1
|
Wang H, Li Z, Shi D, Yin P, Liang B, Zou J, Tao Q, Ma W, Yin Y, Li Z. Assessing intra- and interfraction motion and its dosimetric impacts on cervical cancer adaptive radiotherapy based on 1.5T MR-Linac. Radiat Oncol 2024; 19:176. [PMID: 39696365 DOI: 10.1186/s13014-024-02569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
PURPOSE The purpose of this study was to quantify the intra- and interfraction motion of the target volume and organs at risk (OARs) during adaptive radiotherapy (ART) for uterine cervical cancer (UCC) using MR-Linac and to identify appropriate UCC target volume margins for adapt-to-shape (ATS) and adapt-to-position (ATP) workflows. Then, the dosimetric differences caused by motion were analyzed. METHODS Thirty-two UCC patients were included. Magnetic resonance (MR) images were obtained before and after each treatment. The maximum and average shifts in the centroid of the target volume and OARs along the anterior/posterior (A/P: Y axes), cranial/caudal (Cr/C: Z axes), and right/left (R/L: X axes) directions were analyzed through image contours. The bladder wall deformation in six directions and the differences in the volume of the organs were also analyzed. Additionally, the motion of the upper, middle and lower rectum was quantified. The correlation between OAR displacement/deformation and target volume displacement was evaluated. The planning CT dose distribution was mapped to the MR image to generate a plan based on the new anatomy, and the dosimetric differences caused by motion were analyzed. RESULTS For intrafraction motion, the clinical tumor volume (CTV) range of motion along the XYZ axes was within 5 mm; for interfraction motion, the range of motion along the X axis was within 5 mm, and the maximum distances of motion along the Y axis and Z axis were 7.45 and 6.59 mm, respectively. Additionally, deformation of the superior and anterior walls of the bladder was most noticeable. The largest magnitude of motion was observed in the upper segment of the rectum. Posterior bladder wall displacement was correlated with rectal and CTV centroid Y-axis displacement (r = 0.63, r = 0.50, P < 0.05). Compared with the interfractional plan, a significant decrease in the planning target volume (PTV) D98 (7.5 Gy, 7.54 Gy) was observed. However, there were no significant differences within the intrafraction. CONCLUSION During ART for UCC patients using MR-Linac, we recommend an ATS workflow using isotropic PTV margins of 5 mm based on intrafraction motion. Based on interfraction motion, the recommended ATP workflow uses anisotropic PTV margins of 5 mm in the R/L direction, 8 mm in the A/P direction, and 7 mm in the Cr/C direction to compensate for dosimetric errors due to motion.
Collapse
Affiliation(s)
- Huadong Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenkai Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Chengdu University of Technology, Chengdu, China
| | - Dengxin Shi
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peijun Yin
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Benzhe Liang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jingmin Zou
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Graduate Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Qiuqing Tao
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Southeastern University, Nanjing, China
| | - Wencheng Ma
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Graduate Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Yong Yin
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zhenjiang Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
2
|
Alshamrani A, Aznar M, Hoskin P, Chuter R, Eccles CL. The Current use of Adaptive Strategies for External Beam Radiotherapy in Cervical Cancer: A Systematic Review. Clin Oncol (R Coll Radiol) 2024; 36:e483-e493. [PMID: 39366856 DOI: 10.1016/j.clon.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
AIMS Variability in the target and organs at risk (OARs) in cervical cancer treatment presents challenges for precise radiotherapy. Adaptive radiotherapy (ART) offers the potential to enhance treatment precision and outcomes. However, the increased workload and a lack of consensus on the most suitable ART approach hinder its clinical adoption. This systematic review aims to assess the current use of adaptive strategies for cervical cancer and define the optimal approach. MATERIALS AND METHODS A systematic review of current literature published between January 2012 and May 2023 was conducted. Searches used PubMed/Medline, Cochrane Library, and Web of Science databases, supplemented with the University of Manchester, Google Scholar, and papers retrieved from reference lists. The review assessed workflows, compared dosimetric benefits, and examined resources for each identified strategy. Excluded were abstracts, conference abstracts, reviews, articles unrelated to ART management, proton therapy, brachytherapy, or qualitative studies. A narrative synthesis involved data tabulation, summarizing selected studies detailing workflow for cervical cancer and dosimetric outcomes for targets and OARs. RESULTS Sixteen articles met the inclusion criteria; these were mostly retrospective simulation planning studies, except four studies that had been clinically implemented. We identified five approaches for ART radiotherapy for cervical cancer: reactive and scheduled adaptation, internal target volume (ITV)-based approach using library of plans (LOP), fixed-margin approach using LOP, and real-time adaptation, with each approach reducing irradiated volumes without compromising target coverage compared to the non-ART approach. The LOP-based ITV approach is the most used and clinically assessed. CONCLUSION Identifying the optimal strategy is challenging due to dosimetric assessment limitations. Implementing cervical cancer ART necessitates strategic optimization of clinical benefits and resources through research, including studies to identify the optimal frequency, and prospective evaluations of toxicity.
