1
|
Li Y, Ta L, Wu Q, Zhang H, Xu Y, Gan L, Liu J. Assessment of the Validity of Carbon Ion Irradiation for C6 Gliomas in Rats. Dose Response 2025; 23:15593258251327505. [PMID: 40297665 PMCID: PMC12033543 DOI: 10.1177/15593258251327505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 04/30/2025] Open
Abstract
Purpose Application of energy-spectrum computed tomography (CT) to assess specific efficacy of and response to carbon ion radiotherapy (CIRT) of C6 gliomas in rats. Methods After establishing C6 glioma rat models, 3 tumor-bearing rats were randomly selected as controls. The remaining were divided into 0 Gy, 1 Gy, and 2 Gy groups for CIRT. Energy-spectrum CT scans were performed, and brain tissues were collected for histopathology and western blot Test. Survival rates in each group were compared. Results The results demonstrated that tumors in the 1 Gy and 2 Gy groups decreased at different rates up to 14 days post-CIRT (P < 0.05). Furthermore, compared to pre-CIRT measurements, the energy-spectrum parameters gradually increased in the 0 Gy group, while they decreased in the 2 Gy group. Post-CIRT, the Ki-67 proliferation index and the expression levels of vascu-larassociated proteins in tumor tissues were significantly reduced in the 1 and 2 Gy groups. Additionally, the survival times of tumor-bearing rats were prolonged after CIRT. Conclusions CIRT effectively restricts tumor cell growth and proliferation, leading to improved survival rates in rats with C6 gliomas. The use of energy-spectrum CT with immunohistochemistry for quantitative detection can actively support the effectiveness of carbon ion radiotherapy in inhibiting tumor proliferation.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Ta
- Ningbo Medical Center LiHuiLi Hospital, Ningbo, China
| | - QingFeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Hongyu Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yuan Xu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jianli Liu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Tashakori N, Kolour SSP, Ghafouri K, Ahmed SI, Kahrizi MS, Gerami R, Altafi M, Nazari A. Critical role of the long non-coding RNAs (lncRNAs) in radiotherapy (RT)-resistance of gastrointestinal (GI) cancer: Is there a way to defeat this resistance? Pathol Res Pract 2024; 258:155289. [PMID: 38703607 DOI: 10.1016/j.prp.2024.155289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
Radiotherapy (RT) is a frequently used treatment for cervical cancer, effectively decreasing the likelihood of the disease returning in the same area and extending the lifespan of individuals with cervical cancer. Nevertheless, the primary reason for treatment failure in cancer patients is the cancer cells' resistance to radiation therapy (RT). Long non-coding RNAs (LncRNAs) are a subset of RNA molecules that do not code for proteins and are longer than 200 nucleotides. They have a significant impact on the regulation of gastrointestinal (GI) cancers biological processes. Recent research has shown that lncRNAs have a significant impact in controlling the responsiveness of GI cancer to radiation. This review provides a concise overview of the composition and operation of lncRNAs as well as the intricate molecular process behind radiosensitivity in GI cancer. Additionally, it compiles a comprehensive list of lncRNAs that are linked to radiosensitivity in such cancers. Furthermore, it delves into the potential practical implementation of these lncRNAs in modulating radiosensitivity in GI cancer.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Internal Medicine, Faculty of Medicine, Tehran branch, Islamic Azad University, Tehran, Iran
| | | | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Ibrahem Ahmed
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| | | | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Mana Altafi
- Department of Radiology, Faculty of Biological Science and Technology, Shiraz Pardis Branch, Islamic Azad University, Shiraz, Iran.
