1
|
Smith BR, St‐Aubin J, Hyer DE. Commissioning of a motion management system for a 1.5T Elekta Unity MR-Linac: A single institution experience. J Appl Clin Med Phys 2025; 26:e70005. [PMID: 39955657 PMCID: PMC11969090 DOI: 10.1002/acm2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 02/17/2025] Open
Abstract
PURPOSE This work describes a single institution experience of commissioning a real-time target tracking and beam control system, known as comprehensive motion management, for a 1.5 T Elekta MR-Linac. METHODS Anatomical tracking and radiation beam control were tested using the MRI4D Quasar motion phantom. Multiple respiratory breathing traces were modeled across a range of realistic regular and irregular breathing patterns ranging between 10 and 18 breaths per minute. Each of the breathing traces was used to characterize the anatomical position monitoring (APM) accuracy, and beam latency, and to quantify the dosimetric impact of both parameters during a respiratory-gated delivery using EBT3 film dosimetry. Additional commissioning tasks were performed to verify the dosimetric constancy during beam gating and to expand our existing quality assurance program. RESULTS It was determined that APM correctly predicted the 3D position of a dynamically moving tracking target to within 1.5 mm for 95% of the imaging frames with no deviation exceeding 2 mm. Among the breathing traces investigated, the mean latency ranged between -21.7 and 7.9 ms with 95% of all observed latencies within 188.3 ms. No discernable differences were observed in the relative profiles or cumulative output for a gated beam relative to an ungated beam with minimal dosimetric impact observed due to system latency. Measured dose profiles for all gated scenarios retained a gamma pass rate of 97% or higher for a 3%/2 mm criteria relative to a theoretical gated dose profile without latency or tracking inaccuracies. CONCLUSION MRI-guided target tracking and automated beam delivery control were successfully commissioned for the Elekta Unity MR-Linac. These gating features were shown to be highly accurate with an effectively small beam latency for a range of regular and irregular respiratory breathing traces.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Joel St‐Aubin
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Sánchez‐Rubio P, Rodríguez‐Romero R, Pinto‐Monedero M, Alejo‐Luque L, Martínez‐Ortega J. New findings on clinical experience on surface-guided radiotherapy for frameless non-coplanar stereotactic radiosurgery treatments. J Appl Clin Med Phys 2024; 25:e14510. [PMID: 39287562 PMCID: PMC11633809 DOI: 10.1002/acm2.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
PURPOSE The aim of this study was to assess the accuracy of a surface-guided radiotherapy (SGRT) system for setup and intra-fraction motion control in frameless non-coplanar stereotactic radiosurgery (fSRS) using actual patient data immobilized with two different types of open-faced masks and employing a novel SGRT systems settings. METHODS AND MATERIALS Forty-four SRS patients were immobilized with two types of open-faced masks. Sixty lesions were treated, involving the analysis of 68 cone-beam scans (CBCT), 157 megavoltage (MV) images, and 521 SGRT monitoring sessions. The average SGRT translations/rotations and 3D vectors (MAG-Trasl and MAG-Rot) were compared with CBCT or antero-posterior MV images for 0° table or non-coplanar beams, respectively. The intrafraction control was evaluated based on the average shifts obtained from each monitoring session. To assess the association between the SGRT system and the CBCT, the two types of masks and the 3D vectors, a generalized estimating equations (GEE) regression analysis was performed. The Wilcoxon singed-rank test for paired samples was performed to detect differences in couch rotation with longitudinal (LNG) and lateral (LAT) translations and/or yaw. RESULTS The average SGRT corrections were smaller than those detected by CBCT (≤0.5 mm and 0.1°), with largest differences in LNG and yaw. The GEE analysis indicated that the average MAG-Trasl, obtained by the SGRT system, was not statistically different (p = 0.09) for both mask types, while, the MAG-Rot was different (p = 0.01). For non-coplanar beams, the Wilcoxon singed-rank test demonstrated no significantly differences for the corrections (LNG, LAT, and yaw) for any table rotation except for LNG corrections at 65° (p = 0.04) and 75° (p = 0.03) table angle position; LAT shifts at 65° (p = 0.03) and 270° (p < 0.001) table angle position, and yaw rotation at 30° (p = 0.02) table angle position. The average intrafraction motion was < 0.1 mm and 0.1° for any table angle. CONCLUSION The SGRT system used, along with the novel workflow performed, can achieve the setup and intra-fraction motion control accuracy required to perform non-coplanar fSRS treatments. Both masks ensure the accuracy required for fSRS while providing a suitable surface for monitoring.
Collapse
Affiliation(s)
- Patricia Sánchez‐Rubio
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Ruth Rodríguez‐Romero
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - María Pinto‐Monedero
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Luis Alejo‐Luque
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Jaime Martínez‐Ortega
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| |
Collapse
|
3
|
Wu J, Yang F, Li J, Wang X, Yuan K, Xu L, Wu F, Tang B, Orlandini LC. Reproducibility and stability of voluntary deep inspiration breath hold and free breath in breast radiotherapy based on real-time 3-dimensional optical surface imaging system. Radiat Oncol 2024; 19:158. [PMID: 39529112 PMCID: PMC11556127 DOI: 10.1186/s13014-024-02549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate the inter-fraction reproducibility and intra-fraction stability of breast radiotherapy using voluntary deep-inspiration breath hold (DIBH) and free breathing (FB) based on an optical surface imaging system (OSIS). METHODS Seventeen patients (510 breath-hold sessions) treated using a field-in-field (FiF) technique and twenty patients (600 breath-free sessions) treated with a volume-modulated arc therapy (VMAT) technique were included in this retrospective study. All the patients were positioned with the guidance of CBCT and OSIS, and also monitored with OSIS throughout the whole treatment session. Eight setup variations in three directions were extracted from the treatment reports of OSIS for all sessions and were subsequently manually introduced to treatment plans, resulting in a total of 296 perturbed plans. All perturbed plans were recalculated, and the dose volume histograms (DVH) for the target and organs at risk (OAR) were analyzed. RESULTS The OSIS and CBCT for both DIBH and FB treatments showed a good agreement of less than 0.30 cm in each direction. The intra-fraction respiratory motion data during DIBH were -0.06 ± 0.07 cm, 0.12 ± 0.15 cm, and 0.12 ± 0.12 cm in the lateral, longitudinal, and vertical directions, respectively; for FB, the respiratory motion data were -0.02 ± 0.12 cm, 0.08 ± 0.18 cm, and 0.14 ± 0.20 cm, respectively. For the target, DIBH plans were more sensitive to setup errors; the mean deviations in D95 for CTV were 39.78 Gy-40.17 Gy for DIBH and 38.46 Gy-40.52 Gy for FB, respectively. For the OARs, the mean deviations of V10, V20, and Dmean to the heart; V5, V20, and Dmean to the ipsilateral lung; and Dmean to the breast were lower for the FB plan compared with the DIBH plan. CONCLUSION Based on OSIS, our results indicate that both DIBH and FB can provide good reproducibility in the inter-fractions and stability in the intra-fractions. When the patient respiratory motion is large, the FB technology has greater possibility for the undercoverage of the target volume, while DIBH technology is more likely to result in increases in dose to OARs (the lung, heart, and contralateral breast).
Collapse
Affiliation(s)
- Junxiang Wu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Feng Yang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Jie Li
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Xianliang Wang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Ke Yuan
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Lipeng Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Fan Wu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China.
| | - Bin Tang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China.
| | - Lucia Clara Orlandini
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| |
Collapse
|
4
|
Mehta A, Horgan E, Ramachandran P, Noble C. A Cost-effective Breath-hold Coaching Camera System for Patients Undergoing External Beam Radiotherapy. J Med Phys 2024; 49:502-509. [PMID: 39926147 PMCID: PMC11801098 DOI: 10.4103/jmp.jmp_101_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 11/13/2024] [Indexed: 02/11/2025] Open
Abstract
Purpose Organ motion can significantly affect the accurate delivery of radiation doses to the tumor, particularly for sites such as the breast, lung, abdomen, and pelvis. Managing this motion during treatment is crucial. One strategy employed to manage motion induced from respiration is breath-hold (BH), which enhances the geometric precision of dose delivery. Our institute is transitioning to using the ExacTrac Dynamic system to facilitate patient BH using surface-guided cameras. Only 20% of our linacs are equipped with surface guidance capabilities, and due to a high patient stereotactic throughput, the ability to perform in-bunker coaching for BH patients within the bunker is limited. To address this challenge, a time-of-flight camera (ToF) was developed to coach radiotherapy patients undergoing BH procedures, allowing them to gain confidence in the process outside of the bunker and before treatment. Methods The camera underwent testing for absolute and relative accuracy, responsiveness under various environmental conditions, and comparison with the Elekta Active Breathing Coordinator (ABC) to establish correlation and testing on volunteers independently to assess usability. Results The results showed that the absolute distance measured by the camera was nonlinear due to square light modulation, which was retrospectively corrected. Relative accuracy was tested with a QUASAR motion phantom, with results agreeing to within ± 2 mm. The camera response was found to be unaffected by changes in lighting or temperature, though it overresponded under extreme temperatures. The comparison with the Elekta ABC system yielded comparable results between lung volume and changes in surface distance during BH. All volunteers successfully followed instructions and maintained BH within ± 1 mm tolerance. Conclusions This study demonstrates the feasibility of using a cost-effective ToF camera to coach patients before imaging/treatment, saving valuable LINAC linac and imaging system time.