Collapse
Affiliation(s)
- A Alshamrani
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; Princess Nourah Bint Abdulrahman University, Department of Radiological Sciences, College of Health and Rehabilitation Sciences, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - M Aznar
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK.
| | - P Hoskin
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; The Christie NHS Foundation Trust, Clinical Oncology, Wilmslow Road, Manchester, M20 4BX, UK; 3 Mount Vernon Cancer Centre, Northwood, Middlesex HA6 2RN, UK.
| | - R Chuter
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; The Christie NHS Foundation Trust, Clinical Oncology, Wilmslow Road, Manchester, M20 4BX, UK.
| | - C L Eccles
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; The Christie NHS Foundation Trust, Clinical Oncology, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
3
|
Wang L, Mohajer J, McNair H, Harris E, Lalondrelle S. Implementing Plan of the Day for Cervical Cancer: A Comparison of Target Volume Generation Methods. Adv Radiat Oncol 2024; 9:101560. [PMID: 39155886 PMCID: PMC11328065 DOI: 10.1016/j.adro.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Owing to substantial interfraction motion in cervical cancer, plan-of-the-day (PotD) adaptive radiation therapy may be of benefit to patients. Implementation is limited by uncertainty over how to generate the planning target volumes (PTVs). We compared published methods on our own patients. Methods and Materials Forty patients each had 3 planning scans with variable bladder filling and daily cone beam computed tomographies (cone beam CTs) during radiation therapy; 5 to 11 cone beam CTs were selected to represent interfraction motion. Clinical target volumes (CTVs) and organs at risk were contoured following EMBRACE-II guidelines. A literature search identified 30 adaptive and nonadaptive solutions to PTV generation, which we applied to our patients. PTV sizes and mean coverage of the daily CTV were determined. For 11 patients, the clinically implemented, subjectively edited plan library was also investigated. Results Eleven studies assessed 15 PotD strategies against nonadaptive comparators on a median of 14 patients (range, 9-23). Some PotD approaches applied margin recipes to the CTV on each planning scan, some modeled the CTV against bladder volume, and others applied incremental isotropic margins to the CTV with a single planning scan. Generally, coverage improved as PTV size increased. The fixed isotropic margin required to provide 100% coverage of all patients was 44 mm, with a mean PTV size of 3316 cm3. The PotD strategy with the best coverage was a 2-plan library formed by modeling the CTV against bladder volume with extrapolation; it provided 98% mean coverage with 1419-cm3 mean PTV size. A 3-plan library consisting of the CTV on each planning scan with 10-mm margin provided 96% mean coverage with 1346-cm3 mean PTV size. The clinically implemented solution that employed subjective extrapolation had mean 100% coverage and 1282-cm3 PTV size on the 11-patient subset. Coverage provided by the best nonadaptive strategies was not statistically superior to the best PotD strategy (P = .13), but PTVs were larger (P = .02). Conclusions We identified a modeled 2-plan method and a simple 3-plan method, both of which provided excellent coverage with small PTVs compared with nonadaptive strategies.
Collapse
Affiliation(s)
- Lei Wang
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Jonathan Mohajer
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Helen McNair
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Emma Harris
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Susan Lalondrelle
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| |
Collapse
|
4
|
Reijtenbagh D, Godart J, Penninkhof J, Quint S, Zolnay A, Mens JW, Hoogeman M. Nine years of plan of the day for cervical cancer: Plan library remains effective compared to fully online-adaptive techniques. Radiother Oncol 2024; 190:110009. [PMID: 37972735 DOI: 10.1016/j.radonc.2023.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Since 2011, our center has been using a library-based Plan-of-the-Day (PotD) strategy for external beam radiotherapy of cervical cancer patients to reduce normal tissue dose while maintaining adequate target coverage. With the advent of fully online-adaptive techniques such as daily online-adaptive replanning, further dose reduction may be possible. However, it is unknown how this reduction relates to plan library approaches, and how the most recent PotD strategies relate to no adaptation. In this study we compare the performance of our current PotD strategy with non-adaptive and fully online-adaptive techniques in terms of target volume size and normal tissue sparing. MATERIALS AND METHODS Treatment data of 376 patients treated with the PotD protocol between June 2011 and April 2020 were included. The size of the Planning Target Volumes (PTVs) was reconstructed for different strategies: full online adaptation, no adaptation, and the latest clinical version of the PotD protocol. Normal tissue sparing was estimated by the difference in margin volume to construct the PTV and the volume overlap of the PTV with bladder and rectum. RESULTS The current version of our PotD approach reduced the PTV margin volume by a median of 250 cm3 compared to no adaptation. Bladder-PTV overlap decreased from a median of 142 to 71 cm3, and from 39 to 16 cm3 for rectum-PTV. Fully online-adaptive approaches could further decrease the PTV volume by 144 cm3 using a 5 mm margin for residual errors. In this scenario, bladder-PTV overlap was reduced to 35 cm3 and rectum-PTV overlap to 11 cm3. CONCLUSION The current version of the PotD protocol is an effective technique to improve normal tissue sparing compared to no adaptation. Further sparing can be achieved using fully online-adaptive techniques, but at the cost of a more complex workflow and with a potentially limited impact. PotD-type protocols can therefore be considered as a suitable alternative to fully online-adaptive approaches.
Collapse
Affiliation(s)
- Dominique Reijtenbagh
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Jérémy Godart
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joan Penninkhof
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sandra Quint
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - András Zolnay
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jan-Willem Mens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mischa Hoogeman
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands
| |
Collapse
|
5
|
Ghimire R, Moore KL, Branco D, Rash DL, Mayadev J, Ray X. Forecasting patient-specific dosimetric benefit from daily online adaptive radiotherapy for cervical cancer. Biomed Phys Eng Express 2023; 9:045030. [PMID: 37336202 DOI: 10.1088/2057-1976/acdf62] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Objective. Adaptive Radiotherapy (ART) is an emerging technique for treating cancer patients which facilitates higher delivery accuracy and has the potential to reduce toxicity. However, ART is also resource-intensive, Requiring extra human and machine time compared to standard treatment methods. In this analysis, we sought to predict the subset of node-negative cervical cancer patients with the greatest benefit from ART, so resources might be properly allocated to the highest-yield patients.Approach. CT images, initial plan data, and on-treatment Cone-Beam CT (CBCT) images for 20 retrospective cervical cancer patients were used to simulate doses from daily non-adaptive and adaptive techniques. We evaluated the coefficient of determination (R2) between dose and volume metrics from initial treatment plans and the dosimetric benefits to theBowelV40Gy,BowelV45Gy,BladderDmean,andRectumDmeanfrom adaptive radiotherapy using reduced 3 mm or 5 mm CTV-to-PTV margins. The LASSO technique was used to identify the most predictive metrics forBowelV40Gy.The three highest performing metrics were used to build multivariate models with leave-one-out validation forBowelV40Gy.Main results. Patients with higher initial bowel doses were correlated with the largest decreases in BowelV40Gyfrom daily adaptation (linear best fit R2= 0.77 for a 3 mm PTV margin and R2= 0.8 for a 5 mm PTV margin). Other metrics had intermediate or no correlation. Selected covariates for the multivariate model were differences in the initialBowelV40GyandBladderDmeanusing standard versus reduced margins and the initial bladder volume. Leave-one-out validation had an R2of 0.66 between predicted and true adaptiveBowelV40Gybenefits for both margins.Significance. The resulting models could be used to prospectively triage cervical cancer patients on or off daily adaptation to optimally manage clinical resources. Additionally, this work presents a critical foundation for predicting benefits from daily adaptation that can be extended to other patient cohorts.