| | - Afsaneh Nazari
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| |
Collapse
|
3
|
Wan S, Li KP, Wang CY, Yang JW, Chen SY, Wang HB, Li XR, Yang L. Immunologic Crosstalk of Endoplasmic Reticulum Stress Signaling in Bladder Cancer. Curr Cancer Drug Targets 2024; 24:701-719. [PMID: 38265406 DOI: 10.2174/0115680096272663231121100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 01/25/2024]
Abstract
Bladder cancer (BC) is a common malignant tumor of the urinary system. While current approaches involving adjuvant chemotherapy, radiotherapy, and immunotherapy have shown significant progress in BC treatment, challenges, such as recurrence and drug resistance, persist, especially in the case of muscle-invasive bladder cancer (MIBC). It is mainly due to the lack of pre-existing immune response cells in the tumor immune microenvironment. Micro-environmental changes (such as hypoxia and under-nutrition) can cause the aggregation of unfolded and misfolded proteins in the lumen, which induces endoplasmic reticulum (ER) stress. ER stress and its downstream signaling pathways are closely related to immunogenicity and tumor drug resistance. ER stress plays a pivotal role in a spectrum of processes within immune cells and the progression of BC cells, encompassing cell proliferation, autophagy, apoptosis, and resistance to therapies. Recent studies have increasingly recognized the potential of natural compounds to exhibit anti-BC properties through ER stress induction. Still, the efficacy of these natural compounds remains less than that of immune checkpoint inhibitors (ICIs). Currently, the ER stress-mediated immunogenic cell death (ICD) pathway is more encouraging, which can enhance ICI responses by mediating immune stemness. This article provides an overview of the recent developments in understanding how ER stress influences tumor immunity and its implications for BC. Targeting this pathway may soon emerge as a compelling therapeutic strategy for BC.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Kun-Peng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Chen-Yang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou730000, PR China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Hua-Bin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| |
Collapse
|
4
|
Bian C, Zheng Z, Su J, Wang H, Chang S, Xin Y, Jiang X. Targeting Mitochondrial Metabolism to Reverse Radioresistance: An Alternative to Glucose Metabolism. Antioxidants (Basel) 2022; 11:2202. [PMID: 36358574 PMCID: PMC9686736 DOI: 10.3390/antiox11112202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy failure and poor tumor prognosis are primarily attributed to radioresistance. Improving the curative effect of radiotherapy and delaying cancer progression have become difficult problems for clinicians. Glucose metabolism has long been regarded as the main metabolic process by which tumor cells meet their bioenergetic and anabolic needs, with the complex interactions between the mitochondria and tumors being ignored. This misconception was not dispelled until the early 2000s; however, the cellular molecules and signaling pathways involved in radioresistance remain incompletely defined. In addition to being a key metabolic site that regulates tumorigenesis, mitochondria can influence the radiation effects of malignancies by controlling redox reactions, participating in oxidative phosphorylation, producing oncometabolites, and triggering apoptosis. Therefore, the mitochondria are promising targets for the development of novel anticancer drugs. In this review, we summarize the internal relationship and related mechanisms between mitochondrial metabolism and cancer radioresistance, thus exploring the possibility of targeting mitochondrial signaling pathways to reverse radiation insensitivity. We suggest that attention should be paid to the potential value of mitochondria in prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Stackhouse CT, Anderson JC, Yue Z, Nguyen T, Eustace NJ, Langford CP, Wang J, Rowland JR, Xing C, Mikhail FM, Cui X, Alrefai H, Bash RE, Lee KJ, Yang ES, Hjelmeland AB, Miller CR, Chen JY, Gillespie GY, Willey CD. An in vivo model of glioblastoma radiation resistance identifies long non-coding RNAs and targetable kinases. JCI Insight 2022; 7:148717. [PMID: 35852875 PMCID: PMC9462495 DOI: 10.1172/jci.insight.148717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are largely unknown, with a dearth of accurate preclinical models. To address this, we generated 8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy–selected (RTS) resistance compared with same-patient, treatment-naive (radiation-sensitive, unselected; RTU) PDXs. These likely unique models mimic the longitudinal evolution of patient recurrent tumors following serial radiation therapy. Indeed, while whole-exome sequencing showed retention of major genomic alterations in the RTS lines, we did detect a chromosome 12q14 amplification that was associated with clinical GBM recurrence in 2 RTS models. A potentially novel bioinformatics pipeline was applied to analyze phenotypic, transcriptomic, and kinomic alterations, which identified long noncoding RNAs (lncRNAs) and targetable, PDX-specific kinases. We observed differential transcriptional enrichment of DNA damage repair pathways in our RTS models, which correlated with several lncRNAs. Global kinomic profiling separated RTU and RTS models, but pairwise analyses indicated that there are multiple molecular routes to acquired radiation resistance. RTS model–specific kinases were identified and targeted with clinically relevant small molecule inhibitors. This cohort of in vivo RTS patient-derived models will enable future preclinical therapeutic testing to help overcome the treatment resistance seen in patients with GBM.