Collapse
Affiliation(s)
- Akash Mehta
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Emma Horgan
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Australia
| | | | - Christopher Noble
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Australia
| |
Collapse
|
5
|
Byrne HL, Steiner E, Booth J, Lamoury G, Morgia M, Carroll S, Richardson K, Ambrose L, Makhija K, Stanton C, Zwan B, Carr M, Stewart M, Bromley R, Atyeo J, Silvester S, Plant N, Keall P. Prospective Randomized Trial Comparing 2 Devices for Deep Inspiration Breath Hold Management in Breast Radiation Therapy: Results of the BRAVEHeart Trial. Adv Radiat Oncol 2024; 9:101572. [PMID: 39221134 PMCID: PMC11364044 DOI: 10.1016/j.adro.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The Breast Radiotherapy Audio Visual Enhancement for sparing the Heart (BRAVEHeart) trial prospectively randomized patients with left-sided breast cancer to 1 of 2 deep inspiration breath hold biofeedback devices: a novel chest surface tracking system and an abdominal block tracking system. The primary hypothesis was that the accuracy of chest tracking would be higher than that of abdominal tracking as the chest is a more direct surrogate of the breast target. Methods and Materials Patients with left-sided breast cancer were treated in deep inspiration breath hold with intensity modulated radiation therapy delivery. Patients were randomized to either the novel chest surface system or abdominal block system for active management of breath hold with visual feedback. On both trial arms, the unallocated system was monitored passively. A total of 239,296 cine electronic portal imaging device images were analyzed retrospectively to extract the chest wall position. Treatment accuracy was quantified as the deviation of the internal chest wall during treatment relative to the planned position from the digitally reconstructed radiograph. The correlation between motion of the external surrogate and internal chest wall was calculated per-breath hold. Ease of use was assessed with questionnaires for both radiation therapists and patients and appointment length recorded. Results Data from 26 participants were available for analysis. No difference was found in delivered treatment accuracy between arms. Across all patients and fractions, the median correlation between internal chest wall movement and external surrogate was 0.69 for the chest surface and 0.17 for the abdominal block. Patients found it easy to follow visual feedback from both systems. No difference was found in appointment length between arms. Conclusions No statistical evidence was found for superior treatment accuracy, satisfaction, or appointment length for the novel chest surface tracking device compared with the abdominal block system. During deep inspiration breath hold, the median per-breath hold correlation of internal chest wall movement to the motion of the chest surface was higher than the median correlation of the abdominal block to the chest surface.
Collapse
Affiliation(s)
- Hilary L. Byrne
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Elisabeth Steiner
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Landesklinikum Wiener Neustadt, Vienna, Austria
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Gillian Lamoury
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Marita Morgia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Susan Carroll
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kylie Richardson
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Leigh Ambrose
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kuldeep Makhija
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Cameron Stanton
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Benjamin Zwan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Michael Carr
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Maegan Stewart
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Regina Bromley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - John Atyeo
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Shona Silvester
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie Plant
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul Keall
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Lai J, Luo Z, Jiang L, Hu H, Gao C, Zhang C, Chen L, Wu J, Wu Z. Skin marker combined with surface-guided auto-positioning for breast DIBH radiotherapy daily initial patient setup: An optimal schedule for both accuracy and efficiency. J Appl Clin Med Phys 2024; 25:e14319. [PMID: 38522035 PMCID: PMC11244673 DOI: 10.1002/acm2.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND AND PURPOSE By employing three surface-guided radiotherapy (SGRT)-assisted positioning methods, we conducted a prospective study of patients undergoing SGRT-based deep inspiration breath-hold (DIBH) radiotherapy using a Sentine/Catalys system. The aim of this study was to optimize the initial positioning workflow of SGRT-DIBH radiotherapy for breast cancer. MATERIALS AND METHODS A total of 124 patients were divided into three groups to conduct a prospective comparative study of the setup accuracy and efficiency for the daily initial setup of SGRT-DIBH breast radiotherapy. Group A was subjected to skin marker plus SGRT verification, Group B underwent SGRT optical feedback plus auto-positioning, and Group C was subjected to skin marker plus SGRT auto-positioning. We evaluated setup accuracy and efficiency using cone-beam computed tomography (CBCT) verification data and the total setup time. RESULTS In groups A, B, and C, the mean and standard deviation of the translational setup-error vectors were small, with the highest values of the three directions observed in group A (2.4 ± 1.6, 2.9 ± 1.8, and 2.8 ± 2.1 mm). The rotational vectors in group B (1.8 ± 0.7°, 2.1 ± 0.8°, and 1.8 ± 0.7°) were significantly larger than those in groups A and C, and the Group C setup required the shortest amount of time, at 1.5 ± 0.3 min, while that of Group B took the longest time, at 2.6 ± 0.9 min. CONCLUSION SGRT one-key calibration was found to be more suitable when followed by skin marker/tattoo and in-room laser positioning, establishing it as an optimal daily initial set-up protocol for breast DIBH radiotherapy. This modality also proved to be suitable for free-breathing breast cancer radiotherapy, and its widespread clinical use is recommended.
Collapse
Affiliation(s)
- Jianjun Lai
- Instiute of Intelligent Control and RoboticsHangzhou Dianzi UniversityHangzhouChina
- Department of Radiation OncologyZhejiang HospitalHangzhouChina
| | - Zhizeng Luo
- Instiute of Intelligent Control and RoboticsHangzhou Dianzi UniversityHangzhouChina
| | - Lu Jiang
- Department of Radiation OncologyZhejiang HospitalHangzhouChina
| | - Haili Hu
- Department of Radiation OncologyZhejiang HospitalHangzhouChina
| | - Chang Gao
- Department of Radiation OncologyZhejiang HospitalHangzhouChina
| | - Chuanfeng Zhang
- Department of Radiation OncologyZhejiang HospitalHangzhouChina
| | - Liting Chen
- Department of Radiation OncologyZhejiang HospitalHangzhouChina
| | - Jing Wu
- Department of Radiation OncologyZhejiang HospitalHangzhouChina
| | - Zhibing Wu
- Department of Radiation OncologyZhejiang HospitalHangzhouChina
| |
Collapse
|
7
|
Huijskens S, Granton P, Fremeijer K, van Wanrooij C, Offereins-van Harten K, Schouwenaars-van den Beemd S, Hoogeman MS, Sattler MGA, Penninkhof J. Clinical practicality and patient performance for surface-guided automated VMAT gating for DIBH breast cancer radiotherapy. Radiother Oncol 2024; 195:110229. [PMID: 38492672 DOI: 10.1016/j.radonc.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND PURPOSE To evaluate the performance of automated surface-guided gating for left-sided breast cancer with DIBH and VMAT. MATERIALS AND METHODS Patients treated in the first year after introduction of DIBH with VMAT were retrospectively considered for analysis. With automated surface-guided gating the beam automatically switches on/off, if the surface region of interest moved in/out the gating tolerance (±3 mm, ±3°). Patients were coached to hold their breath as long as comfortably possible. Depending on the patient's preference, patients received audio instructions during treatment delivery. Real-time positional variations of the breast/chest wall surface with respect to the reference surface were collected, for all three orthogonal directions. The durations and number of DIBHs needed to complete dose delivery, and DIBH position variations were determined. To evaluate an optimal gating window threshold, smaller tolerances of ±2.5 mm, ±2.0 mm, and ±1.5 mm were simulated. RESULTS 525 fractions from 33 patients showed that median DIBH duration was 51 s (range: 30-121 s), and median 4 DIBHs per fraction were needed to complete VMAT dose delivery. Median intra-DIBH stability and intrafractional DIBH reproducibility approximated 1.0 mm in each direction. No large differences were found between patients who preferred to perform the DIBH procedure with (n = 21) and without audio-coaching (n = 12). Simulations demonstrated that gating window tolerances could be reduced from ±3.0 mm to ±2.0 mm, without affecting beam-on status. CONCLUSION Independent of the use of audio-coaching, this study demonstrates that automated surface-guided gating with DIBH and VMAT proved highly efficient. Patients' DIBH performance far exceeded our expectations compared to earlier experiences and literature. Furthermore, gating window tolerances could be reduced.
Collapse
Affiliation(s)
- Sophie Huijskens
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands.
| | - Patrick Granton
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Kimm Fremeijer
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Cynthia van Wanrooij
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Kirsten Offereins-van Harten
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | | | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Margriet G A Sattler
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Joan Penninkhof
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Cumming J, Thompson K, Woodford K, Panettieri V, Sapkaroski D. The impact of a prophylactic skin dressing on surface-guided patient positioning in chest wall Radiation Therapy. J Med Radiat Sci 2024; 71:177-185. [PMID: 38525921 PMCID: PMC11177042 DOI: 10.1002/jmrs.781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Surface-guided radiation therapy (SGRT) has emerged as a powerful tool to improve patient setup accuracy in radiation therapy (RT). Combined with the goal of increasing RT accuracy is an ongoing effort to decrease RT side effects. The application of a prophylactic skin dressing to the treatment site is a well-documented method of reducing skin-related side effects from RT. This paper aims to investigate whether the application of Mepitel, a prophylactic skin dressing, has an impact on the accuracy of surface-guided patient setups in chest wall RT. METHODS A retrospective analysis of daily image-guided Online Corrections (OLCs) from patients undergoing chest wall irradiation with SGRT was performed. Translational (superior-inferior, lateral, and anterior-posterior) OLC magnitude and direction were compared between patients treated with Mepitel applied and those treated without. Systematic and random errors were calculated and compared between groups. RESULTS OLCs from 275 fractions were analysed. Mean OLCs were larger for patients with Mepitel applied in the superior_inferior axis (0.34 vs. 0.22 cm, P = 0.049) and for the combined translational vector (0.54 vs. 0.43 cm, P = 0.043). Combined translational systematic error was slightly larger for patients with Mepitel applied (0.15 vs. 0.09 cm). CONCLUSION Mepitel can impact the accuracy of SGRT patient-positioning in chest wall RT. The variation however is small and unlikely to have any clinical impact if SGRT is coupled with image guidance and appropriate PTV margins. Further investigation is required to assess the effect of Mepitel on SGRT accuracy in other treatment sites, as well as any potential dosimetric impacts.