Collapse
Affiliation(s)
- Rupesh Ghimire
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Kevin L Moore
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Daniela Branco
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Dominique L Rash
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Jyoti Mayadev
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Xenia Ray
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| |
Collapse
|
6
|
Wang L, Alexander S, Mason S, Blasiak-Wal I, Harris E, McNair H, Lalondrelle S. Carpe Diem: Making the Most of Plan-of-the-Day for Cervical Cancer Radiation Therapy. Pract Radiat Oncol 2023; 13:132-147. [PMID: 36481683 DOI: 10.1016/j.prro.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Radiation therapy is the key treatment for locally advanced cervical cancer. Organ motion presents a challenge to accurate targeting of external beam radiation therapy. The plan-of-the-day (PotD) adaptive approach is therefore an attractive option. We present our experience and the procedural steps required to implement PotD for cervix cancer. METHODS AND MATERIALS We reviewed relevant studies on organ motion and adaptive radiation therapy identified through a literature search and cross referencing. These included 10 dosimetric and 3 quality of life studies directly assessing the PotD approach to radiation therapy in cervix cancer. RESULTS Studies show improvements in target coverage and reduction of dose received by normal tissues and suggest improved toxicity. Clinical implementation of PotD has been slow because of a number of difficulties and uncertainties, which we discuss with the aim of helping teams to implement PotD at their center. CONCLUSIONS The PotD approach improves dosimetry and may improve toxicity. We describe a framework to assist with practical implementation.
Collapse
Affiliation(s)
- Lei Wang
- The Joint Department of Physics at the Institute of Cancer Research, Sutton, Surrey, United Kingdom.
| | - Sophie Alexander
- Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Sarah Mason
- The Joint Department of Physics at the Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Irena Blasiak-Wal
- The Joint Department of Physics at the Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Emma Harris
- The Joint Department of Physics at the Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Helen McNair
- Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Susan Lalondrelle
- The Joint Department of Physics at the Institute of Cancer Research, Sutton, Surrey, United Kingdom
| |
Collapse
|
7
|
van Kesteren Z, Veldman JK, Parkes MJ, Stevens MF, Balasupramaniam P, van den Aardweg JG, van Tienhoven G, Bel A, van Dijk IWEM. Quantifying the reduction of respiratory motion by mechanical ventilation with MRI for radiotherapy. Radiat Oncol 2022; 17:99. [PMID: 35597956 PMCID: PMC9123684 DOI: 10.1186/s13014-022-02068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Due to respiratory motion, accurate radiotherapy delivery to thoracic and abdominal tumors is challenging. We aimed to quantify the ability of mechanical ventilation to reduce respiratory motion, by measuring diaphragm motion magnitudes in the same volunteers during free breathing (FB), mechanically regularized breathing (RB) at 22 breaths per minute (brpm), variation in mean diaphragm position across multiple deep inspiration breath-holds (DIBH) and diaphragm drift during single prolonged breath-holds (PBH) in two MRI sessions. Methods In two sessions, MRIs were acquired from fifteen healthy volunteers who were trained to be mechanically ventilated non-invasively We measured diaphragm motion amplitudes during FB and RB, the inter-quartile range (IQR) of the variation in average diaphragm position from one measurement over five consecutive DIBHs, and diaphragm cranial drift velocities during single PBHs from inhalation (PIBH) and exhalation (PEBH) breath-holds. Results RB significantly reduced the respiratory motion amplitude by 39%, from median (range) 20.9 (10.6–41.9) mm during FB to 12.8 (6.2–23.8) mm. The median IQR for variation in average diaphragm position over multiple DIBHs was 4.2 (1.0–23.6) mm. During single PIBHs with a median duration of 7.1 (2.0–11.1) minutes, the median diaphragm cranial drift velocity was 3.0 (0.4–6.5) mm/minute. For PEBH, the median duration was 5.8 (1.8–10.2) minutes with 4.4 (1.8–15.1) mm/minute diaphragm drift velocity. Conclusions Regularized breathing at a frequency of 22 brpm resulted in significantly smaller diaphragm motion amplitudes compared to free breathing. This would enable smaller treatment volumes in radiotherapy. Furthermore, prolonged breath-holding from inhalation and exhalation with median durations of six to seven minutes are feasible. Trial registration Medical Ethics Committee protocol NL.64693.018.18.
Collapse
Affiliation(s)
- Z van Kesteren
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - J K Veldman
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M J Parkes
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M F Stevens
- Department of Anesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Anesthesiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - P Balasupramaniam
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - J G van den Aardweg
- Department of Pulmonology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - G van Tienhoven
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - I W E M van Dijk
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Song J, Gu Y, Du T, Liu Q. Analysis of quantitative and semi-quantitative parameters of DCE-MRI in differential diagnosis of benign and malignant cervical tumors. Am J Transl Res 2021; 13:12228-12234. [PMID: 34956449 PMCID: PMC8661164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/28/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore and analyze the value of quantitative and semi-quantitative parameters of dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in the differential diagnosis of benign and malignant cervical tumors. METHODS A total of 51 patients with cervical tumor who were treated in our hospital from April 2017 to October 2019 were recruited as the research subjects. All patients underwent conventional MRI plain scan and DCE-MRI examination. With histopathological results as the gold standard, the participants were classified into a malignant tumor group (n = 36) and a benign tumor group (n = 15) on the basis of the nature of the cervical tumor. The difference of quantitative and semi-quantitative parameters of DCE-MRI between the two groups was compared, and the specificity, sensitivity, negative and positive predictive values of quantitative and semi-quantitative parameters in differentiating benign from malignant cervical tumors were analyzed to evaluate the value of quantitative and semi-quantitative parameters of DCE-MRI in the differential diagnosis of benign and malignant cervical tumors. RESULTS The quantitative parameters Kep, Ktrans and Ve of DCE-MRI in the malignant-tumor-group were critically higher than that in the benign tumor group (P<0.05). When distinguishing between the benign and malignant cervical tumors, the specificity and sensitivity of kep, Ktrans and Ve were higher in the differential diagnosis of malignant cervical tumors than in the benign cervical tumors. The peak of the malignant tumor group was remarkably earlier than that of the benign tumor group, and SI60% of the malignant tumor group was dramatically higher than that of benign tumor group (P<0.05). In addition, compared with benign cervical tumors, the semi-quantitative parameters of DCE-MR TTP and SI60% were more sensitive to malignant cervical tumors. CONCLUSION The quantitative and semi-quantitative parameters of DCE-MRI have high value in differentiating benign and malignant cervical tumors. When adopting conventional MRI to diagnose oncologic cervical tumors, the differential diagnosis of quantitative and semi-quantitative parameters of DCE-MRI has demonstrated a high clinical value by avoiding unnecessary radical surgeries.
Collapse
Affiliation(s)
- Jun Song
- Department of Radiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of ChinaMianyang, Sichuan, China
| | - Yong Gu
- Department of Radiology, Santai Hospital, North Sichuan Medical College621100, Sichuan, China
| | - Tingting Du
- Department of Radiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of ChinaMianyang, Sichuan, China
| | - Qiyu Liu
- Department of Radiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of ChinaMianyang, Sichuan, China
| |
Collapse
|
9
|
Lee SL, Hall WA, Morris ZS, Christensen L, Bassetti M. MRI-Guided Radiation Therapy. ADVANCES IN ONCOLOGY 2021; 1:29-39. [PMID: 37064601 PMCID: PMC10104451 DOI: 10.1016/j.yao.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Affiliation(s)
- Sangjune Laurence Lee
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI, USA
- Department of Oncology, Division of Radiation Oncology, University of Calgary, Calgary, AB, Canada
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Leslie Christensen
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michael Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI, USA
- Corresponding author. Department of Human Oncology, University of Wisconsin, University Hospital L7/B36, 600 Highland Avenue, Madison, WI 53792.
| |
Collapse
|
10
|
Placidi L, Cusumano D, Boldrini L, Votta C, Pollutri V, Antonelli MV, Chiloiro G, Romano A, De Luca V, Catucci F, Indovina L, Valentini V. Quantitative analysis of MRI-guided radiotherapy treatment process time for tumor real-time gating efficiency. J Appl Clin Med Phys 2020; 21:70-79. [PMID: 33089954 PMCID: PMC7701108 DOI: 10.1002/acm2.13030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Magnetic Resonance-guided radiotherapy (MRgRT) systems allow continuous monitoring of therapy volumes during treatment delivery and personalized respiratory gating approaches. Treatment length may therefore be significantly affected by patient's compliance and breathing control. We quantitatively analyzed treatment process time efficiency (TE ) using data obtained from real-world patient treatment logs to optimize MRgRT delivery settings. METHODS Data corresponding to the first 100 patients treated with a low T hybrid MRI-Linac system, both in free breathing (FB) and in breath hold inspiration (BHI) were collected. TE has been computed as the percentage difference of the actual single fraction's total treatment time and the predicted treatment process time, as computed by the TPS during plan optimization. Differences between the scheduled and actual treatment room occupancy time were also evaluated. Finally, possible correlations with planning, delivery and clinical parameters with TE were also investigated. RESULTS Nine hundred and nineteen treatment fractions were evaluated. TE difference between BHI and FB patients' groups was statistically significant and the mean TE were 42.4%, and -0.5% respectively. No correlation was found with TE for BHI and FB groups. Planning, delivering and clinical parameters classified BHI and FB groups, but no correlation with TE was found. CONCLUSION The use of BHI gating technique can increase the treatment process time significantly. BHI technique could be not always an adequate delivery technique to optimize the treatment process time. Further gating techniques should be considered to improve the use of MRgRT.
Collapse
Affiliation(s)
- Lorenzo Placidi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Cusumano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Votta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Veronica Pollutri
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Marco Valerio Antonelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Viola De Luca
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Francesco Catucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Bleeker M, Goudschaal K, Bel A, Sonke JJ, Hulshof MCCM, van der Horst A. Feasibility of cone beam CT-guided library of plans strategy in pre-operative gastric cancer radiotherapy. Radiother Oncol 2020; 149:49-54. [PMID: 32387491 DOI: 10.1016/j.radonc.2020.04.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE The stomach displays large anatomical changes in size, shape and position, which implies the need for plan adaptation for gastric cancer patients who receive pre-operative radiotherapy. We evaluated the feasibility and necessity of a CBCT-guided library of plans (LoP) strategy in gastric cancer radiotherapy. METHODS Eight gastric cancer patients treated with 24-25 fractions of single-plan radiotherapy with daily CBCT imaging were included. The target was delineated on the pre-treatment CT and first 5 CBCTs to create a patient-specific LoP. Plan selections were performed by 12 observers in a training stage (2-3 CBCTs per patient) and an assessment stage (17 CBCTs per patient). The observers were asked to select the smallest plan that encompassed the target on the CBCT. A total of 136 plan selections were evaluated in the assessment stage. RESULTS Delineations on CBCTs showed that in 90% of the 40 delineated fractions part of the CTV was outside the PTV based on the pre-treatment CT. At least two-thirds of the observers agreed on the selected plan in 65.2% and 70% of the fractions in the training stage and the assessment stage, respectively. For each patient, at least two different plans from the LoP were the most selected plan. CONCLUSION A CBCT-guided patient-specific LoP strategy is feasible for gastric cancer patients, yielding good agreement in plan selections. Unless generous margins are used to avoid frequent geometric misses, it is likely that part of the target will be missed with single-plan radiotherapy.
Collapse
Affiliation(s)
- Margot Bleeker
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Karin Goudschaal
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan Bel
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten C C M Hulshof
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Astrid van der Horst
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|