Collapse
Affiliation(s)
| | | | - Zongliang Yue
- Informatics Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. Birmingham, Alabama, USA
| | - Thanh Nguyen
- Informatics Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. Birmingham, Alabama, USA
| | | | | | - Jelai Wang
- Informatics Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. Birmingham, Alabama, USA
| | - James R. Rowland
- Department of Physics, The Ohio State University, Columbus, Ohio, USA
| | | | - Fady M. Mikhail
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Ryan E. Bash
- Division of Neuropathology, Department of Pathology, and
| | | | | | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - C. Ryan Miller
- Division of Neuropathology, Department of Pathology, and
| | - Jake Y. Chen
- Informatics Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. Birmingham, Alabama, USA
| | | | | |
Collapse
|
6
|
Tamtaji OR, Razavi ZS, Razzaghi N, Aschner M, Barati E, Mirzaei H. Quercetin and Glioma: Which signaling pathways are involved? Curr Mol Pharmacol 2022; 15:962-968. [DOI: 10.2174/1874467215666220211094136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Gliomas are the most common brain tumors. These tumors commonly exhibit continuous growth without invading surrounding brain tissues. Dominant remedial approaches suffer limited therapy and survival rates. Although some progress has been made in conventional glioma treatments, these breakthroughs have not yet proven sufficient for treating this malignancy. The remedial options are limited given gliomas' aggressive metastasis and drug resistance. Quercetin, a flavonoid, is an anti-oxidative, anti-allergic, antiviral, anti-inflammatory, and anticancer compound. Multiple lines of evidence have shown that Quercetin has anti-tumor effects, documenting this natural compound exerts its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, metastasis, and autophagy. Herein, we summarize various cellular and molecular pathways that are affected by Quercetin in gliomas.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Nazanin Razzaghi
- Laboratory Sciences Research Centre, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Erfaneh Barati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
7
|
Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms221810177. [PMID: 34576340 PMCID: PMC8469696 DOI: 10.3390/ijms221810177] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.
Collapse
|
8
|
Li Y, Wang X, Zhao Z, Shang J, Li G, Zhang R. LncRNA NEAT1 promotes glioma cancer progression via regulation of miR-98-5p/BZW1. Biosci Rep 2021; 41:BSR20200767. [PMID: 33393590 PMCID: PMC8314435 DOI: 10.1042/bsr20200767] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioma is the most common malignant tumor in the human central nervous system. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) promotes oncogenesis in various tumors. In the present study, we aimed to examine the role of NEAT1 in altering the properties of gliomas. METHODS Quantitative real-time PCR technology was used to determine the expression levels of relevant genes in tumor tissues and cell lines. The protein expression levels were validated by Western blotting. Cell counting kit-8 (CCK-8) and colony formation assays were used to test the cell proliferation ability. A luciferase reporter assay was used to determine the interactions of the genes. Tumor xenografts were used to detect the role of NEAT1 in gliomas in vivo. RESULTS We demonstrated that NEAT1 up-regulated glioma cells and negatively correlated with miR-98-5p in glioma tissues. A potential binding region between NEAT1 and miR-98-5p was confirmed by dual-luciferase assays. NEAT1 knockdown inhibited glioma cell proliferation. The inhibition of miR-98-5p rescued the knockdown of NEAT1 in glioma cells. Basic leucine zipper and W2 domain containing protein 1 (BZW1) was identified as a direct target of miR-98-5p. We also identified that BZW1 was positively correlated with NEAT1 in glioma tissues. NEAT1 knockdown inhibited glioma cell proliferation in vivo via miR-98-5p/BZW1. CONCLUSION Our results suggest that NEAT1 plays an oncogenic function in glioma progression. Targeting NEAT1/miR-98-5p/BZW1 may be a novel therapeutic treatment approach for glioma patients.