Collapse
MESH Headings
- Retrospective Studies
- Patient Positioning/methods
- Patient Positioning/statistics & numerical data
- Radiotherapy, Image-Guided/adverse effects
- Radiotherapy, Image-Guided/methods
- Radiotherapy, Image-Guided/statistics & numerical data
- Occlusive Dressings/adverse effects
- Occlusive Dressings/statistics & numerical data
- Silicones/adverse effects
- Radiodermatitis/etiology
- Radiodermatitis/prevention & control
- Thoracic Wall/diagnostic imaging
- Thoracic Wall/radiation effects
- Radiotherapy Planning, Computer-Assisted/methods
- Tomography, X-Ray Computed
- Skin/radiation effects
- Breast Neoplasms/radiotherapy
- Breast Neoplasms/surgery
- Radiotherapy, Adjuvant/adverse effects
- Radiotherapy, Adjuvant/methods
- Mastectomy
- Humans
- Female
- Male
- Adult
- Middle Aged
- Aged
- Aged, 80 and over
- Breast Neoplasms, Male/radiotherapy
- Breast Neoplasms, Male/surgery
- Radiometry/statistics & numerical data
Collapse
Affiliation(s)
- James Cumming
- Department of Radiation Therapy ServicesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Kenton Thompson
- Department of Radiation Therapy ServicesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Katrina Woodford
- Department of Radiation Therapy ServicesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Department of Medical Imaging and Radiation SciencesMonash UniversityClaytonVictoriaAustralia
| | - Vanessa Panettieri
- Department of Medical Imaging and Radiation SciencesMonash UniversityClaytonVictoriaAustralia
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Daniel Sapkaroski
- Department of Radiation Therapy ServicesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Department of Medical Imaging and Radiation SciencesMonash UniversityClaytonVictoriaAustralia
- Department of Health and Biomedical SciencesRoyal Melbourne Institute of TechnologyBundooraVictoriaAustralia
- The Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Buschmann M, Kauer-Dorner D, Konrad S, Georg D, Widder J, Knäusl B. Stereoscopic X-ray image and thermo-optical surface guidance for breast cancer radiotherapy in deep inspiration breath-hold. Strahlenther Onkol 2024; 200:306-313. [PMID: 37796341 DOI: 10.1007/s00066-023-02153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE To investigate the feasibility of a thermo-optical surface imaging (SGRT) system combined with room-based stereoscopic X‑ray image guidance (IGRT) in a dedicated breast deep inspiration breath-hold (DIBH) irradiation workflow. In this context, benchmarking of portal imaging (EPID) and cone-beam CT (CBCT) against stereoscopic X‑rays was performed. METHODS SGRT + IGRT data of 30 left-sided DIBH breast patients (1 patient with bilateral cancer) treated in 351 fractions using thermo-optical surface imaging and X-ray IGRT were retrospectively analysed. Patients were prepositioned based on a free-breathing surface reference derived from a CT scan. Once the DIBH was reached using visual feedback, two stereoscopic X‑ray images were acquired and registered to the digitally reconstructed radiographs derived from the DIBH CT. Based on this registration, a couch correction was performed. Positioning and monitoring by surface and X-ray imaging were verified by protocol-based EPID or CBCT imaging at selected fractions and the calculation of residual geometric deviations. RESULTS The median X‑ray-derived couch correction vector was 4.9 (interquartile range [IQR] 3.3-7.1) mm long. Verification imaging was performed for 134 fractions (216 RT field verifications) with EPID and for 37 fractions with CBCT, respectively. The median 2D/3D deviation vector length over all verification images was 2.5 (IQR 1.6-3.9) mm/3.4 (IQR 2.2-4.8) mm for EPID/CBCT, both being well within the planning target volume (PTV) margins (7 mm). A moderate correlation (0.49-0.65) was observed between the surface signal and X-ray position in DIBH. CONCLUSION DIBH treatments using thermo-optical SGRT and X-ray IGRT were feasible for breast cancer patients. Stereoscopic X‑ray positioning was successfully verified by standard IGRT techniques.
Collapse
Affiliation(s)
- Martin Buschmann
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Daniela Kauer-Dorner
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Stefan Konrad
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Barbara Knäusl
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/AKH Wien, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| |
Collapse
|
10
|
Mankinen M, Virén T, Seppälä J, Koivumäki T. Interfractional variation in whole-breast VMAT irradiation: a dosimetric study with complementary SGRT and CBCT patient setup. Radiat Oncol 2024; 19:21. [PMID: 38347554 PMCID: PMC10863193 DOI: 10.1186/s13014-024-02418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The dosimetric effect of setup uncertainty and tissue deformations in left-sided whole-breast irradiation with complementary surface-guided radiotherapy (SGRT) and cone-beam computed tomography (CBCT) setup was evaluated. METHOD Treatment courses of 40.05 Gy prescribed dose in 15 fractions were simulated for 29 patients by calculating the dose on deformed CT images, that were based on daily CBCT images, and deforming and accumulating the dose onto the planning CT image. Variability in clinical target volume (CTV) position and shape was assessed as the 95% Hausdorff distance (HD95) between the planning CTV and deformed CTV structures. DVH metrics were evaluated between the planned and simulated cumulative dose distributions using two treatment techniques: tangential volumetric modulated arc therapy (tVMAT) and conventional 3D-conformal radiotherapy (3D-CRT). RESULTS Based on the HD95 values, the variations in CTV shape and position were enclosed by the 5 mm CTV-PTV margin in 85% of treatment fractions using complementary CBCT and SGRT setup. A residual error of 8.6 mm was observed between the initial SGRT setup and CBCT setup. The median CTV V95% coverage was 98.1% (range 93.1-99.8%) with tVMAT and 98.2% (range 84.5-99.7%) with 3D-CRT techniques with CBCT setup. With the initial SGRT-only setup, the corresponding coverages were 96.3% (range 92.6-99.4%) and 96.6% (range 84.2-99.4%), respectively. However, a considerable bias in vertical residual error between initial SGRT setup and CBCT setup was observed. Clinically relevant changes between the planned and cumulative doses to organs-at-risk (OARs) were not observed. CONCLUSIONS The CTV-to-PTV margin should not be reduced below 5 mm even with daily CBCT setup. Both tVMAT and 3D-CRT techniques were robust in terms of dose coverage to the target and OARs. Based on the shifts between setup methods, CBCT setup is recommended as a complementary method with SGRT.
Collapse
Affiliation(s)
- M Mankinen
- Deparment of Physics, University of Jyväskylä (JYU), Survontie 9 C, 40014, Jyväskylä, Finland.
- Deparment of Medical Physics, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, Jyväskylä, Finland.
| | - T Virén
- Center of Oncology, Kuopio University Hospital (KUH), The Wellbeing Services Country of North Savo, Kuopio, Finland
| | - J Seppälä
- Center of Oncology, Kuopio University Hospital (KUH), The Wellbeing Services Country of North Savo, Kuopio, Finland
| | - T Koivumäki
- Deparment of Physics, University of Jyväskylä (JYU), Survontie 9 C, 40014, Jyväskylä, Finland
- Deparment of Medical Physics, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| |
Collapse
|
11
|
Gnerucci A, Esposito M, Ghirelli A, Pini S, Paoletti L, Barca R, Fondelli S, Alpi P, Grilli B, Rossi F, Scoccianti S, Russo S. Robustness analysis of surface-guided DIBH left breast radiotherapy: personalized dosimetric effect of real intrafractional motion within the beam gating thresholds. Strahlenther Onkol 2024; 200:71-82. [PMID: 37380796 DOI: 10.1007/s00066-023-02102-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE The robustness of surface-guided (SG) deep-inspiration breath-hold (DIBH) radiotherapy (RT) for left breast cancer was evaluated by investigating any potential dosimetric effects due to the residual intrafractional motion allowed by the selected beam gating thresholds. The potential reduction of DIBH benefits in terms of organs at risk (OARs) sparing and target coverage was evaluated for conformational (3DCRT) and intensity-modulated radiation therapy (IMRT) techniques. METHODS A total of 192 fractions of SGRT DIBH left breast 3DCRT treatment for 12 patients were analyzed. For each fraction, the average of the real-time displacement between the isocenter on the daily reference surface and on the live surface ("SGRT shift") during beam-on was evaluated and applied to the original plan isocenter. The dose distribution for the treatment beams with the new isocenter point was then calculated and the total plan dose distribution was obtained by summing the estimated perturbed dose for each fraction. Then, for each patient, the original plan and the perturbed one were compared by means of Wilcoxon test for target coverage and OAR dose-volume histogram (DVH) metrics. A global plan quality score was calculated to assess the overall plan robustness against intrafractional motion of both 3DCRT and IMRT techniques. RESULTS Target coverage and OAR DVH metrics did not show significant variations between the original and the perturbed plan for the IMRT techniques. 3DCRT plans showed significant variations for the left descending coronary artery (LAD) and the humerus only. However, none of the dose metrics exceeded the mandatory dose constraints for any of the analyzed plans. The global plan quality analysis indicated that both 3DCRT and IMRT techniques were affected by the isocenter shifts in the same way and, generally, the residual isocenter shifts more likely tend to worsen the plan in all cases. CONCLUSION The DIBH technique proved to be robust against residual intrafractional isocenter shifts allowed by the selected SGRT beam-hold thresholds. Small-volume OARs located near high dose gradients showed significant marginal deteriorations in the perturbed plans with the 3DCRT technique only. Global plan quality was mainly influenced by patient anatomy and treatment beam geometry rather than the technique adopted.
Collapse
Affiliation(s)
- A Gnerucci
- Department of Physics and Astronomy, University of Florence, Florence, Italy.
| | - M Esposito
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - A Ghirelli
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Pini
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - L Paoletti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - R Barca
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Fondelli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - P Alpi
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - B Grilli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - F Rossi
- Radiotherapy Unit, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - S Scoccianti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| |
Collapse
|
12
|
Oku Y, Toyota M, Saigo Y. Characteristics of detection accuracy of the patient setup using InBore optical patient positioning system. Radiol Phys Technol 2023; 16:532-542. [PMID: 37812309 DOI: 10.1007/s12194-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
This study aimed to evaluate the detection accuracy of the AlignRT-InBore system in surface-guided radiation therapy using a phantom and to determine the feasibility of the system by conducting a comparative analysis with cone-beam computed tomography (CBCT) registration. The AlignRT-InBore system integrated with the ETHOS Therapy was used. A phantom and a QUASAR phantom were employed to examine the specific areas of interest relevant to clinical cases. The evaluation involved monitoring translations for approximately 30 min and assessing the position detection accuracy for static and moving objects. Fifty clinical cases were used to evaluate the position detection accuracy and its relationship with the localization accuracy of CBCT before treatment. The detection accuracy of static and moving objects was within 1.0 mm using the phantom. However, the longitudinal direction tended to be larger than the other directions. Regarding the accuracy of localization in clinical cases, a strong and statistically significant (p < 0.01) correlation was observed in each direction. A detection accuracy within 1.0 mm is possible for static and moving objects. The detection accuracy of the patient setup using the InBore optical patient positioning system was extremely high, and the patient could be detected with high precision, suggesting its usefulness.
Collapse
Affiliation(s)
- Yoshifumi Oku
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan.
| | - Masahiko Toyota
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan
| | - Yasumasa Saigo
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan
| |
Collapse
|
13
|
Rudat V, Shi Y, Zhao R, Xu S, Yu W. Setup accuracy and margins for surface-guided radiotherapy (SGRT) of head, thorax, abdomen, and pelvic target volumes. Sci Rep 2023; 13:17018. [PMID: 37813917 PMCID: PMC10562432 DOI: 10.1038/s41598-023-44320-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
The goal of the study was to evaluate the inter- and intrafractional patient setup accuracy of target volumes located in the head, thoracic, abdominal, and pelvic regions when using SGRT, by comparing it with that of laser alignment using patient skin marks, and to calculate the corresponding setup margins. A total of 2303 radiotherapy fractions of 183 patients were analyzed. All patients received daily kilovoltage cone-beam computed tomography scans (kV-CBCT) for online verification. From November 2019 until September 2020, patient setup was performed using laser alignment with patient skin marks, and since October 2020, using SGRT. The setup accuracy was measured by the six degrees of freedom (6DOF) corrections based on the kV-CBCT. The corresponding setup margins were calculated using the van Herk formula. Analysis of variance (ANOVA) was used to evaluate the impact of multiple factors on the setup accuracy. The inter-fractional patient setup accuracy was significantly better using SGRT compared to laser alignment with skin marks. The mean three-dimensional vector of the translational setup deviation of tumors located in the thorax, abdomen, and pelvis using SGRT was 3.6 mm (95% confidence interval (CI) 3.3 mm to 3.9 mm) and 4.5 mm using laser alignment with skin marks (95% CI 3.9 mm to 5.2 mm; p = 0.001). Calculation of setup margins for the combined inter- and intra-fractional setup error revealed similar setup margins using SGRT and kV-CBCT once a week compared to laser alignment with skin marks and kV-CBCT every other day. Furthermore, comparable setup margins were found for open-face thermoplastic masks with AlignRT compared to closed-face thermoplastic masks with laser alignment and mask marks. SGRT opens the possibility to reduce the number of CBCTs while maintaining sufficient setup accuracy. The advantage is a reduction of imaging dose and overall treatment time. Open-face thermoplastic masks may be used instead of closed-face thermoplastic masks to increase the patient's comfort.
Collapse
Affiliation(s)
- Volker Rudat
- Department of Radiation Oncology, Jiahui International Cancer Center Shanghai, Jiahui Health, Shanghai, China.
| | - Yanyan Shi
- Department of Radiation Oncology, Jiahui International Cancer Center Shanghai, Jiahui Health, Shanghai, China
| | - Ruping Zhao
- Department of Radiation Oncology, Jiahui International Cancer Center Shanghai, Jiahui Health, Shanghai, China
| | - Shuyin Xu
- Department of Radiation Oncology, Jiahui International Cancer Center Shanghai, Jiahui Health, Shanghai, China
| | - Wei Yu
- Department of Radiation Oncology, Jiahui International Cancer Center Shanghai, Jiahui Health, Shanghai, China
| |
Collapse
|
14
|
Zhao H, Haacke C, Sarkar V, Paxton A, Jessica Huang Y, Szegedi M, Price RG, Frances Su FC, Rassiah-Szegedi P, Salter B. Initial clinical evaluation of a novel combined biometric, radio-frequency identification, and surface imaging system. Phys Med 2023; 114:103146. [PMID: 37778208 DOI: 10.1016/j.ejmp.2023.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/15/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
PURPOSE To evaluate and characterize the overall clinical functionality and workflow of the newly released Varian Identify system (version 2.3). METHODS Three technologies included in the Varian Identify system were evaluated: patient biometric authentication, treatment accessory device identification, and surface-guided radiation therapy (SGRT) function. Biometric authentication employs a palm vein reader. Treatment accessory device verification utilizes two technologies: device presence via Radio Frequency Identification (RFID) and position via optical markers. Surface-guidance was evaluated on both patient orthopedic setup at loading position and surface matching and tracking at treatment isocenter. A phantom evaluation of the consistency and accuracy for Identify SGRT function was performed, including a system consistency test, a translational shift and rotational accuracy test, a pitch and roll accuracy test, a continuous recording test, and an SGRT vs Cone-Beam CT (CBCT) agreement test. RESULTS 201 patient authentications were verified successfully with palm reader. All patient treatment devices were successfully verified for their presences and positions (indexable devices). The patient real-time orthopedic pose was successfully adjusted to match the reference surface captured at simulation. SGRT-reported shift consistency against couch readout was within (0.1 mm, 0.030). The shift accuracy was within (0.3 mm, 0.10). In continuous recording mode, the maximum variation was 0.2 ± 0.12 mm, 0.030 ± 0.020. The difference between Identify SGRT offset and CBCT was within (1 mm, 10). CONCLUSIONS This clinical evaluation confirms that Identify accurately functions for patient palm identification and patient treatment device presence and position verification. Overall SGRT consistency and accuracy was within (1 mm, 10), within the 2 mm criteria of AAPM TG302.
Collapse
Affiliation(s)
- Hui Zhao
- University of Utah, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kaestner L, Streb L, Hetjens S, Buergy D, Sihono DS, Fleckenstein J, Kalisch I, Eckl M, Giordano FA, Lohr F, Stieler F, Boda-Heggemann J. Surface guidance compared with ultrasound-based monitoring and diaphragm position in cone-beam computed tomography during abdominal stereotactic radiotherapy in breath-hold. Phys Imaging Radiat Oncol 2023; 27:100455. [PMID: 37720462 PMCID: PMC10500027 DOI: 10.1016/j.phro.2023.100455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 09/19/2023] Open
Abstract
Background and purpose Spirometry induced deep-inspiration-breath-hold (DIBH) reduces intrafractional motion during upper abdominal stereotactic body radiotherapy (SBRT). The aim of this prospective study was to evaluate whether surface scanning (SGRT) is an adequate surrogate for monitoring residual internal motion during DIBH. Residual motion detected by SGRT was compared with experimental 4D-ultrasound (US) and an internal motion detection benchmark (diaphragm-dome-position in kV cone-beam computed tomography (CBCT) projections). Materials and methods Intrafractional monitoring was performed with SGRT and US in 460 DIBHs of 12 patients. Residual motion detected by all modalities (SGRT (anterior-posterior (AP)), US (AP, craniocaudal (CC)) and CBCT (CC)) was analyzed. Agreement analysis included Wilcoxon signed rank test, Maloney and Rastogi's test, Pearson's correlation coefficient (PCC) and interclass correlation coefficient (ICC). Results Interquartile range was 0.7 mm (US(AP)), 0.8 mm (US(CC)), 0.9 mm (SGRT) and 0.8 mm (CBCT). SGRT(AP) vs. CBCT(CC) and US(CC) vs. CBCT(CC) showed comparable agreement (PCCs 0.53 and 0.52, ICCs 0.51 and 0.49) with slightly higher precision of CBCT(CC). Most agreement was observed for SGRT(AP) vs. US(AP) with largest PCC (0.61) and ICC (0.60), least agreement for SGRT(AP) vs. US(CC) with smallest PCC (0.44) and ICC (0.42). Conclusions Residual motion detected during spirometry induced DIBH is small. SGRT alone is no sufficient surrogate for residual internal motion in all patients as some high velocity motion could not be detected. Observed patient-specific residual errors may require individualized PTV-margins.
Collapse
Affiliation(s)
- Lena Kaestner
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Lara Streb
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Svetlana Hetjens
- University Medical Center Mannheim, Department of Medical Statistics and Biomathematics, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Daniel Buergy
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Dwi S.K. Sihono
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia
| | - Jens Fleckenstein
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Iris Kalisch
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Miriam Eckl
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank A. Giordano
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank Lohr
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Struttura Complessa di Radioterapia, Dipartimento di Oncologia, Az. Ospedaliero-Universitaria di Modena, Largo del Pozzo 71, 41122 Modena, Italy
| | - Florian Stieler
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Judit Boda-Heggemann
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
16
|
Dekker J, Essers M, Verheij M, Kusters M, de Kruijf W. Dose coverage and breath-hold analysis of breast cancer patients treated with surface-guided radiotherapy. Radiat Oncol 2023; 18:72. [PMID: 37081477 PMCID: PMC10116713 DOI: 10.1186/s13014-023-02261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Surface-guided radiotherapy (SGRT) is used to ensure a reproducible patient set-up and for intra-fraction motion monitoring. The arm position of breast cancer patients is important, since this is related to the position of the surrounding lymph nodes. The aim of the study was to investigate the set-up accuracy of the arm of patients positioned using SGRT. Moreover, the actual delivered dose was investigated and an extensive breath-hold analysis was performed. METHODS 84 patients who received local or locoregional breast radiation therapy were positioned and monitored using SGRT. The accuracy of the arm position, represented by the clavicle position, was studied on the anterior-posterior kV-image. To investigate the effect of changes in anatomy and patient set-up, the actual delivered dose was calculated on cone-beam CT-scans (CBCT). A deformable registration of the CT to the CBCT was applied to deform the structures of the CT onto the CBCT. The minimum dose in percentage of the prescribed dose that was received by 98% of different CTV volumes (D98) was determined. An extensive breath-hold analysis was performed and definitions for relevant parameters were given. RESULTS The arm position of 77 out of 84 patients in total was successful, based on the clavicle rotation. The mean clavicle rotation was 0.4° (± 2.0°). For 89.8% of the patients who were irradiated on the whole-breast D98 was larger than 95% of the prescribed dose (D98 > 95%). D98 > 95% applied for 70.8% of the patients irradiated on the chest wall. Concerning the lymph node CTVs, D98 > 95% for at least 95% of the patients. The breath-hold analysis showed a mean residual setup error of - 0.015 (± 0.90), - 0.18 (± 0.82), - 0.58 (± 1.1) mm in vertical, lateral, and longitudinal direction, respectively. The reproducibility and stability of the breath-hold was good, with median 0.60 mm (95% confidence interval (CI) [0.66-0.71] mm) and 0.20 mm (95% CI 0.21-0.23] mm), respectively. CONCLUSIONS Using SGRT we were able to position breast cancer patients successfully, with focus on the arm position. The actual delivered dose calculated on the CBCT was adequate and no relation between clavicle rotation and actual delivered dose was found. Moreover, breath-hold analysis showed a good reproducibility and stability of the breath-hold. Trial registration CCMO register NL69214.028.19.
Collapse
Affiliation(s)
- Janita Dekker
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands.
| | - Marion Essers
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein 32, 6525 GA, Nijmegen, The Netherlands
| | - Martijn Kusters
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein 32, 6525 GA, Nijmegen, The Netherlands
| | - Willy de Kruijf
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands
| |
Collapse
|
17
|
Nguyen D, Khodri M, Sporea C, Reinoso R, Jacob Y, Farah J. Investigating the robustness of the AlignRT InBore™ co-calibration process and determining the overall tracking errors. Phys Med 2023; 108:102567. [PMID: 36996575 DOI: 10.1016/j.ejmp.2023.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/05/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE To determine the overall tracking errors inherent to the co-calibration procedure of AlignRT InBore™'s (Vision RT Ltd., London, UK) ceiling-mounted and ring-mounted cameras. METHODS Extrinsic calibration errors related to the mismatch between ceiling and InBore cameras' isocentres and treatment isocentre were determined using MV images and the SRS package and compared to traditional plate-based error. Next, using a realistic anthropomorphic female phantom, intrinsic calibration errors were determined while varying source-skin distance (80 to 100 cm), breast board inclination (0° to 12.5°), room lighting conditions (0 to 258 lx), skin colour (dark, white and natural skin colour), and pod occlusion. RESULTS MV images of the cube proved plate-based calibration to suffer from large errors especially in the vertical direction (up to 2 mm). Intrinsic calibration errors were considerably lower. Indeed, RTD values of ceiling and InBore cameras showed little variability with isocentre depth (within 1.0 mm/0.4°), surface orientation and breast board inclination (within 0.7 mm/0.3°), changing lighting conditions (within 0.1 mm/0.2°), skin colour/tone (within 0.3 mm/0.3°) and camera pod occlusion (within 0.3 mm/0.2°). CONCLUSION The use of MV-images proved critical to maintain co-calibrating errors of ceiling and InBore cameras to Halcyon's treatment isocentre below 1 mm.
Collapse
|
18
|
Nguyen D, Reinoso R, Farah J, Yossi S, Lorchel F, Passerat V, Louet E, Pouchard I, Khodri M, Barbet N. Reproducibility of surface-based deep inspiration breath-hold technique for lung stereotactic body radiotherapy on a closed-bore gantry linac. Phys Imaging Radiat Oncol 2023; 26:100448. [PMID: 37252251 PMCID: PMC10213090 DOI: 10.1016/j.phro.2023.100448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Tumor motion and delivery efficiency are two main challenges of lung stereotactic body radiotherapy (SBRT). The present work implemented the deep inspiration breath hold technique (DIBH) with surface guided radiation therapy (SGRT) on closed-bore linacs and investigated the correlation between SGRT data and internal target position. Materials and methods Thirteen lung SBRT patients treated in DIBH using a closed-bore gantry linac and a ring-mounted SGRT system were retrospectively analysed. Visual coaching was used to achieve DIBH with a ± 1 mm threshold window in the anterior-posterior direction. Three kV-CBCTs were added to the treatment workflow and examined offline to verify intra-fraction tumor position. Surface-based DIBH was analysed using SGRT treatment reports and an in-house python script. Data from 73 treatment sessions and 175 kV-CBCTs were studied. Correlations between target and surface positions were studied with Linear Mixed Models. Results Median intra-fraction tumor motion was 0.8 mm (range: 0.7-1.3 mm) in the anterior-posterior direction, 1.2 mm (range: 1-1.7 mm) in the superior-inferior direction, and 1 mm (range: 0.7-1.1 mm) in the left-right direction, with rotations of <1° (range: 0.6°-1.1°) degree in all three directions. Planned target volumes and healthy lung volumes receiving 12.5 Gy and 13.5 Gy were reduced on average by 67% and 54%, respectively. Conclusions Lung SBRT in DIBH with the ring-mounted SGRT system proved reproducible. The surface monitoring provided by SGRT was found to be a reliable surrogate for internal target motion. Moreover, the implementation of DIBH technique helped reduce target volumes and lung doses.
Collapse
Affiliation(s)
- Daniel Nguyen
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Rebeca Reinoso
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Jad Farah
- Vision RT Ltd., Dove House, Arcadia Avenue, London N3 2JU, United Kingdom
| | - Sena Yossi
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Fabrice Lorchel
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Victor Passerat
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Estelle Louet
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Isabelle Pouchard
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Mustapha Khodri
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Nicolas Barbet
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| |
Collapse
|
19
|
Canters R, Vaassen F, Lubken I, Cobben M, Murrer L, Peeters S, Berbee M, Ta B. Radiotherapy for mediastinal lymphoma in breath hold using surface monitoring and nasal high flow oxygen: Clinical experiences and breath hold stability. Radiother Oncol 2023; 183:109594. [PMID: 36870610 DOI: 10.1016/j.radonc.2023.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
PURPOSE In this study we describe the clinical introduction and evaluation of radiotherapy in mediastinal lymphoma in breath hold using surface monitoring combined with nasal high flow therapy (NHFT) to prolong breath hold duration. MATERIALS AND METHODS 11 Patients with mediastinal lymphoma were evaluated. 6 Patients received NHFT, 5 patients were treated in breath hold without NHFT. Breath hold stability as measured by a surface scanning system was evaluated, as well as internal movement based on cone beam computed tomography (CBCT) before and after treatment. Based on internal movement, margins were determined. In a parallel planning study we compared free breathing plans with breath hold plans using the determined margins. RESULTS Average inter breath hold stability was 0.6 mm for NHFT treatments, and 0.5 mm for non-NHFT treatments (p > 0.1). Intra breath hold stability was 0.8 vs. 0.6 mm (p > 0.1) on average. Using NHFT, average breath hold duration increased from 34 s to 60 s (p < 0.01). Residual CTV motion derived from CBCTs before and after each fraction was 2.0 mm for NHFT vs 2.2 mm for non-NHFT (p > 0.1). Combined with inter-fraction motion, a uniform mediastinal margin of 5 mm appears to be sufficient. In breath hold, mean lung dose is reduced by 2.6 Gy (p < 0.001), while mean heart dose is reduced by 2.0 Gy (p < 0.001). CONCLUSION Treatment of mediastinal lymphoma in breath hold is feasible and safe. The addition of NHFT approximately increases breath hold durations with a factor two while stability is maintained. By reducing breathing motion, margins can be decreased to 5 mm. A considerable dose reduction in heart, lungs, esophagus, and breasts can be achieved with this method.
Collapse
Affiliation(s)
- Richard Canters
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, the Netherlands.
| | - Femke Vaassen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, the Netherlands
| | - Indra Lubken
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, the Netherlands
| | - Maud Cobben
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, the Netherlands
| | - Lars Murrer
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, the Netherlands
| | - Stephanie Peeters
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, the Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, the Netherlands
| | - Bastiaan Ta
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, the Netherlands
| |
Collapse
|
20
|
Abubakar A, Shaukat SI, Karim NKA, Kassim MZ, Lim SY, Appalanaido GK, Zin HM. Accuracy of a time-of-flight (ToF) imaging system for monitoring deep-inspiration breath-hold radiotherapy (DIBH-RT) for left breast cancer patients. Phys Eng Sci Med 2023; 46:339-352. [PMID: 36847965 PMCID: PMC9969933 DOI: 10.1007/s13246-023-01227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023]
Abstract
Deep inspiration breath-hold radiotherapy (DIBH-RT) reduces cardiac dose by over 50%. However, poor breath-hold reproducibility could result in target miss which compromises the treatment success. This study aimed to benchmark the accuracy of a Time-of-Flight (ToF) imaging system for monitoring breath-hold during DIBH-RT. The accuracy of an Argos P330 3D ToF camera (Bluetechnix, Austria) was evaluated for patient setup verification and intra-fraction monitoring among 13 DIBH-RT left breast cancer patients. The ToF imaging was performed simultaneously with in-room cone beam computed tomography (CBCT) and electronic portal imaging device (EPID) imaging systems during patient setup and treatment delivery, respectively. Patient surface depths (PSD) during setup were extracted from the ToF and the CBCT images during free breathing and DIBH using MATLAB (MathWorks, Natick, MA) and the chest surface displacement were compared. The mean difference ± standard deviation, correlation coefficient, and limit of agreement between the CBCT and ToF were 2.88 ± 5.89 mm, 0.92, and - 7.36, 1.60 mm, respectively. The breath-hold stability and reproducibility were estimated using the central lung depth extracted from the EPID images during treatment and compared with the PSD from the ToF. The average correlation between ToF and EPID was - 0.84. The average intra-field reproducibility for all the fields was within 2.70 mm. The average intra-fraction reproducibility and stability were 3.74 mm, and 0.80 mm, respectively. The study demonstrated the feasibility of using ToF camera for monitoring breath-hold during DIBH-RT and shows good breath-hold reproducibility and stability during the treatment delivery.
Collapse
Affiliation(s)
- Auwal Abubakar
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
- Department of Medical Radiography, Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria.
| | - Shazril Imran Shaukat
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
- Oncology Unit, Pantai Hospital Sungai Petani, Bandar Amanjaya, 08000, Sungai Petani, Kedah, Malaysia
| | - Noor Khairiah A Karim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
- Breast Cancer Translational Research Programme (BCTRP), Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Mohammed Zakir Kassim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Siew Yong Lim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Gokula Kumar Appalanaido
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Hafiz Mohd Zin
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
- Breast Cancer Translational Research Programme (BCTRP), Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
21
|
Parsons D, Joo M, Iqbal Z, Godley A, Kim N, Spangler A, Albuquerque K, Sawant A, Zhao B, Gu X, Rahimi A. Stability and reproducibility comparisons between deep inspiration breath-hold techniques for left-sided breast cancer patients: A prospective study. J Appl Clin Med Phys 2023; 24:e13906. [PMID: 36691339 PMCID: PMC10161105 DOI: 10.1002/acm2.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Deep inspiration breath-hold (DIBH) is crucial in reducing the lung and cardiac dose for treatment of left-sided breast cancer. We compared the stability and reproducibility of two DIBH techniques: Active Breathing Coordinator (ABC) and VisionRT (VRT). MATERIALS AND METHODS We examined intra- and inter-fraction positional variation of the left lung. Eight left-sided breast cancer patients were monitored with electronic portal imaging during breath-hold (BH) at every fraction. For each patient, half of the fractions were treated using ABC and the other half with VRT, with an equal amount starting with either ABC or VRT. The lung in each portal image was delineated, and the variation of its area was evaluated. Intrafraction stability was evaluated as the mean coefficient of variation (CV) of the lung area for the supraclavicular (SCV) and left lateral (LLat) field over the course of treatment. Reproducibility was the CV for the first image of each fraction. Daily session time and total imaging monitor units (MU) used in patient positioning were recorded. RESULTS The mean intrafraction stability across all patients for the LLat field was 1.3 ± 0.7% and 1.5 ± 0.9% for VRT and ABC, respectively. Similarly, this was 1.5 ± 0.7% and 1.6 ± 0.8% for VRT and ABC, respectively, for the SCV field. The mean interfraction reproducibility for the LLat field was 11.0 ± 3.4% and 14.9 ± 6.0% for VRT and ABC, respectively. Similarly, this was 13.0 ± 2.5% and 14.8 ± 9% for VRT and ABC, respectively, for the SCV. No difference was observed in the number of verification images required for either technique. CONCLUSIONS The stability and reproducibility were found to be comparable between ABC and VRT. ABC can have larger interfractional variation with less feedback to the treating therapist compared to VRT as shown in the increase in geometric misses at the matchline.
Collapse
Affiliation(s)
- David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mindy Joo
- Department of Radiation Oncology, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zohaib Iqbal
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew Godley
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan Kim
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ann Spangler
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bo Zhao
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xuejun Gu
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Asal Rahimi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Gnerucci A, Esposito M, Ghirelli A, Pini S, Paoletti L, Barca R, Fondelli S, Alpi P, Grilli B, Rossi F, Scoccianti S, Russo S. Surface-guided DIBH radiotherapy for left breast cancer: impact of different thresholds on intrafractional motion monitoring and DIBH stability. Strahlenther Onkol 2023; 199:55-66. [PMID: 36229656 DOI: 10.1007/s00066-022-02008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To compare two left breast cancer patient cohorts (tangential vs. locoregional deep-inspiration breath-hold - DIBH treatment) with different predefined beam gating thresholds and to evaluate their impact on motion management and DIBH stability. METHODS An SGRT-based clinical workflow was adopted for the DIBH treatment. Intrafractional monitoring was performed by tracking both the respiratory signal and the real-time displacement between the isocenter on the daily reference surface and on the live surface ("SGRT shift"). Beam gating tolerances were 5 mm/4 mm for the SGRT shifts and 5 mm/3 mm for the gating window amplitude for breast tangential and breast + lymph nodes locoregional treatments, respectively. A total of 24 patients, 12 treated with a tangential technique and 12 with a locoregional technique, were evaluated for a total number of 684 fractions. Statistical distributions of SGRT shift and respiratory signal for each treatment fraction, for each patient treatment, and for the two population samples were generated. RESULTS Lateral cumulative distributions of SGRT shifts for both locoregional and tangential samples were consistent with a null shift, whereas longitudinal and vertical ones were slightly negative (mean values < 1 mm). The distribution of the percentage of beam on time with SGRT shift > 3 mm, > 4 mm, or > 5 mm was extended toward higher values for the tangential sample than for the locoregional sample. The variability in the DIBH respiration signal was significantly greater for the tangential sample. CONCLUSION Different beam gating thresholds for surface-guided DIBH treatment of left breast cancer can impact motion management and DIBH stability by reducing the frequency of the maximum SGRT shift and increasing respiration signal stability when tighter thresholds are adopted.
Collapse
Affiliation(s)
- A Gnerucci
- Department of Physics and Astronomy, University of Florence, Florence, Italy.
| | - M Esposito
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - A Ghirelli
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Pini
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - L Paoletti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - R Barca
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Fondelli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - P Alpi
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - B Grilli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - F Rossi
- Radiotherapy Unit, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - S Scoccianti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| |
Collapse
|
23
|
Svestad JG, Heydari M, Mikalsen SG, Flote VG, Nordby F, Hellebust TP. Surface-guided positioning eliminates the need for skin markers in radiotherapy of right sided breast cancer: A single center randomized crossover trial. Radiother Oncol 2022; 177:46-52. [PMID: 36309152 DOI: 10.1016/j.radonc.2022.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND PURPOSE To prospectively investigate whether surface guided setup of right sided breast cancer patients can increase efficiency and accuracy compared to traditional skin marker/tattoo based setup. MATERIAL AND METHODS Twenty-five patients were included in this study. Each patient was positioned using skin marks and tattoos (procedure A) for half of the fractions and surface guidance using AlignRT (procedure B) for the other half of the fractions. The order of the two procedures was randomized. Pretreatment CBCT was acquired at every fraction for both setup procedures. A total of ten time points were recorded during every treatment session. Applied couch shifts after CBCT match were recorded and used for potential error calculations if no CBCT had been used. RESULTS In the vertical direction procedure B showed significant smaller population based systematic (Ʃ) and random (σ) errors. However, a significant larger systematic error on the individual patient level (M) was also shown. This was found to be due to patient relaxation between setup and CBCT matching. Procedure B also showed a significant smaller random error in the lateral direction, while no significant differences were seen in the longitudinal direction. No significant difference in setup time was found between the two procedures. CONCLUSION Setup of right sided breast cancer patients using surface guidance yields higher accuracy than setup using skin marks/tattoos and lasers with the same setup time. Patient alignment for this patient group can safely be done without the use of permanent tattoos and skin marks when utilizing surface-guided patient positioning. However, CBCT should still be used as final setup verification.
Collapse
Affiliation(s)
| | - Mojgan Heydari
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | | | | | - Fredrik Nordby
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Taran Paulsen Hellebust
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Norway.
| |
Collapse
|
24
|
Zhao H, Paxton A, Sarkar V, Price RG, Huang J, Su FCF, Li X, Rassiah P, Szegedi M, Salter B. Surface-Guided Patient Setup Versus Traditional Tattoo Markers for Radiation Therapy: Is Tattoo-Less Setup Feasible for Thorax, Abdomen and Pelvis Treatment? Cureus 2022; 14:e28644. [PMID: 36196310 PMCID: PMC9525098 DOI: 10.7759/cureus.28644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose: In this study, patient setup accuracy was compared between surface guidance and tattoo markers for radiation therapy treatment sites of the thorax, abdomen and pelvis. Methods and materials: A total of 608 setups performed on 59 patients using both surface-guided and tattoo-based patient setups were analyzed. During treatment setup, patients were aligned to room lasers using their tattoos, and then the six-degree-of-freedom (6DOF) surface-guided offsets were calculated and recorded using AlignRT system. While the patient remained in the same post-tattoo setup position, target localization imaging (radiographic or ultrasound) was performed and these image-guided shifts were recorded. Finally, surface-guided vs tattoo-based offsets were compared to the final treatment position (based on radiographic or ultrasound imaging) to evaluate the accuracy of the two setup methods. Results: The overall average offsets of tattoo-based and surface-guidance-based patient setups were comparable within 3.2 mm in three principal directions, with offsets from tattoo-based setups being slightly less. The maximum offset for tattoo setups was 2.2 cm vs. 4.3 cm for surface-guidance setups. Larger offsets (ranging from 2.0 to 4.3 cm) were observed for surface-guided setups in 14/608 setups (2.3%). For these same cases, the maximum observed tattoo-based offset was 0.7 cm. Of the cases with larger surface-guided offsets, 13/14 were for abdominal/pelvic treatment sites. Additionally, larger rotations (>3°) were recorded in 18.6% of surface-guided setups. The majority of these larger rotations were observed for abdominal and pelvic sites (~84%). Conclusions: The small average differences observed between tattoo-based and surface-guidance-based patient setups confirm the general equivalence of the two potential methods, and the feasibility of tattoo-less patient setup. However, a significant number of larger surface-guided offsets (translational and rotational) were observed, especially in the abdominal and pelvic regions. These cases should be anticipated and contingency setup methods planned for.
Collapse
|
25
|
Introduction of deep inspirational breath-hold and Butterfly-VMAT techniques into clinical practice for the treatment of mediastinal lymphoma – Lessons learned from an experienced centre. Tech Innov Patient Support Radiat Oncol 2022; 22:22-25. [PMID: 35434387 PMCID: PMC9010782 DOI: 10.1016/j.tipsro.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
|
26
|
Reproducibility of Deep-Inspiration Breath Hold treatments on Halcyon™ performed using the first clinical version of AlignRT InBore™: results of CYBORE study. Clin Transl Radiat Oncol 2022; 35:90-96. [PMID: 35662884 PMCID: PMC9156859 DOI: 10.1016/j.ctro.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
|
27
|
Lawler G. A review of surface guidance in extracranial stereotactic body radiotherapy (SBRT/SABR) for set-up and intra-fraction motion management. Tech Innov Patient Support Radiat Oncol 2022; 21:23-26. [PMID: 35079644 PMCID: PMC8777133 DOI: 10.1016/j.tipsro.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction Surface guidance (SG) radiotherapy (RT) is now used by many radiotherapy departments globally and has expanded in popularity over the last number of years. A number of commercial systems are available. SG has routinely been used and is well established for cranial stereotactic radiosurgery (SRS) patient set ups and intra-fraction motion monitoring. However, data is limited in relation to its clinical use for extracranial stereotactic body radiotherapy (SBRT), particularly for targets which are impacted by respiratory motion such as the lung and liver. Objective & Information Source A review of available literature was carried out on 24th October 2021 to assess the clinical feasibility and use of SG in SBRT via PubMed. Methods Eligibility Criteria The search criteria involved identifying articles where SG is used in extracranial SBRT. Risk of Bias To eliminate the risk of bias, any particular commercial system was not the focus of the review and not included in the search criteria. Numerous clinical terms for similar things were used to reduce the risk of missing papers e.g. SBRT and SABR. Search Criteria The PRISMA checklist was used. Searching for “surface guidance and radiotherapy” yielded 3271 results, where as “SGRT” alone returned 72 results, when the search term was narrowed down using different iterations of SG and SBRT, only 6 results were available. Of these, 4 had reviewed clinical data in relation to SG and SBRT for patient set up and intra-fraction motion monitoring. Results The 4 studies indicate positive results for using SG with sufficient image guidance (IG) for both patient set up and intra-fraction monitoring during SBRT. This was observed both in free breathing and in patients with respiratory motion management being employed such as deep inspiration breath-hold (DIBH) techniques. All used multiple IGRT solutions to verify localisation pre-treatment in conjunction with SG. Limitations The number of studies available which report using SG in SBRT is extremely limited. All centres had also installed SG systems therefore this could result in an unconditional bias in using the system positively. Conclusion SG can be used for SBRT set-ups and intra-fraction motion monitoring once sufficient IG is used to verify target localisation for treatment.
Collapse
|
28
|
Evaluation of image-guided and surface-guided radiotherapy for breast cancer patients treated in deep inspiration breath-hold: A single institution experience. Tech Innov Patient Support Radiat Oncol 2022; 21:51-57. [PMID: 35243045 PMCID: PMC8861395 DOI: 10.1016/j.tipsro.2022.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Nowadays, deep inspiratory breath-hold is a common technique to reduce heart dose in left-sided breast radiotherapy. This study evaluates the evolution of the breath-hold technique in our institute, from portal imaging during dose delivery to continuous monitoring with surface-guided radiotherapy (SGRT). MATERIALS AND METHODS Setup data and portal imaging results were analyzed for 98 patients treated before 2014, and SGRT data for 228 patients treated between 2018 and 2020. For the pre-SGRT group, systematic and random setup errors were calculated for different correction protocols. Residual errors and reproducibility of breath-holds were evaluated for both groups. The benefit of using SGRT for initial positioning was evaluated for another cohort of 47 patients. RESULTS Online correction reduced the population mean error from 3.9 mm (no corrections) to 1.4 mm. Despite online setup correction, deviations greater than 3 mm were observed in about 10% and 20% of the treatment beams in ventral-dorsal and cranial-caudal directions, respectively. However, these percentages were much smaller than with offline protocols or no corrections. Mean absolute differences between breath-holds within a fraction were smaller in the SGRT-group (1.69 mm) than in the pre-SGRT-group (2.10 mm), and further improved with addition of visual feedback (1.30 mm). SGRT for positioning did not improve setup accuracy, but slightly reduced the time for imaging and setup correction, allowing completion within 3.5 min for 95% of fractions. CONCLUSION For accurate radiotherapy breast treatments using deep inspiration breath-hold, daily imaging and correction is required. SGRT provides accurate information on patient positioning during treatment and improves patient compliance with visual feedback.
Collapse
Key Words
- (U, V), ventral-dorsal and cranial-caudal direction in the tangential beam, respectively
- Breast
- Breath-hold
- CBCT, cone-beam CT
- CT, computer tomography
- DIBH
- DIBH, Deep inspiratory breath-hold
- DRRs, digitally reconstructed radiographs
- LAT, medio-lateral direction
- LNG, cranial-caudal direction
- NAL, no-action-level setup correction protocol
- OTM, online treatment monitor
- SGRT, surface-guided radiotherapy
- Surface-guided radiotherapy
- VRT, anterior-posterior direction
- eNAL, extended NAL setup correction protocol
Collapse
|
29
|
Patient setup accuracy in DIBH radiotherapy of breast cancer with lymph node inclusion using surface tracking and image guidance. Med Dosim 2022; 47:146-150. [PMID: 35039223 DOI: 10.1016/j.meddos.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Studying setup accuracy in breast cancer patients with axillary lymph node inclusion in deep inspiration breath-hold (DIBH) after patient setup with surface-guided radiotherapy (SGRT) and image-guided radiotherapy (IGRT). Breast cancer patients (N = 51) were treated (50 Gy in 25 fractions) with axillary lymph nodes within the planning target volume (PTV). Patient setup was initiated with tattoos and lasers, and further adjusted with SGRT. The DIBH guidance was based on SGRT. Orthogonal and/or tangential imaging was analyzed for residual position errors of bony landmarks, the breath-hold level (BHL), the skin outline, and the heart; and setup margins were calculated for the PTV. The calculated PTV margins were 4.3 to 6.3 and 2.8 to 4.6 mm before and after orthogonal imaging, respectively. The residual errors of the heart were 3.6 ± 2.2 mm and 2.5 ± 2.4 mm before and 3.0 ± 2.5 and 2.9 ± 2.3 mm after orthogonal imaging in the combined anterior-posterior/lateral and the cranio-caudal directions, respectively, in tangential images. The humeral head did not benefit from daily IGRT, but SGRT guided it to the correct location. We presented a slightly complicated but highly accurate workflow for DIBH treatments. The residual position errors after both SGRT and IGRT were excellent compared to previous literature. With well-planned SGRT, IGRT brings only slight improvements to systematic accuracy. However, with the calculated PTV margins and the number of outliers, imaging cannot be omitted despite SGRT, unless the PTV margins are re-evaluated.
Collapse
|
30
|
Target motion management in breast cancer radiation therapy. Radiol Oncol 2021; 55:393-408. [PMID: 34626533 PMCID: PMC8647788 DOI: 10.2478/raon-2021-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Background Over the last two decades, breast cancer remains the main cause of cancer deaths in women. To treat this type of cancer, radiation therapy (RT) has proved to be efficient. RT for breast cancer is, however, challenged by intrafractional motion caused by respiration. The problem is more severe for the left-sided breast cancer due to the proximity to the heart as an organ-at-risk. While particle therapy results in superior dose characteristics than conventional RT, due to the physics of particle interactions in the body, particle therapy is more sensitive to target motion. Conclusions This review highlights current and emerging strategies for the management of intrafractional target motion in breast cancer treatment with an emphasis on particle therapy, as a modern RT technique. There are major challenges associated with transferring real-time motion monitoring technologies from photon to particles beams. Surface imaging would be the dominant imaging modality for real-time intrafractional motion monitoring for breast cancer. The magnetic resonance imaging (MRI) guidance and ultra high dose rate (FLASH)-RT seem to be state-of-the-art approaches to deal with 4D RT for breast cancer.
Collapse
|
31
|
Performance assessment of surface-guided radiation therapy and patient setup in head-and-neck and breast cancer patients based on statistical process control. Phys Med 2021; 89:243-249. [PMID: 34428608 DOI: 10.1016/j.ejmp.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To assess the effectiveness of SGRT in clinical applications through statistical process control (SPC). METHODS Taking the patients' positioning through optical surface imaging (OSI) as a process, the average level of process execution was defined as the process mean. Setup errors detected by cone-beam computed tomography (CBCT) and OSI were extracted for head-and-neck cancer (HNC) and breast cancer patients. These data were used to construct individual and exponentially weighted moving average (EWMA) control charts to analyze outlier fractions and small process shifts from the process mean. Using the control charts and process capability indices derived from this process, the patient positioning-related OSI performance and setup error were analyzed for each patient. RESULTS Outlier fractions and small shifts from the process mean that are indicative of setup errors were found to be widely prevalent, with the outliers randomly distributed between fractions. A systematic error of up to 1.6 mm between the OSI and CBCT results was observed in all directions, indicating a significantly degraded OSI performance. Adjusting this systematic error for each patient using setup errors of the first five fractions could effectively mitigate these effects. Process capability analysis following adjustment for systematic error indicated that OSI performance was acceptable (process capability index Cpk = 1.0) for HNC patients but unacceptable (Cpk < 0.75) for breast cancer patients. CONCLUSION SPC is a powerful tool for detecting the outlier fractions and process changes. Our application of SPC to patient-specific evaluations validated the suitability of OSI in clinical applications involving patient positioning.
Collapse
|
32
|
Wu JK, Chen SH, Hsu FM, Liao SH, Wang YJ. Design of a motion simulation system to assist respiratory gating for radiation therapy. Med Dosim 2021; 46:360-363. [PMID: 33903006 DOI: 10.1016/j.meddos.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/21/2021] [Accepted: 03/22/2021] [Indexed: 11/15/2022]
Abstract
Stereotactic ablative radiotherapy (SABR) aims to deliver high doses of radiation to kill cancer cells and shrink tumors in less than or equal to 6 fractions. However, organ motion during treatment is a challenging issue for this kind of technique. We develop a control system via Bluetooth technology to simulate and correct body motion during SABR. METHODS Radiation doses were analyzed, and the radiation damage protection capability was checked by external beam therapy 3 (EBT3) films irradiated by a linear accelerator. A wireless signal test was also performed. A validation was performed with 8 previously treated patient respiratory pattern records and 8 healthy volunteers. RESULTS The homemade simulation system consisted of 2 linear actuators, one movable stage with a maximal moving distance of 6.5 cm × 12.5 cm × 5 cm to simulate the respiratory pattern of 8 patients precisely with a median error of 0.36 mm and a maximal motion difference of 1.17 mm, and 3.17 and chipset transited signals to display them as a waveform. From the test with 8 volunteers, the chip could detect deep respiratory movement up to 3 cm. The effect of the chip on a radiation dose of 400 monitor units (MUs) by 6 MV photons and 200 MUs by 10 MV photons showed high penetration rates of 98.8% and 98.6%, respectively. CONCLUSIONS We invented a tubeless and wireless respiratory gating detection chip. The chip has minimal interference with the treatment angles, good noise immunity and the capability to easily penetrate a variety of materials. The simulation system consisting of linear actuators also successfully simulates the respiratory pattern of real patients.
Collapse
Affiliation(s)
- Jian-Kuen Wu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Han Chen
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Hsien Liao
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Jen Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; Department of Radiation Oncology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
33
|
Evaluation of thoracic surface motion during the free breathing and deep inspiration breath hold methods. Med Dosim 2021; 46:274-278. [PMID: 33766492 DOI: 10.1016/j.meddos.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate thoracic surface motion from chest wall expansion during free breathing (FB) and deep inspiration breath hold (DIBH) methods, measured with and without 4-dimensional computed tomography (4D-CT) simulation, using equipment developed in-house. The respiratory amplitude and chest wall expansion were evaluated at 5 levels of the thorax, (the sterno-clavicular joint (SCJ), the second level, the intermammary line (IML), the fourth level and the caudal end of the xiphoid process (XP)) using radiopaque wires and potentiometers, with a CT scan simultaneously. This study included 25 examinees (10 volunteers performed FB, 10 volunteers performed DIBH and 5 patients performed FB). For low and irregular respiration, coaching was used, and its impact was evaluated for both breathing methods, FB and DIBH. The breathing amplitude performed with FB between volunteers and patients was not detectable at the SCJ; increasing to the abdomen, 3 mm vs 2 mm (p = 0.326) at the second level; 6 mm vs 4 mm (p = 0.042) at the IML; 10 mm vs 8 mm (p < 0.01) at the fourth level; and 23 mm vs 19 mm (p < 0.001) at the XP. Contrary to the DIBH, where breathing amplitude was greater at 2 first levels 18 mm (SCJ) and 20 mm (second level), decreasing to the abdomen, 14 mm (IML); 11 mm (fourth level); and 10 mm (XP). Chest wall expansion was not detected at the SCJ, while at other levels measured from 1 to 7 mm. Coaching was improve breathing amplitude, for both methods, FB (3 mm) and DIBH (5 mm). The location of amplification is different depending on the breathing method and the in-house phantom was useful to check the amplification level.
Collapse
|
34
|
Ono Y, Yoshimura M, Ono T, Fujimoto T, Miyabe Y, Matsuo Y, Mizowaki T. Appropriate margin for planning target volume for breast radiotherapy during deep inspiration breath-hold by variance component analysis. Radiat Oncol 2021; 16:49. [PMID: 33676532 PMCID: PMC7937254 DOI: 10.1186/s13014-021-01777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This study aimed to quantify errors by using a cine electronic portal imaging device (cine EPID) during deep inspiration breath-hold (DIBH) for left-sided breast cancer and to estimate the planning target volume (PTV) by variance component analysis. METHODS This study included 25 consecutive left-sided breast cancer patients treated with whole-breast irradiation (WBI) using DIBH. Breath-holding was performed while monitoring abdominal anterior-posterior (AP) motion using the Real-time Position Management (RPM) system. Cine EPID was used to evaluate the chest wall displacements in patients. Cine EPID images of the patients (309,609 frames) were analyzed to detect the edges of the chest wall using a Canny filter. The errors that occurred during DIBH included differences between the chest wall position detected by digitally reconstructed radiographs and that of all cine EPID images. The inter-patient, inter-fraction, and intra-fractional standard deviations (SDs) in the DIBH were calculated, and the PTV margin was estimated by variance component analysis. RESULTS The median patient age was 55 (35-79) years, and the mean irradiation time was 20.4 ± 1.7 s. The abdominal AP motion was 1.36 ± 0.94 (0.14-5.28) mm. The overall mean of the errors was 0.30 mm (95% confidence interval: - 0.05-0.65). The inter-patient, inter-fraction, and intra-fractional SDs in the DIBH were 0.82 mm, 1.19 mm, and 1.63 mm, respectively, and the PTV margin was calculated as 3.59 mm. CONCLUSIONS Errors during DIBH for breast radiotherapy were monitored using EPID images and appropriate PTV margins were estimated by variance component analysis.
Collapse
Affiliation(s)
- Yuka Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| |
Collapse
|
35
|
Sun T, Lin X, Zhang G, Qiu Q, Li C, Yin Y. Treatment planning comparison of volumetric modulated arc therapy with the trilogy and the Halcyon for bilateral breast cancer. Radiat Oncol 2021; 16:35. [PMID: 33602267 PMCID: PMC7890882 DOI: 10.1186/s13014-021-01763-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background The Halcyon is a new machine from the Varian company. The purpose of this study was to evaluate the dosimetry of the Halcyon in treatment of bilateral breast cancer with volumetric modulated arc therapy. Methods On CT images of 10 patients with bilateral breast cancer, four Halcyon plans with different setup fields were generated, and dosimetric comparisons using Bonferroni’s multiple comparisons test were conducted among the four plans. Whole and partial arc plans on the Trilogy and the Halcyon, referred to as T-4arc, T-8arc, H-4arc and H-8arc, were designed. The prescription dose was 50 Gy in 2-Gy fractions. All plans were designed with the Eclipse version 15.5 treatment planning system. The dosimetric differences between whole and partial arc plans in the same accelerator were compared using the Mann–Whitney U test. The better Halcyon plan was selected for the further dosimetric comparison of the plan quality and delivery efficiency between the Trilogy and the Halcyon. Results Halcyon plans with high‐quality megavoltage cone beam CT setup fields increased the Dmean, D2 and V107 of the planning target volume (PTV) and the V5 and Dmean of the heart, left ventricle (LV) and lungs compared with other Halcyon setup plans. The mean dose and low dose volume of the heart, lungs and liver were significantly decreased in T-8arc plans compared to T-4arc plans. In terms of the V5, V20, V30, V40 and Dmean of the heart, the V20, V30, V40 and Dmean of the LV, the V30, V40, Dmax and Dmean of the left anterior descending artery (LAD), and the V5 and V40 of lungs, H-8arc was significantly higher than H-4arc (p < 0.05). Compared with the Trilogy’s plans, the Halcyon’s plans reduced the high-dose volume of the heart and LV but increased the mean dose of the heart. For the dose of the LAD and the V20 and V30 of lungs, there was no significant difference between the two accelerators. Compared with the Trilogy, plans on the Halcyon significantly increased the skin dose but also significantly reduced the delivery time. Conclusion For the Halcyon, the whole-arc plans have more dosimetric advantages than partial-arc plans in bilateral breast cancer radiotherapy. Although the mean dose of the heart and the skin dose are increased, the doses of the cardiac substructure and other OARs are comparable to the Trilogy, and the delivery time is significantly reduced.
Collapse
Affiliation(s)
- Tao Sun
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Xiutong Lin
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Guifang Zhang
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Qingtao Qiu
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Chengqiang Li
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Yong Yin
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
36
|
Daily computed tomography image guidance: Dosimetric advantages outweigh low-dose radiation exposure for treatment of mediastinal lymphoma. Radiother Oncol 2020; 152:14-18. [DOI: 10.1016/j.radonc.2020.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 11/23/2022]
|
37
|
Delombaerde L, Petillion S, Weltens C, De Roover R, Reynders T, