with substantial reduced injury to normal tissues. Moreover, better understanding of radiobiology, particularly the mechanisms of radiation sensitivity and resistance in tumor lesions and toxicity in normal tissues, has improved the treatment efficacy of radiotherapy. Previous mechanism-based studies have identified many cellular targets that can affect radiation sensitivity, notably reactive oxygen species, DNA-damaging response signals, and tumor microenvironments. Several radiation sensitizers and protectors have been developed and clinically evaluated; however, many of these results are inconclusive, indicating that improvement remains needed. In this era of personalized medicine in which patients’ genetic variations, transcriptome and proteomics, tumor metabolism and microenvironment, and tumor immunity are available. These new developments have provided opportunity for new target discovery. Several radiotherapy sensitivity-associated “gene signatures” have been reported although clinical validations are needed. Recently, several immune modifiers have been shown to associate with improved radiotherapy in preclinical models and in early clinical trials. Combination of radiotherapy and immunocheckpoint blockade has shown promising results especially in targeting metastatic tumors through abscopal response. In this article, we succinctly review recent advancements in the areas of mechanism-driven targets and exploitation of new targets from current radio-oncogenomic and radiation-immunotherapeutic approaches that bear clinical implications for improving the treatment efficacy of radiotherapy.
Collapse
Affiliation(s)
- Helen H W Chen
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Macus Tien Kuo
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Koerdt S, Tanner N, Rommel N, Rohleder NH, Frohwitter G, Ristow O, Wolff KD, Kesting MR. NOS1-, NOS3-, PIK3CA-, and MAPK-pathways in skin following radiation therapy. Biomark Res 2017; 5:3. [PMID: 28127430 PMCID: PMC5251289 DOI: 10.1186/s40364-017-0084-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 11/13/2022] Open
Abstract
Background Essential molecular pathways such as the MAPK pathway, NO system, or the influence of PIK3CA as an oncogene are known to regulate fundamental signalling networks. However, few knowledge about their role in the occurrence of wound healing disorders (WHD) following radiation therapy (RT) exists. This study aims to evaluate the expression profiles of specific molecular pathway marker genes. Methods Expression profiles of the genes encoding MAPK, NOS1, NOS3, and PIK3CA were analyzed, by RT-PCR, in specimens from patients with and without a history of RT to the head and neck. Clinical data on the occurrence of cervical WHDs were analyzed. Results Expression analysis of patients with postoperative WHDs revealed a significant increase in MAPK expression compared to the control group without occurrence of postoperative WHDs. PIK3CA showed a significantly increased expression in patients with a history of RT. Expression analysis of all other investigated genes did not reveal significant differences. Conclusions This current study is able to show the influence of RT on different molecular pathways. This underlines the crucial role of specific molecular networks, responsible for the occurrence of long-term radiation toxicity such as WHDs. Additional studies should be carried out to identify possible starting points for therapeutic interventions.
Collapse
Affiliation(s)
- Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Nadine Tanner
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Niklas Rommel
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Nils H Rohleder
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Gesche Frohwitter
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Oliver Ristow
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Marco R Kesting
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| |
Collapse
|
20
|
Glazer ES, Welsh E, Pimiento JM, Teer JK, Malafa MP. TGFβ1 overexpression is associated with improved survival and low tumor cell proliferation in patients with early-stage pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:999-1006. [PMID: 27895310 PMCID: PMC5352213 DOI: 10.18632/oncotarget.13533] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022] Open
Abstract
The role of transforming growth factor beta-type-1 (TGFβ1) in pancreatic ductal adenocarcinoma (PDAC) progression is stage-dependent. We hypothesized that TGFβ1 expression is associated with survival and proliferation markers in patients with early-stage PDAC. We acquired clinicopathologic, treatment, and mRNA expression data from The Cancer Genome Atlas data set for 106 patients identified with stage I/II PDAC who underwent pancreaticoduodenectomy. Patients were categorized as high expression when mRNA expression was ≥75th percentile for each gene. Average log2 mRNA expression of TGFβ1 in patients with high expression was 11.6 ± 0.2 and 10.5 ± 0.6 in patients with low expression (P<0.001). Low TGFβ1 expression is associated with shorter median survival compared with high TGFβ1 expression (17 versus at least 60 months; P=0.005). Patients with tumors demonstrating high MKI67 (the gene encoding Ki-67) expression have shorter median survival versus those with lowerMKI67 expression (16 versus 20 months; P=0.026). TGFβ1 and MKI67 are inversely associated (P=0.009). On multivariate analysis, improved survival is associated with TGFβ1 overexpression (P=0.017), adjuvant chemotherapy (P=0.001), and adjuvant radiotherapy (P=0.017), whereas positive surgical margins are associated with worse survival (P=0.002). In patients who undergo pancreaticoduodenectomy for PDAC, high TGFβ1 expression may counteract the worse survival associated with high proliferation.
Collapse
Affiliation(s)
- Evan S. Glazer
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Eric Welsh
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jose M. Pimiento
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K. Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mokenge P. Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
21
|
Wang W, Luo J, Sheng W, Xue J, Li M, Ji J, Liu P, Zhang X, Cao J, Zhang S. Proteomic Profiling of Radiation-Induced Skin Fibrosis in Rats: Targeting the Ubiquitin-Proteasome System. Int J Radiat Oncol Biol Phys 2016; 95:751-60. [PMID: 27045812 DOI: 10.1016/j.ijrobp.2016.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the molecular changes underlying the pathogenesis of radiation-induced skin fibrosis. METHODS AND MATERIALS Rat skin was irradiated to 30 or 45 Gy with an electron beam. Protein expression in fibrotic rat skin and adjacent normal tissues was quantified by label-free protein quantitation. Human skin cells HaCaT and WS-1 were treated by x-ray irradiation, and the proteasome activity was determined with a fluorescent probe. The effect of proteasome inhibitors on Transforming growth factor Beta (TGF-B) signaling was measured by Western blot and immunofluorescence. The efficacy of bortezomib in wound healing of rat skin was assessed by the skin injury scale. RESULTS We found that irradiation induced epidermal and dermal hyperplasia in rat and human skin. One hundred ninety-six preferentially expressed and 80 unique proteins in the irradiated fibrotic skin were identified. Through bioinformatic analysis, the ubiquitin-proteasome pathway showed a significant fold change and was investigated in greater detail. In vitro experiments demonstrated that irradiation resulted in a decline in the activity of the proteasome in human skin cells. The proteasome inhibitor bortezomib suppressed profibrotic TGF-β downstream signaling but not TGF-β secretion stimulated by irradiation in HaCaT and WS-1 cells. Moreover, bortezomib ameliorated radiation-induced skin injury and attenuated epidermal hyperplasia. CONCLUSION Our findings illustrate the molecular changes during radiation-induced skin fibrosis and suggest that targeting the ubiquitin-proteasome system would be an effective countermeasure.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Judong Luo
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, China
| | - Wenjiong Sheng
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiao Xue
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ming Li
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiang Ji
- Department of Dermatology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Liu
- Department of Gastroenterology, the Affiliated Jiangyin Hospital of Southeast University, Jiangyin, China
| | - Xueguang Zhang
- Institute of Medical Biotechnology and Jiangsu Stem Cell Key Laboratory, Medical College of Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Soochow University, Suzhou, China.
| |
Collapse
|