Collapse
Affiliation(s)
- Yabin Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Xirui Wang
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Zhihuang Zhao
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Jinxing Shang
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Gang Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Ruijian Zhang
- Department of Neurosurgery, People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, P.R. China
| |
Collapse
|
9
|
Zhao M, Fu X, Zhang Z, Ma L, Wang X, Li X. Gamma Knife Radiosurgery for High-Grade Gliomas: Single-Center Experience of Six Years in China. Stereotact Funct Neurosurg 2021; 99:181-186. [PMID: 33756470 DOI: 10.1159/000509782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the efficacy of Gamma Knife radiosurgery (GKRS) as a salvage therapy for high-grade glioma in our center. METHODS A total of 167 patients with malignant glioma were treated with GKRS in our Gamma Knife Center between January 2013 and December 2017; 140 patients (85 males and 55 females) were followed up and enrolled in our study. A single lesion was found in 110 cases, and multiple lesions were found in 30 cases; 108 cases received a single therapy, and in 32 cases, at least 2 GKRSs were performed. The median tumor volume was 13.5 cm3. The mean radiation dosage was 14.35 Gy (range, 6-18 Gy). MRI was performed regularly. The RANO criteria and Cox analysis were used to evaluate the therapeutic efficiency. RESULTS Follow-up MRI showed the local control rate was 61.4% at 3 months after GKRS, 25.0% at 6 months, and 7.1% at 12 months. The mean and median progression-free survival (PFS) periods were 8.6 (95% CI, 6.3-11.0) and 4 (95% CI, 3.5-4.5) (range, 1-60) months, respectively. The overall survival (OS) after GKRS was 3-62 months, with a mean of 16.7 (95% CI, 14.6-18.9) months, and the median survival was 13 (95% CI, 12.1-13.9) months. The 1-, 2-, and 5-year survival rates were 51.4, 10.0, and 2.9%, respectively. No severe complications occurred. Cox regression showed that glioma pathology was closely related to prognosis (p < 0.05). The Karnofsky Performance Score had little influence on PFS (p > 0.05) but influenced OS significantly (p < 0.05). CONCLUSION GKRS can be used to effectively treat malignant brain glioma and can therefore be used as an alternative treatment option.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,
| | - Xiangping Fu
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiwen Zhang
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liang Ma
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaopeng Wang
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuexiu Li
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Poulsen TBG, Karamehmedovic A, Aboo C, Jørgensen MM, Yu X, Fang X, Blackburn JM, Nielsen CH, Kragstrup TW, Stensballe A. Protein array-based companion diagnostics in precision medicine. Expert Rev Mol Diagn 2020; 20:1183-1198. [PMID: 33315478 DOI: 10.1080/14737159.2020.1857734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The development of companion diagnostics (CDx) will increase efficacy and cost-benefit markedly, compared to the currently prevailing trial-and-error approach for treatment. Recent improvements in high-throughput protein technology have resulted in large amounts of predictive biomarkers that are potentially useful components of future CDx assays. Current high multiplex protein arrays are suitable for discovery-based approaches, while low-density and more simple arrays are suitable for use in point-of-care facilities. AREA COVERED This review discusses the technical platforms available for protein array focused CDx, explains the technical details of the platforms and provide examples of clinical use, ranging from multiplex arrays to low-density clinically applicable arrays. We thereafter highlight recent predictive biomarkers within different disease areas, such as oncology and autoimmune diseases. Lastly, we discuss some of the challenges connected to the implementation of CDx assays as point-of-care tests. EXPERT OPINION Recent advances in the field of protein arrays have enabled high-density arrays permitting large biomarker discovery studies, which are beneficial for future CDx assays. The density of protein arrays range from a single protein to proteome-wide arrays, allowing the discovery of protein signatures that may correlate with drug response. Protein arrays will undoubtedly play a key role in future CDx assays.
Collapse
Affiliation(s)
- Thomas B G Poulsen
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Azra Karamehmedovic
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing, China
| | - Xiangdong Fang
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , China
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences & Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa.,Sengenics Corporation Pte Ltd , Singapore
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet , Copenhagen, Denmark
| | - Tue W Kragstrup
- Department of Biomedicine, Aarhus University , Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital , Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| |
Collapse
|
11
|
Zhu C, Mao X, Zhao H. The circ_VCAN with radioresistance contributes to the carcinogenesis of glioma by regulating microRNA-1183. Medicine (Baltimore) 2020; 99:e19171. [PMID: 32080097 PMCID: PMC7034728 DOI: 10.1097/md.0000000000019171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/29/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (circRNAs), a widespread type of noncoding RNA, are produced by reverse splicing with a circular loop structure. Circ_VCAN (hsa_circ_0073237) acts as a novel circRNA, although its roles in the progression and radioresistance of glioma remain unknown.Expressions of circ_VCAN and microRNA-1183 (miR-1183) were analyzed by quantitative real-time PCR, and the functions of circ_VCAN and irradiate in glioma cell proliferation, apoptosis, migration, and invasion were assessed using cell counting kit-8, flow cytometry, Wound healing, and Transwell assays. The interaction between circ_VCAN and miR-1183 was validated dual-luciferase reporter assay.Our results revealed that circ_VCAN was significantly upregulated in radioresistant glioma tissues compared with radiosensitive tissues, and that circ_VCAN expression was negatively correlated with miR-1183 expression in glioma tissues. We also determined that circ_VCAN expression was decreased and miR-1183 expression was increased in U87 and U251 cells after irradiation. Both knockdown of circ_VCAN and treatment with miR-1183 mimics inhibited proliferation, migration, and invasion, and accelerated apoptosis of the irradiated U87 and U251 cells. In addition, luciferase reporter assays revealed that circ_VCAN might function as a sponge for miR-1183. Finally, overexpression of circ_VCAN expedited carcinogenesis and reduced glioma radiosensitivity by regulating miR-1183.Circ_VCAN serves as a potential oncogene of glioma by regulating miR-1183, and plays an essential role in the radioresistance of glioma.
Collapse
|
12
|
Huang R, Xiang J, Zhou P. Vitamin D, gut microbiota, and radiation-related resistance: a love-hate triangle. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:493. [PMID: 31843023 PMCID: PMC6915920 DOI: 10.1186/s13046-019-1499-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Radiation resistance is a serious issue in radiotherapy. Increasing evidence indicates that the human gut microbiome plays a role in the development of radiation resistance. Vitamin D is an important supplement for cancer patients treated with radiotherapy. Against this background, this paper reviewed research regarding the associations among vitamin D, microbiota dysbiosis, and radiation resistance. A hypothesis is developed to describe the relationships among vitamin D, the gut microbiota, and radiotherapy outcomes. Radiotherapy changes the composition of the gut microbiota, which in turn influence the serum level of vitamin D, and its distribution and metabolism in the body. Alteration of vitamin D level influences the patient response to radiotherapy, where the underlying mechanisms may be associated with the intestinal microenvironment, immune molecules in the intestines, gut microbiome metabolites, and signaling pathways associated with vitamin D receptors. Our understanding of the contribution of vitamin D and the gut microbiota to radiotherapy outcomes has been increasing gradually. A better understanding of the relationships among vitamin D, the gut microbiota, and radiotherapy outcomes will shed more light on radiation resistance, and also promote the development of new strategies for overcoming it, thus addressing an important challenge associated with the currently available radiotherapy modalities for cancer patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China
| | - Pingkun Zhou
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China. .,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| |
Collapse
|
13
|
Luo H, Song H, Mao R, Gao Q, Feng Z, Wang N, Song S, Jiao R, Ni P, Ge H. Targeting valosin-containing protein enhances the efficacy of radiation therapy in esophageal squamous cell carcinoma. Cancer Sci 2019; 110:3464-3475. [PMID: 31454136 PMCID: PMC6825005 DOI: 10.1111/cas.14184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/02/2023] Open
Abstract
Overcoming resistance to radiation is a great challenge in cancer therapy. Here, we highlight that targeting valosin‐containing protein (VCP) improves radiation sensitivity in esophageal squamous cell carcinoma (ESCC) cell lines and show the potential of using VCP as a prognosis marker in locally advanced ESCC treated with radiation therapy. Esophageal squamous cell carcinoma cell lines with high VCP expression were treated with VCP inhibitor combined with radiotherapy. Cell proliferation, colony formation, cell death, and endoplasmic reticulum (ER) stress signaling were evaluated. Moreover, patients with newly diagnosed locally advanced ESCC who were treated with radiotherapy were analyzed. Immunohistochemistry was used to detect the expression of VCP. The correlation between overall survival and VCP was investigated. Esophageal squamous cell carcinoma cells treated with VCP inhibitor and radiotherapy showed attenuated cell proliferation and colony formation and enhanced apoptosis. Further investigation showed this combined strategy activated the ER stress signaling involved in unfolded protein response, and inhibited the ER‐associated degradation (ERAD) pathway. Clinical analysis revealed a significant survival benefit in the low VCP expression group. Targeting VCP resulted in antitumor activity and enhanced the efficacy of radiation therapy in ESCC cells in vitro. Valosin‐containing protein is a promising and novel target. In patients with locally advanced ESCC who received radiotherapy, VCP can be considered as a useful prognostic indicator of overall survival. Valosin‐containing protein inhibitors could be developed for use as effective cancer therapies, in combination with radiation therapy.
Collapse
Affiliation(s)
- Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengli Song
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ronghu Mao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Gao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Feng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Song
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruidi Jiao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Peizan Ni
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Biau J, Chautard E, Berthault N, de Koning L, Court F, Pereira B, Verrelle P, Dutreix M. Combining the DNA Repair Inhibitor Dbait With Radiotherapy for the Treatment of High Grade Glioma: Efficacy and Protein Biomarkers of Resistance in Preclinical Models. Front Oncol 2019; 9:549. [PMID: 31275862 PMCID: PMC6593092 DOI: 10.3389/fonc.2019.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
High grade glioma relapses occur often within the irradiated volume mostly due to a high resistance to radiation therapy (RT). Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by RT. Here we evaluate the potential of Dbait to sensitize high grade glioma to RT. First, we demonstrated the radiosensitizer properties of Dbait in 6/9 tested cell lines. Then, we performed animal studies using six cell derived xenograft and five patient derived xenograft models, to show the clinical potential and applicability of combined Dbait+RT treatment for human high grade glioma. Using a RPPA approach, we showed that Phospho-H2AX/H2AX and Phospho-NBS1/NBS1 were predictive of Dbait efficacy in xenograft models. Our results provide the preclinical proof of concept that combining RT with Dbait inhibition of DNA repair could be of benefit to patients with high grade glioma.
Collapse
Affiliation(s)
- Julian Biau
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France.,INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Chautard
- INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Pathology Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nathalie Berthault
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| | - Leanne de Koning
- Laboratory of Proteomic Mass Spectrometry, Centre de Recherche, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Frank Court
- GReD Laboratory, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, DRCI, Clermont-Ferrand Hospital, Clermont-Ferrand, France
| | - Pierre Verrelle
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| |
Collapse
|