1
|
Gazdag-Hegyesi S, Gáldi Á, Koszta E, Stelczer G, Szegedi D, Major T, Pesznyák C. Investigation of the beam width and profile of kilovoltage CBCT using different measurement techniques and analysis of the dosimetric effects of beam parameters. Rep Pract Oncol Radiother 2025; 30:79-87. [PMID: 40242415 PMCID: PMC11999023 DOI: 10.5603/rpor.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/30/2025] [Indexed: 04/18/2025] Open
Abstract
Background The aim of this study is to investigate the beam width and beam profile of kilovoltage cone beam computed tomography (kV CBCT) using different measurement techniques on an O-ring linear accelerator. The effect of the imaging beam on the dosimetric parameters was analysed. Materials and methods The uncertainty of field size adjustment, the dependence of beam width on field size, and the effect of deflection from the isocenter on the beam profile were investigated by ionization chamber detector matrices. The 2D beam profile of the CBCT was analysed by relative ionization chamber measurements. Results The average setup uncertainties of the field sizes were 0.3 mm ± 0.02 mm. The dependence of beam width on field size investigation revealed that the largest discrepancies occurred for small field sizes, which are important in determining computed tomography dose index (CTDI) values of the kV CBCT. The beam width deviation between measured and vendor-based data was larger than 1 mm below 40 mm field of view. The pelvis protocol demonstrated the smallest CTDI value difference of 2.3%, yet presented the largest effective dose deviation of 0.12 mSv. Conclusions The measured CTDI coefficients were higher than predicted by the manufacturer for all cases. The currently internationally recommended CTDI measurement protocols for CBCT contain no reference to the determination of the beam width as a basic element of the calculations. Based on our measurement results, the beam width parameters affect CTDI: therefore, it would be advisable to apply this type of correction.
Collapse
Affiliation(s)
- Szilvia Gazdag-Hegyesi
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
- Doctoral School of Physical Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ádám Gáldi
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| | - Enikő Koszta
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
| | - Gábor Stelczer
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
- Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest, Hungary
| | - Domonkos Szegedi
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
- Doctoral School of Physical Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Tibor Major
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
- Department of Oncology, Semmelweis University, Budapest, Hungary
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Csilla Pesznyák
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
- Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
2
|
Pepa M, Taleghani S, Sellaro G, Mirandola A, Colombo F, Vennarini S, Ciocca M, Paganelli C, Orlandi E, Baroni G, Pella A. Unsupervised Deep Learning for Synthetic CT Generation from CBCT Images for Proton and Carbon Ion Therapy for Paediatric Patients. SENSORS (BASEL, SWITZERLAND) 2024; 24:7460. [PMID: 39685997 DOI: 10.3390/s24237460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Image-guided treatment adaptation is a game changer in oncological particle therapy (PT), especially for younger patients. The purpose of this study is to present a cycle generative adversarial network (CycleGAN)-based method for synthetic computed tomography (sCT) generation from cone beam CT (CBCT) towards adaptive PT (APT) of paediatric patients. Firstly, 44 CBCTs of 15 young pelvic patients were pre-processed to reduce ring artefacts and rigidly registered on same-day CT scans (i.e., verification CT scans, vCT scans) and then inputted to the CycleGAN network (employing either Res-Net and U-Net generators) to synthesise sCT. In particular, 36 and 8 volumes were used for training and testing, respectively. Image quality was evaluated qualitatively and quantitatively using the structural similarity index metric (SSIM) and the peak signal-to-noise ratio (PSNR) between registered CBCT (rCBCT) and vCT and between sCT and vCT to evaluate the improvements brought by CycleGAN. Despite limitations due to the sub-optimal input image quality and the small field of view (FOV), the quality of sCT was found to be overall satisfactory from a quantitative and qualitative perspective. Our findings indicate that CycleGAN is promising to produce sCT scans with acceptable CT-like image texture in paediatric settings, even when CBCT with narrow fields of view (FOV) are employed.
Collapse
Affiliation(s)
- Matteo Pepa
- Bioengineering Unit, Clinical Department, CNAO National Centre for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Siavash Taleghani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano (POLIMI), 20133 Milan, Italy
| | - Giulia Sellaro
- Bioengineering Unit, Clinical Department, CNAO National Centre for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, CNAO National Centre for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Francesca Colombo
- Radiation Oncology Unit, Clinical Department, CNAO National Centre for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Sabina Vennarini
- Paediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy
| | - Mario Ciocca
- Medical Physics Unit, Clinical Department, CNAO National Centre for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano (POLIMI), 20133 Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Centre for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano (POLIMI), 20133 Milan, Italy
| | - Andrea Pella
- Bioengineering Unit, Clinical Department, CNAO National Centre for Oncological Hadrontherapy, 27100 Pavia, Italy
| |
Collapse
|
3
|
Gáldi Á, Farkas G, Gazdag-Hegyesi S, Koszta E, Ágoston P, Pesznyák C, Major T, Takácsi-Nagy Z, Polgár C, Jurányi Z. Combined biological effects of CBCT and therapeutic X-ray dose on chromosomal aberrations of lymphocytes. Radiat Oncol 2024; 19:109. [PMID: 39143640 PMCID: PMC11325805 DOI: 10.1186/s13014-024-02504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Cone beam computed tomography (CBCT) is routinely used in radiotherapy to localize target volume. The aim of our study was to determine the biological effects of CBCT dose compared to subsequent therapeutic dose by using in vitro chromosome dosimetry. MATERIALS AND METHODS Peripheral blood samples from five healthy volunteers were irradiated in two phantoms (water filled in-house made cylindrical, and Pure Image CTDI phantoms) with 6 MV FFF X-ray photons, the dose rate was 800 MU/min and the absorbed doses ranged from 0.5 to 8 Gy. Irradiation was performed with a 6 MV linear accelerator (LINAC) to generate a dose-response calibration curve. In the first part of the investigation, 1-5 CBCT imaging was used, in the second, only 2 Gy doses were delivered with a LINAC, and then, in the third part, a combination of CBCT and 2 Gy irradiation was performed mimicking online adapted radiotherapy treatment. Metaphases were prepared from lymphocyte cultures, using standard cytogenetic techniques, and chromosomal aberrations were evaluated. Estimate doses were calculated from chromosome aberrations using dose-response curves. RESULTS Samples exposed to X-ray from CBCT imaging prior to treatment exhibited higher chromosomal aberrations and Estimate dose than the 2 Gy therapeutic (real) dose, and the magnitude of the increase depended on the number of CBCTs: 1-5 CBCT corresponded to 0.04-0.92 Gy, 1 CBCT + 2 Gy to 2.32 Gy, and 5 CBCTs + 2 Gy to 3.5 Gy. CONCLUSION The estimated dose based on chromosomal aberrations is 24.8% higher than the physical dose, for the combination of 3 CBCTs and the therapeutic 2 Gy dose, which should be taken into account when calculating the total therapeutic dose that could increase the risk of a second cancer. The clinical implications of the combined radiation effect may require further investigation.
Collapse
Affiliation(s)
- Ádám Gáldi
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary.
- Doctoral College, Semmelweis University, Budapest, Hungary.
| | - Gyöngyi Farkas
- Department of Radiobiology and Diagnostic Onco-Cytogenetics, Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
| | - Szilvia Gazdag-Hegyesi
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
- Doctoral School of Physical Sciences, University of Technology and Economics, Budapest, Hungary
| | - Enikő Koszta
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
- Doctoral School of Physical Sciences, University of Technology and Economics, Budapest, Hungary
| | - Péter Ágoston
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
- Department of Oncology, National Institute of Oncology, Semmelweis University, Ráth György U.7-9, Budapest, 1122, Hungary
| | - Csilla Pesznyák
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
- Institute of Nuclear Techniques, University of Technology and Economics, Budapest, Hungary
| | - Tibor Major
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
- Department of Oncology, National Institute of Oncology, Semmelweis University, Ráth György U.7-9, Budapest, 1122, Hungary
| | - Zoltán Takácsi-Nagy
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
- Department of Oncology, National Institute of Oncology, Semmelweis University, Ráth György U.7-9, Budapest, 1122, Hungary
| | - Csaba Polgár
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
- Department of Oncology, National Institute of Oncology, Semmelweis University, Ráth György U.7-9, Budapest, 1122, Hungary
| | - Zsolt Jurányi
- Centre of Radiotherapy, National Institute of Oncology, Ráth György U. 7-9, Budapest, 1122, Hungary
- Department of Oncology, National Institute of Oncology, Semmelweis University, Ráth György U.7-9, Budapest, 1122, Hungary
| |
Collapse
|
4
|
Wang M, Yao K, Zhao Y, Geng J, Zhu X, Liu Z, Li Y, Wu H, Du Y. Virtual clinical trial-based study for clinical evaluation of projection-reduced low-dose cone-beam CT for image guided radiotherapy. Front Oncol 2024; 14:1369603. [PMID: 39055562 PMCID: PMC11270018 DOI: 10.3389/fonc.2024.1369603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Repeated cone-beam CT (CBCT) scans for image-guided radiotherapy (IGRT) increase the health risk of radiation-induced malignancies. Patient-enrolled studies to optimize scan protocols are inadequate. We proposed a virtual clinical trial-based approach to evaluate projection-reduced low-dose CBCT for IGRT. Materials and methods A total of 71 patients were virtually enrolled with 26 head, 23 thorax and 22 pelvis scans. Projection numbers of full-dose CBCT scans were reduced to 1/2, 1/4, and 1/8 of the original to simulate low-dose scans. Contrast-to-noise ratio (CNR) values in fat and muscle were measured in the full-dose and low-dose images. CBCT images were registered to planning CT to derive 6-degree-of-freedom couch shifts. Registration errors were statistically analyzed with the Wilcoxon paired signed-rank test. Results As projection numbers were reduced, CNR values descended and the magnitude of registration errors increased. The mean CNR values of full-dose and half-dose CBCT were >3.0. For full-dose and low-dose CBCT (i.e. 1/2, 1/4 and 1/8 full-dose), the mean registration errors were< ± 0.4 mm in translational directions (LAT, LNG, VRT) and ±0.2 degree in rotational directions (Pitch, Roll, Yaw); the mean magnitude of registration errors were< 1 mm in translation and< 0.5 degree in rotation. The couch shift differences between full-dose and low-dose CBCT were not statistically significant (p>0.05) in all the directions. Conclusion The results indicate that while the impact of dose-reduction on CBCT couch shifts is not significant, the impact on CNR values is significant. Further validation on optimizing CBCT imaging dose is required.
Collapse
Affiliation(s)
- Meijiao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kaining Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yixin Zhao
- Department of Otolaryngology, Head and Neck Surgery, Peking University People’s Hospital, Beijing, China
| | - Jianhao Geng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yi Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Stokkevåg CH, Journy N, Vogelius IR, Howell RM, Hodgson D, Bentzen SM. Radiation Therapy Technology Advances and Mitigation of Subsequent Neoplasms in Childhood Cancer Survivors. Int J Radiat Oncol Biol Phys 2024; 119:681-696. [PMID: 38430101 DOI: 10.1016/j.ijrobp.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Neige Journy
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Ivan R Vogelius
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases and University of Copenhagen, Copenhagen, Denmark
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - David Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
6
|
Østergaard DE, Bryce-Atkinson A, Skaarup M, Smulders B, Davies LSC, Whitfield G, Janssens GO, Hjalgrim LL, Richter IV, van Herk M, Aznar M, Vestmø Maraldo M. Paediatric CBCT protocols for image-guided radiotherapy; outcome of a survey across SIOP Europe affiliated countries and literature review. Radiother Oncol 2024; 190:109963. [PMID: 38406888 DOI: 10.1016/j.radonc.2023.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND Implementation of daily cone-beam CT (CBCT) into clinical practice in paediatric image-guided radiotherapy (IGRT) lags behind compared to adults. Surveys report wide variation in practice for paediatric IGRT and technical information remains unreported. In this study we report on technical settings from applied paediatric CBCT protocols and review the literature for paediatric CBCT protocols. METHODS From September to October 2022, a survey was conducted among 246 SIOPE-affiliated centres across 35 countries. The survey consisted of 3 parts: 1) baseline information; technical CBCT exposure settings and patient set-up procedure for 2) brain/head, and 3) abdomen. Descriptive statistics was used to summarise current practice. The literature was reviewed systematically with two reviewers obtaining consensus RESULTS: The literature search revealed 22 papers concerning paediatric CBCT protocols. Seven papers focused on dose-optimisation. Responses from 50/246 centres in 25/35 countries were collected: 44/50 treated with photons and 10/50 with protons. In total, 48 brain/head and 53 abdominal protocols were reported. 42/50 centres used kV-CBCT for brain/head and 35/50 for abdomen; daily CBCT was used for brain/head = 28/48 (58%) and abdomen = 33/53 62%. Greater consistency was seen in brain/head protocols (dose range 0.32 - 67.7 mGy) compared to abdominal (dose range 0.27 - 119.7 mGy). CONCLUSION Although daily CBCT is now widely used in paediatric IGRT, our survey demonstrates a wide range of technical settings, suggesting an unmet need to optimise paediatric IGRT protocols. This is in accordance with the literature. However, there are only few paediatric optimisation studies suggesting that dose reduction is possible while maintaining image quality.
Collapse
Affiliation(s)
- Daniella Elisabet Østergaard
- Section of Radiotherapy, Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark.
| | - Abigail Bryce-Atkinson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Mikkel Skaarup
- Section of Radiotherapy, Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bob Smulders
- Section of Radiotherapy, Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital, Copenhagen, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Gillian Whitfield
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK; The Children's Brain Tumour Research Network, The University of Manchester, Royal Manchester Children's Hospital, Manchester, UK
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lisa Lyngsie Hjalgrim
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ivan Vogelius Richter
- Section of Radiotherapy, Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Marianne Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Maja Vestmø Maraldo
- Section of Radiotherapy, Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
7
|
Taylor S, Lim P, Cantwell J, D’Souza D, Moinuddin S, Chang YC, Gaze MN, Gains J, Veiga C. Image guidance and interfractional anatomical variation in paediatric abdominal radiotherapy. Br J Radiol 2023; 96:20230058. [PMID: 37102707 PMCID: PMC10230397 DOI: 10.1259/bjr.20230058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES To identify variables predicting interfractional anatomical variations measured with cone-beam CT (CBCT) throughout abdominal paediatric radiotherapy, and to assess the potential of surface-guided radiotherapy (SGRT) to monitor these changes. METHODS Metrics of variation in gastrointestinal (GI) gas volume and separation of the body contour and abdominal wall were calculated from 21 planning CTs and 77 weekly CBCTs for 21 abdominal neuroblastoma patients (median 4 years, range: 2 - 19 years). Age, sex, feeding tubes, and general anaesthesia (GA) were explored as predictive variables for anatomical variation. Furthermore, GI gas variation was correlated with changes in body and abdominal wall separation, as well as simulated SGRT metrics of translational and rotational corrections between CT/CBCT. RESULTS GI gas volumes varied 74 ± 54 ml across all scans, while body and abdominal wall separation varied 2.0 ± 0.7 mm and 4.1 ± 1.5 mm from planning, respectively. Patients < 3.5 years (p = 0.04) and treated under GA (p < 0.01) experienced greater GI gas variation; GA was the strongest predictor in multivariate analysis (p < 0.01). Absence of feeding tubes was linked to greater body contour variation (p = 0.03). GI gas variation correlated with body (R = 0.53) and abdominal wall (R = 0.63) changes. The strongest correlations with SGRT metrics were found for anterior-posterior translation (R = 0.65) and rotation of the left-right axis (R = -0.36). CONCLUSIONS Young age, GA, and absence of feeding tubes were linked to stronger interfractional anatomical variation and are likely indicative of patients benefiting from adaptive/robust planning pathways. Our data suggest a role for SGRT to inform the need for CBCT at each treatment fraction in this patient group. ADVANCES IN KNOWLEDGE This is the first study to suggest the potential role of SGRT for the management of internal interfractional anatomical variation in paediatric abdominal radiotherapy.
Collapse
Affiliation(s)
- Sabrina Taylor
- University College London, Centre for Medical Image Computing, London, United Kingdom
| | - Pei Lim
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jessica Cantwell
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Derek D’Souza
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Syed Moinuddin
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Yen-Ching Chang
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jennifer Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catarina Veiga
- University College London, Centre for Medical Image Computing, London, United Kingdom
| |
Collapse
|
8
|
Shimizu H, Sasaki K, Aoyama T, Iwata T, Kitagawa T, Kodaira T. Evaluation of a new acrylic-lead shielding device for peripheral dose reduction during cone-beam computed tomography. BJR Open 2022; 4:20220043. [PMID: 38525166 PMCID: PMC10958996 DOI: 10.1259/bjro.20220043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Objective To clarify the peripheral dose changes, especially in the eye lens and thyroid gland regions, using an acrylic-lead shield in cone-beam computed tomography (CBCT). Methods The acrylic-lead shield consists of system walls and a system mat. The radiophotoluminescence glass dosemeter was set on the eye lens and thyroid gland regions on the RANDO phantom. The system mat was laid under the RANDO phantom ranging from the top of the head to the shoulders, and then, the system walls shielded the phantom's head. Additionally, the phantom was covered anteriorly with a band that had the same shielding ability as the system mat to cover the thyroid gland region. Protocols for CBCT imaging of the thoracic or pelvic region in clinical practice were used. The measurement was performed with and without the acrylic-lead shield. Results The dose to the eye lens region was reduced by 45% using the system wall. Conversely, the dose to the thyroid gland was unchanged. The use of the system mat reduced the dose to the thyroid gland region by 47%, and the dose to the eye lens was reduced by 22%. The dose to the eye lens region decreased to the background level using the system walls and mat. Conclusion The newly proposed device using an acrylic-lead shield reduced the peripheral dose in CBCT imaging. Advances in knowledge Attention is focused on managing peripheral dose in image-guided radiation therapy. The peripheral dose reduction using the acrylic-lead shield is a new proposal in radiotherapy that has never been studied.
Collapse
Affiliation(s)
- Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Koji Sasaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki, Maebashi, Gunma, Japan
| | | | - Tohru Iwata
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Vogel M, Gade J, Timm B, Schürmann M, Auerbach H, Nüsken F, Rübe C, Melchior P, Dzierma Y. Comparison of Breast Cancer Radiotherapy Techniques Regarding Secondary Cancer Risk and Normal Tissue Complication Probability - Modelling and Measurements Using a 3D-Printed Phantom. Front Oncol 2022; 12:892923. [PMID: 35965556 PMCID: PMC9365503 DOI: 10.3389/fonc.2022.892923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Radiotherapy after breast-conserving therapy is a standard postoperative treatment of breast cancer, which can be carried out with a variety of irradiation techniques. The treatment planning must take into consideration detrimental effects on the neighbouring organs at risk-the lung, the heart, and the contralateral breast, which can include both short- and long-term effects represented by the normal tissue complication probability and secondary cancer risk. Patients and Methods In this planning study, we investigate intensity-modulated (IMRT) and three-dimensional conformal (3D-CRT) radiotherapy techniques including sequential or simultaneously integrated boosts as well as interstitial multicatheter brachytherapy boost techniques of 38 patients with breast-conserving surgery retrospectively. We furthermore develop a 3D-printed breast phantom add-on to allow for catheter placement and to measure the out-of-field dose using thermoluminescent dosimeters placed inside an anthropomorphic phantom. Finally, we estimate normal tissue complication probabilities using the Lyman-Kutcher-Burman model and secondary cancer risks using the linear non-threshold model (out-of-field) and the model by Schneider et al. (in-field). Results The results depend on the combination of primary whole-breast irradiation and boost technique. The normal tissue complication probabilities for various endpoints are of the following order: 1%-2% (symptomatic pneumonitis, ipsilateral lung), 2%-3% (symptomatic pneumonitis, whole lung), and 1%-2% (radiation pneumonitis grade ≥ 2, whole lung). The additional relative risk of ischemic heart disease ranges from +25% to +35%. In-field secondary cancer risk of the ipsilateral lung in left-sided treatment is around 50 per 10,000 person-years for 20 years after exposure at age 55. Out-of-field estimation of secondary cancer risk results in approximately 5 per 10,000 person-years each for the contralateral lung and breast. Conclusions In general, 3D-CRT shows the best risk reduction in contrast to IMRT. Regarding the boost concepts, brachytherapy is the most effective method in order to minimise normal tissue complication probability and secondary cancer risk compared to teletherapy boost concepts. Hence, the 3D-CRT technique in combination with an interstitial multicatheter brachytherapy boost is most suitable in terms of risk avoidance for treating breast cancer with techniques including boost concepts.
Collapse
Affiliation(s)
- Marc Vogel
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Jonas Gade
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Bernd Timm
- Siemens Healthcare GmbH, Technical Service, Erlangen, Germany
| | - Michaela Schürmann
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Hendrik Auerbach
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Frank Nüsken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| |
Collapse
|
10
|
Towards Accurate and Precise Image-Guided Radiotherapy: Clinical Applications of the MR-Linac. J Clin Med 2022; 11:jcm11144044. [PMID: 35887808 PMCID: PMC9324978 DOI: 10.3390/jcm11144044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in image-guided radiotherapy have brought about improved oncologic outcomes and reduced toxicity. The next generation of image guidance in the form of magnetic resonance imaging (MRI) will improve visualization of tumors and make radiation treatment adaptation possible. In this review, we discuss the role that MRI plays in radiotherapy, with a focus on the integration of MRI with the linear accelerator. The MR linear accelerator (MR-Linac) will provide real-time imaging, help assess motion management, and provide online adaptive therapy. Potential advantages and the current state of these MR-Linacs are highlighted, with a discussion of six different clinical scenarios, leading into a discussion on the future role of these machines in clinical workflows.
Collapse
|
11
|
Zhou S, Li J, Zhu X, Du Y, Yu S, Wang M, Yao K, Wu H, Yue H. Initial clinical experience of surface guided stereotactic radiation therapy with open-face mask immobilization for improving setup accuracy: a retrospective study. Radiat Oncol 2022; 17:104. [PMID: 35659685 PMCID: PMC9167505 DOI: 10.1186/s13014-022-02077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose To propose a specific surface guided stereotactic radiotherapy (SRT) treatment procedure with open-face mask immobilization and evaluate the initial clinical experience in improving setup accuracy. Methods and materials The treatment records of 48 SRT patients with head lesions were retrospectively analyzed. For each patient, head immobilization was achieved with a double-shell open-face mask. The anterior shell was left open to expose the forehead, nose, eyes and cheekbones. The exposed facial area was used as region-of-interest for surface tracking by AlignRT (VisionRT Inc, UK). The posterior shell provided a sturdy and personalized headrest. Patient initial setup was guided by 6DoF real-time deltas (RTD) using the reference surface obtained from the skin contour delineated on the planning CT images. The endpoint of initial setup was 1 mm in translational RTD and 1 degree in rotational RTD. CBCT guidance was performed to derive the initial setup errors, and couch shifts for setup correction were applied prior to treatment delivery. CBCT couch shifts, AlignRT RTD values, repositioning rate and setup time were analyzed. Results The absolute values of median (maximal) CBCT couch shifts were 0.4 (1.3) mm in VRT, 0.1 (2.5) mm in LNG, 0.2 (1.6) mm in LAT, 0.1(1.2) degree in YAW, 0.2 (1.4) degree in PITCH and 0.1(1.3) degree in ROLL. The couch shifts and AlignRT RTD values exhibited highly agreement except in VRT and PITCH (p value < 0.01), of which the differences were as small as negligible. We did not find any case of patient repositioning that was due to out-of-tolerance setup errors, i.e., 3 mm and 2 degree. The surface guided setup time ranged from 52 to 174 s, and the mean and median time was 97.72 s and 94 s respectively. Conclusions The proposed surface guided SRT procedure with open-face mask immobilization is a step forward in improving patient comfort and positioning accuracy in the same process. Minimized initial setup errors and repositioning rate had been achieved with reasonably efficiency for routine clinical practice.
Collapse
Affiliation(s)
- Shun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Junyu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Yi Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China. .,Institute of Medical Technology, Peking University Health Science Center, 38 Huayuan Road, Beijing, 100191, China.
| | - Songmao Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Meijiao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Kaining Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.,Institute of Medical Technology, Peking University Health Science Center, 38 Huayuan Road, Beijing, 100191, China
| | - Haizhen Yue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
12
|
Pham TT, Whelan B, Oborn BM, Delaney GP, Vinod S, Brighi C, Barton M, Keall P. Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiother Oncol 2022; 170:37-47. [DOI: 10.1016/j.radonc.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
13
|
Washio H, Ohira S, Funama Y, Ueda Y, Morimoto M, Kanayama N, Isono M, Inui S, Nitta Y, Miyazaki M, Teshima T. Dose Reduction and Low-Contrast Detectability Using Iterative CBCT Reconstruction Algorithm for Radiotherapy. Technol Cancer Res Treat 2022; 21:15330338211067312. [PMID: 34981989 PMCID: PMC8733359 DOI: 10.1177/15330338211067312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Several studies have reported the relation between the imaging dose and secondary cancer risk and have emphasized the need to minimize the additional imaging dose as low as reasonably achievable. The iterative cone-beam computed tomography (iCBCT) algorithm can improve the image quality by utilizing scatter correction and statistical reconstruction. We investigate the use of a novel iCBCT reconstruction algorithm to reduce the patient dose while maintaining low-contrast detectability and registration accuracy. Methods: Catphan and anthropomorphic phantoms were analyzed. All CBCT images were acquired with varying dose levels and reconstructed with a Feldkamp-Davis-Kress algorithm-based CBCT (FDK-CBCT) and iCBCT. The low-contrast detectability was subjectively assessed using a 9-point scale by 4 reviewers and objectively assessed using structure similarity index (SSIM). The soft tissue-based registration error was analyzed for each dose level and reconstruction technique. Results: The results of subjective low-contrast detectability found that the iCBCT acquired at two-thirds of a dose was superior to the FDK-CBCT acquired at a full dose (6.4 vs 5.4). Relative to FDK-CBCT acquired at full dose, SSIM was higher for iCBCT acquired at one-sixth dose in head and head and neck region while equivalent with iCBCT acquired at two-thirds dose in pelvis region. The soft tissue-based registration was 2.2 and 0.6 mm for FDK-CBCT and iCBCT, respectively. Conclusion: Use of iCBCT reconstruction algorithm can generally reduce the patient dose by approximately two-thirds compared to conventional reconstruction methods while maintaining low-contrast detectability and accuracy of registration.
Collapse
Affiliation(s)
- Hayate Washio
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,13205Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Ohira
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Ueda
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiro Morimoto
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Kanayama
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masaru Isono
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Nitta
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | | |
Collapse
|
14
|
Borm KJ, Junker Y, Düsberg M, Devečka M, Münch S, Dapper H, Oechsner M, Combs SE. Impact of CBCT frequency on target coverage and dose to the organs at risk in adjuvant breast cancer radiotherapy. Sci Rep 2021; 11:17378. [PMID: 34462489 PMCID: PMC8405651 DOI: 10.1038/s41598-021-96836-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aims to assess the effect of cone beam computed tomography (CBCT) frequency during adjuvant breast cancer radiotherapy with simultaneous integrated boost (SIB) on target volume coverage and dose to the organs at risk (OAR). 50 breast cancer patients receiving either non-hypofractionated or hypofractionated radiotherapy after lumpectomy including a SIB to the tumor bed were selected for this study. All patients were treated in volumetric modulated arc therapy (VMAT) technique and underwent daily CBCT imaging. In order to estimate the delivered dose during the treatment, the applied fraction doses were recalculated on daily CBCT scans and accumulated using deformable image registration. Based on a total of 2440 dose recalculations, dose coverage in the clinical target volumes (CTV) and OAR was compared depending on the CBCT frequency. The estimated delivered dose (V95%) for breast-CTV and SIB-CTV was significantly lower than the planned dose distribution, irrespective of the CBCT-frequency. Between daily CBCT and CBCT on alternate days, no significant dose differences were found regarding V95% for both, breast-CTV and SIB-CTV. Dose distribution in the OAR was similar for both imaging protocols. Weekly CBCT though led to a significant decrease in dose coverage compared to daily CBCT and a small but significant dose increase in most OAR. Daily CBCT imaging might not be necessary to ensure adequate dose coverage in the target volumes while efficiently sparing the OAR during adjuvant breast cancer radiotherapy with SIB.
Collapse
Affiliation(s)
- Kai J Borm
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany.
| | - Yannis Junker
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Mathias Düsberg
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Michal Devečka
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Stefan Münch
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Hendrik Dapper
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Markus Oechsner
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany.,Deutsches Konsortium Für Translationale Krebsforschung (DKTK)-Partner Site Munich, Munich, Germany.,Institute of Radiation Medicine, Helmholtzzentrum München, Munich, Germany
| |
Collapse
|
15
|
J F, A S, V E, F P, P M, B T, Sw W. New aspects and innovations in the local treatment of renal and urogenital pediatric tumors. Semin Pediatr Surg 2021; 30:151081. [PMID: 34412882 DOI: 10.1016/j.sempedsurg.2021.151081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Local treatment plays a key role for patients' outcome in tumors of the urogenital tract in children. Despite a great variety of different etiologies, the specific localization of pediatric urogenital tumors renders several characteristic demands to the treating personnel. Surgery and radiotherapy are the main elements of local treatment in this group of neoplasms. Numerous new guidelines and innovative technical developments of surgery and radiotherapy have recently been integrated into treatment concepts for pediatric urogenital tumors. Due to the broadness of the field it is not possible to give a full overview over all aspects. Therefore, this article highlights the most important innovations and new guidelines of surgery and radiotherapy of pediatric urogenital tumors.
Collapse
Affiliation(s)
- Fuchs J
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany.
| | - Schmidt A
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| | - Ellerkamp V
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| | - Paulsen F
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Melchior P
- Department of Radiotherapy and Radiation Oncology, University Hospital, Homburg, Germany
| | - Timmermann B
- Department of Particle Therapy, West German Proton Therapy Centre, University Hospital Essen, Essen, Germany
| | - Warmann Sw
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
16
|
Low dose cone beam CT for paediatric image-guided radiotherapy: Image quality and practical recommendations. Radiother Oncol 2021; 163:68-75. [PMID: 34343544 DOI: 10.1016/j.radonc.2021.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Cone beam CT (CBCT) is used in paediatric image-guided radiotherapy (IGRT) for patient setup and internal anatomy assessment. Adult CBCT protocols lead to excessive doses in children, increasing the risk of radiation-induced malignancies. Reducing imaging dose increases quantum noise, degrading image quality. Patient CBCTs also include 'anatomical noise' (e.g. motion artefacts), further degrading quality. We determine noise contributions in paediatric CBCT, recommending practical imaging protocols and thresholds above which increasing dose yields no improvement in image quality. METHODS AND MATERIALS Sixty CBCTs including the thorax or abdomen/pelvis from 7 paediatric patients (aged 6-13 years) were acquired at a range of doses and used to simulate lower dose scans, totalling 192 scans (0.5-12.8 mGy). Noise measured in corresponding regions of each patient and a 10-year-old phantom were compared, modelling total (including anatomical) noise, and quantum noise contributions as a function of dose. Contrast-to-noise ratio (CNR) was measured between fat/muscle. Soft tissue registration was performed on the kidneys, comparing accuracy to the highest dose scans. RESULTS Quantum noise contributed <20% to total noise in all cases, suggesting anatomical noise is the largest determinant of image quality in the abdominal/pelvic region. CNR exceeded 3 in over 90% of cases ≥ 1 mGy, and 57% of cases at 0.5 mGy. Soft tissue registration was accurate for doses > 1 mGy. CONCLUSION Anatomical noise dominates quantum noise in paediatric CBCT. Appropriate soft tissue contrast and registration accuracy can be achieved for doses as low as 1 mGy. Increasing dose above 1 mGy holds no benefit in improving image quality or registration accuracy due to the presence of anatomical noise.
Collapse
|
17
|
Heidarloo N, Aghamiri SMR, Saghamanesh S, Azma Z, Alaei P. Generation of material-specific energy deposition kernels for kilovoltage x-ray dose calculations. Med Phys 2021; 48:5423-5439. [PMID: 34173989 DOI: 10.1002/mp.15061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Dose calculation of kilovoltage x rays used in Image-Guided Radiotherapy has been investigated in recent years using various methods. Among these methods are model-based ones that suffer from inaccuracies in high-density materials and at interfaces when used in the kilovoltage energy range. The main reason for this is the use of water energy deposition kernels and simplifications employed such as density scaling in heterogeneous media. The purpose of this study was to produce and characterize material-specific energy deposition kernels, which could be used for dose calculations in this energy range. These kernels will also have utility in dose calculations in superficial radiation therapy and orthovoltage beams utilized in small animal irradiators. METHODS Water energy deposition kernels with various resolutions; and high-resolution, material-specific energy deposition kernels were generated in the energy range of 10-150 kVp, using the EGSnrc Monte Carlo toolkit. The generated energy deposition kernels were further characterized by calculating the effective depth of penetration, the effective radial distance, and the effective lateral distance. A simple benchmarking of the kernels against Monte Caro calculations has also been performed. RESULTS There was good agreement with previously reported water kernels, as well as between kernels with different resolution. The evaluation of effective depth of penetration, and radial and laterals distances, defines the relationship between energy, material density, and the shape of the material-specific kernels. The shape of these kernels becomes more forwardly scattered as the energy and material density are increased. The comparison of the dose calculated using the kernels with Monte Carlo provides acceptable results. CONCLUSIONS Water and material-specific energy deposition kernels in the kilovoltage energy range have been generated, characterized, and compared to previous work. These kernels will have utility in dose calculations in this energy range once algorithms capable of employing them are fully developed.
Collapse
Affiliation(s)
- Nematollah Heidarloo
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Somayeh Saghamanesh
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Zohreh Azma
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.,Erfan Radiation Oncology Center, Erfan-Niyayesh Hospital, Iran University of Medical Science, Tehran, Iran
| | - Parham Alaei
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Out-of-field dose in stereotactic radiotherapy for paediatric patients. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 19:1-5. [PMID: 34307913 PMCID: PMC8295843 DOI: 10.1016/j.phro.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/23/2022]
Abstract
Background and purpose Stereotactic radiotherapy combines image guidance and high precision delivery with small fields to deliver high doses per fraction in short treatment courses. In preparation for extension of these treatment techniques to paediatric patients we characterised and compared doses out-of-field in a paediatric anthropomorphic phantom for small flattened and flattening filter free (FFF) photon beams. Method and materials Dose measurements were taken in several organs and structures outside the primary field in an anthropomorphic phantom of a 5 year old child (CIRS) using thermoluminescence dosimetry (LiF:Mg,Cu,P). Out-of-field doses from a medical linear accelerator were assessed for 6 MV flattened and FFF beams of field sizes between 2 × 2 and 10 × 10 cm2. Results FFF beams resulted in reduced out-of-field doses for all field sizes when compared to flattened beams. Doses for FFF and flattened beams converged for all field sizes at larger distances (>40 cm) from the central axis as leakage becomes the primary source of out-of-field dose. Rotating the collimator to place the MLC bank in the longitudinal axis of the patient was shown to reduce the peripheral doses measured by up to 50% in Varian linear accelerators. Conclusion Minimising out-of-field doses by using FFF beams and aligning the couch and collimator to provide tertiary shielding demonstrated advantages of small field, FFF treatments in a paediatric setting.
Collapse
|
19
|
Savanović M, Gardavaud F, Jaroš D, Lonkuta B, Barral M, Henri Cornelis F, Foulquier JN. Contribution of Imaging to Organs at Risk Dose during Lung Stereotactic Body Radiation Therapy. J Biomed Phys Eng 2021; 11:125-134. [PMID: 33937120 PMCID: PMC8064136 DOI: 10.31661/jbpe.v0i0.2009-1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
Background: The use of imaging is indispensable in modern radiation therapy, both for simulation and treatment delivery. For safe and sure utilization, dose delivery from imaging must be evaluated. Objective: This study aims to investigate the dose to organ at risk (OAR) delivered by imaging during lung stereotactic body radiation therapy (SBRT) and to evaluate its contribution to the treatment total dose. Material and Methods: In this retrospectively study, imaging total dose to organs at risk (OARs) (spinal cord, esophagus, lungs, and heart) and effective dose were retrospectively evaluated from 100 consecutive patients of a single institution who had lung SBRT. For each patient, dose was estimated using Monte-Carlo convolution for helical computed tomography (helical CT), Four-Dimensional CT (4D-CT), and kilovoltage Cone-Beam CT (kV-CBCT). Helical CT and kV-CBCT dose were evaluated for the entire thorax acquisition, while 4D-CT dose was analyzed on upper lobe (UL) or lower lobe (LL) acquisition. Treatment dose was extracted from treatment planning system and compared to imaging total dose. Results: Imaging total dose maximum values were 117 mGy to the spinal cord, 127 mGy to the esophagus, 176 mGy to the lungs and 193 mGy to the heart. The maximum effective dose was 19.65 mSv for helical CT, 10.62 mSv for kV-CBCT, 25.95 mSv and 38.45 mSv for 4D-CT in UL and LL regions, respectively. Depending on OAR, treatment total dose was higher from 1.7 to 8.2 times than imaging total dose. Imaging total dose contributed only to 0.3% of treatment total dose. Conclusion: Imaging dose delivered with 4D-CT to the OARs is higher than those of others modalities. The heart received the highest imaging dose for both UL and LL. Total imaging dose is negligible since it contributed only to 0.3% of treatment total dose.
Collapse
Affiliation(s)
- Milovan Savanović
- PhD Candidate, Department of Radiation Oncology, Tenon Hospital, 75020 Paris, France
- PhD Candidate, Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - François Gardavaud
- PhD Candidate, Department of Radiology, Tenon Hospital, 75020 Paris, France
| | - Dražan Jaroš
- PhD Candidate, Affidea, International Medical Centers, Center for Radiotherapy, 78000 Banja Luka, Bosnia and Herzegovina
| | | | - Matthias Barral
- MD, Department of Radiology, Tenon Hospital, 75020 Paris, France
| | | | | |
Collapse
|
20
|
Özseven A, Dirican B. Evaluation of patient organ doses from kilovoltage cone-beam CT imaging in radiation therapy. ACTA ACUST UNITED AC 2021; 26:251-258. [PMID: 34211776 DOI: 10.5603/rpor.a2021.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Background Currently, CBCT system is an indispensable component of radiation therapy units. Because of that, it is important in treatment planning and diagnosis. CBCT is also an crucial tool for patient positioning and verification in image-guided radiation therapy (IGRT). Therefore, it is critical to investigate the patient organ doses arising from CBCT imaging. The purpose of this study is to evaluate patient organ doses and effective dose to patients from three different protocols of Elekta Synergy XVI system for kV CBCT imaging examinations in image guided radiation therapy. Materials and methods Organ dose measurements were done with thermoluminescent dosimeters in Alderson RA NDO male phantom for head & neck (H&N), chest and pelvis protocols of the Elekta Synergy XVI kV CBCT system. From the measured organ dose, effective dose to patients were calculated according to the International Commission on Radiological Protection 103 report recommendations. Results For H&N, chest and pelvis scans, the organ doses were in the range of 0.03-3.43 mGy, 6.04-22.94 mGy and 2.5-25.28 mGy, respectively. The calculated effective doses were 0.25 mSv, 5.56 mSv and 4.72 mSv, respectively. Conclusion The obtained results were consistent with the most published studies in the literature. Although the doses to patient organs from the kV CBCT system were relatively low when compared with the prescribed treatment dose, the amount of delivered dose should be monitored and recorded carefully in order to avoid secondary cancer risk, especially in pediatric examinations.
Collapse
Affiliation(s)
- Alper Özseven
- Suleyman Demirel University, Medical Faculty, Isparta, Turkey
| | - Bahar Dirican
- University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| |
Collapse
|
21
|
Marcu LG, Chau M, Bezak E. How much is too much? Systematic review of cumulative doses from radiological imaging and the risk of cancer in children and young adults. Crit Rev Oncol Hematol 2021; 160:103292. [DOI: 10.1016/j.critrevonc.2021.103292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 01/18/2023] Open
|
22
|
Olch AJ, Alaei P. How low can you go? A CBCT dose reduction study. J Appl Clin Med Phys 2021; 22:85-89. [PMID: 33450139 PMCID: PMC7882101 DOI: 10.1002/acm2.13164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Cone beam computed tomography (CBCT) is often used for patient setup based solely on bony anatomy. The goal of this work was to evaluate whether CBCT dose can be lowered to the level of kV image pair doses when used for bony anatomy‐based IGRT without compromising positioning accuracy. Methods An anthropomorphic phantom was CT scanned in the head, head and neck, chest, and pelvis regions and setup on the linear accelerator couch with the isocenter near the planned location. Cone beam computed tomographies were performed with the standard “full dose” protocol supplied by the linac vendor. With sequentially lowering the dose, three‐dimensional (3D) matching was performed for each without shifting the couch. The standard kV image pair protocol for each site was also used to image the phantoms. For all studies, six degrees of freedom was included in the 2D or 3D matching to the extent they could be employed. Imaging doses were determined in air at isocenter following the TG‐61 formalism. Results Cone beam computed tomography dose was reduced by 81–98% of the standard CBCT protocol to nearly that of the standard kV image pair dose for each site. Relative to the standard CBCT shift values, translational shifts were within 0.3 and 1.6 mm for all sites, for the reduced dose CBCT and kV image pair, respectively. Rotational shifts were within 0.2 degree and 0.7 degrees for all sites, for the reduced dose CBCTs and kV image pair, respectively. Conclusion For bony anatomy‐based image guidance, CBCT dose can be reduced to a value similar to that of a kV image pair with similar or better patient positioning accuracy than kV image pair alignment. Where rotations are important to correct, CBCT will be superior to orthogonal kV imaging without significantly increased imaging dose. This is especially important for image guidance for pediatric patient treatments.
Collapse
Affiliation(s)
- Arthur J Olch
- Radiation Oncology Program, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Parham Alaei
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Duan YH, Gu HL, Yang XH, Chen H, Wang H, Shao Y, Li XY, Feng AH, Ying YC, Fu XL, Ma K, Zhou T, Xu ZY. Evaluation of IGRT-Induced Imaging Doses and Secondary Cancer Risk for SBRT Early Lung Cancer Patients In Silico Study. Technol Cancer Res Treat 2021; 20:15330338211016472. [PMID: 34184567 PMCID: PMC8251513 DOI: 10.1177/15330338211016472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES This study performed dosimetry studies and secondary cancer risk assessments on using electronic portal imaging device (EPID) and cone beam computed tomography (CBCT) as image guided tools for the early lung cancer patients treated with SBRT. METHODS The imaging doses from MV-EPID and kV-CBCT of the Edge accelerator were retrospectively added to sixty-one SBRT treatment plans of early lung cancer patients. The MV-EPID imaging dose (6MV Photon beam) was calculated in Pinnacle TPS, and the kV-CBCT imaging dose was simulated and calculated by modeling of the kV energy beam in TPS using Pinnacle automatic modeling program. Three types of plans, namely PlanEPID, PlanCBCT and Planorigin, were generated with incorporating doses of EPID, CBCT and no imaging, respectively, for analysis. The effects of imaging doses on dose-volume-histogram (DVH) and plan quality were analyzed, and the excess absolute risk (EAR) of secondary cancer for ipsilateral lung was evaluated. RESULTS The regions that received less than 50 cGy were significantly impacted by the imaging doses, while the isodose lines greater than 1000 cGy were barely changed. The DVH values of ipsilateral lung increased the most in PlanEPID, followed by PlanCBCT. Compared to Planorigin on the average, the estimated EAR of ipsilateral lung in PlanEPID increased by 3.43%, while the corresponding EAR increase in PlanCBCT was much smaller (about 0.4%). Considering only the contribution of the imaging dose, the EAR values for the ipsilateral lung due to the MV-EPID dose in 5 years,10 years and 15 years were 1.49 cases, 2.09 cases and 2.88 cases per 104PY respectively, and those due to the kV-CBCT dose were about 9 times lower, correspondingly. CONCLUSIONS The imaging doses produced by MV-EPID and kV-CBCT had little effects on the target dose coverage. The secondary cancer risk caused by MV-EPID dose is more than 8.5 times that of kV-CBCT.
Collapse
Affiliation(s)
- Yan-Hua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Le Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Hui Yang
- Department of Engineering, Beijing Jingfang Technologies Co. Ltd, Beijing, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yang Li
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Hui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Chen Ying
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Ma
- Clinical helpdesk, Varian Medical Systems, China
| | - Tao Zhou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Zhi-Yong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Bryce-Atkinson A, de Jong R, Bel A, Aznar MC, Whitfield G, van Herk M. Evaluation of Ultra-low-dose Paediatric Cone-beam Computed Tomography for Image-guided Radiotherapy. Clin Oncol (R Coll Radiol) 2020; 32:835-844. [PMID: 33067079 DOI: 10.1016/j.clon.2020.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023]
Abstract
AIMS In image-guided radiotherapy, daily cone-beam computed tomography (CBCT) is rarely applied to children due to concerns over imaging dose. Simulating low-dose CBCT can aid clinical protocol design by allowing visualisation of new scan protocols in patients without delivering additional dose. This work simulated ultra-low-dose CBCT and evaluated its use for paediatric image-guided radiotherapy by assessment of image registration accuracy and visual image quality. MATERIALS AND METHODS Ultra-low-dose CBCT was simulated by adding the appropriate amount of noise to projection images prior to reconstruction. This simulation was validated in phantoms before application to paediatric patient data. Scans from 20 patients acquired at our current clinical protocol (0.8 mGy) were simulated for a range of ultra-low doses (0.5, 0.4, 0.2 and 0.125 mGy) creating 100 scans in total. Automatic registration accuracy was assessed in all 100 scans. Inter-observer registration variation was next assessed for a subset of 40 scans (five scans at each simulated dose and 20 scans at the current clinical protocol). This subset was assessed for visual image quality by Likert scale grading of registration performance and visibility of target coverage, organs at risk, soft-tissue structures and bony anatomy. RESULTS Simulated and acquired phantom scans were in excellent agreement. For patient scans, bony atomy registration discrepancies for ultra-low-dose scans fell within 2 mm (translation) and 1° (rotation) compared with the current clinical protocol, with excellent inter-observer agreement. Soft-tissue registration showed large discrepancies. Bone visualisation and registration performance reached over 75% acceptability (rated 'well' or 'very well') down to the lowest doses. Soft-tissue visualisation did not reach this threshold for any dose. CONCLUSION Ultra-low-dose CBCT was accurately simulated and evaluated in patient data. Patient scans simulated down to 0.125 mGy were appropriate for bony anatomy set-up. The large dose reduction could allow for more frequent (e.g. daily) image guidance and, hence, more accurate set-up for paediatric radiotherapy.
Collapse
Affiliation(s)
- A Bryce-Atkinson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - R de Jong
- Department of Radiation Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A Bel
- Department of Radiation Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - M C Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - G Whitfield
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK; The Children's Brain Tumour Research Network, The University of Manchester, Royal Manchester Children's Hospital, Manchester, UK
| | - M van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Hua CH, Vern-Gross TZ, Hess CB, Olch AJ, Alaei P, Sathiaseelan V, Deng J, Ulin K, Laurie F, Gopalakrishnan M, Esiashvili N, Wolden SL, Krasin MJ, Merchant TE, Donaldson SS, FitzGerald TJ, Constine LS, Hodgson DC, Haas-Kogan DA, Mahajan A, Laack N, Marcus KJ, Taylor PA, Ahern VA, Followill DS, Buchsbaum JC, Breneman JC, Kalapurakal JA. Practice patterns and recommendations for pediatric image-guided radiotherapy: A Children's Oncology Group report. Pediatr Blood Cancer 2020; 67:e28629. [PMID: 32776500 PMCID: PMC7774502 DOI: 10.1002/pbc.28629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 06/16/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022]
Abstract
This report by the Radiation Oncology Discipline of Children's Oncology Group (COG) describes the practice patterns of pediatric image-guided radiotherapy (IGRT) based on a member survey and provides practice recommendations accordingly. The survey comprised of 11 vignettes asking clinicians about their recommended treatment modalities, IGRT preferences, and frequency of in-room verification. Technical questions asked physicists about imaging protocols, dose reduction, setup correction, and adaptive therapy. In this report, the COG Radiation Oncology Discipline provides an IGRT modality/frequency decision tree and the expert guidelines for the practice of ionizing image guidance in pediatric radiotherapy patients.
Collapse
Affiliation(s)
- Chia-ho Hua
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Clayton B. Hess
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Arthur J. Olch
- Department of Radiation Oncology, University of Southern California and Children’s Hospital of Los Angeles, Los Angeles, California
| | - Parham Alaei
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | | | - Jun Deng
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Kenneth Ulin
- Department of Radiation Oncology, University of Massachusetts, Worcester, Massachusetts
| | - Fran Laurie
- Department of Radiation Oncology, University of Massachusetts, Worcester, Massachusetts
| | | | - Natia Esiashvili
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Suzanne L. Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew J. Krasin
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sarah S. Donaldson
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Thomas J. FitzGerald
- Department of Radiation Oncology, University of Massachusetts, Worcester, Massachusetts
| | - Louis S. Constine
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - David C. Hodgson
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Daphne A. Haas-Kogan
- Department of Radiation Oncology, Dana Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Karen J. Marcus
- Department of Radiation Oncology, Dana Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts
| | - Paige A Taylor
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Verity A Ahern
- Department of Radiation Oncology, Children’s Hospital at Westmead, Sydney, Australia
| | - David S. Followill
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey C. Buchsbaum
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - John C. Breneman
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio
| | - John A. Kalapurakal
- Department of Radiation Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
26
|
Chen MJ, Leao CR, Simoes RCP, Belletti FS, Figueiredo MLS, Cypriano MS. Kidney-sparing whole abdominal irradiation in Wilms tumor: Potential advantages of VMAT technique. Pediatr Blood Cancer 2020; 67:e28223. [PMID: 32083396 DOI: 10.1002/pbc.28223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To present a preliminary clinical experience and a dosimetric comparison of kidney-sparing volumetric modulated arc therapy (VMAT) with three-dimensional conformal radiotherapy (3D-CRT) for whole abdominal irradiation (WAI), in the setting of Wilms tumor (WT) treatment. MATERIALS AND METHODS From a total of 20 consecutive WT cases treated with adjuvant irradiation, seven were submitted to WAI with VMAT. Renal function and survival rates were evaluated, and, for comparison purposes, similar VMAT and 3D-CRT treatment plans were performed for WAI patients, and differences were dosimetrically evaluated regarding doses to the remaining kidney and other organs at risk and the planning target volume (PTV). RESULTS After a median follow-up time of 40.8 months (35.3-52.2), no acute significant intestinal toxicity was observed, and median creatinine clearance was 110.1 and 103.3 mL/min/1.73 m², respectively, before treatment and at last follow-up for WAI patients (P = 0.128). For comparative plans, maximum and median doses were lower for the remaining kidney with VMAT than with 3D-CRT. VMAT was associated with better PTV coverage as compared with 3D-CRT, with superior results for all the evaluated parameters (D95, D2, V100%, V98%, V95%; P = 0.018). CONCLUSION The use of VMAT technique is associated with lower radiation doses to the remaining kidney and better coverage to the PTV than 3D-CRT technique for WAI, with preliminary clinical experience showing a favorable toxicity profile. Long-term results from prospective studies might prove the ability of VMAT to spare renal function in the setting of WT treatment.
Collapse
Affiliation(s)
- Michael Jenwei Chen
- Grupo de Apoio ao Adolescente e a Criança com Cancer, Radiation Oncology, Sao Paulo, Brazil.,A.C. Camargo Cancer Center, Radiation Oncology, Sao Paulo, Brazil
| | - Caio Raposo Leao
- A.C. Camargo Cancer Center, Radiation Oncology, Sao Paulo, Brazil
| | | | | | | | - Monica Santos Cypriano
- Grupo de Apoio ao Adolescente e a Criança com Cancer, Radiation Oncology, Sao Paulo, Brazil
| |
Collapse
|
27
|
Ibbott GS. Patient doses from image-guided radiation therapy. Phys Med 2020; 72:30-31. [PMID: 32197219 DOI: 10.1016/j.ejmp.2020.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Abstract
Recent publications show that some patients receive high cumulative radiation doses from recurrent CT examinations. Most of these patients had a diagnosis of malignancy, meaning that there was a likelihood that they would receive radiation therapy, possibly with image guidance. Patients receiving X-ray-based image-guided radiation therapy (IGRT) receive even more imaging dose, including to volumes of tissue outside the tumor target volume. The benefits of IGRT must be considered in light of the additional dose received. Monitoring and recording of the imaging dose should be considered, as should techniques to reduce both the dose and volume irradiated.
Collapse
|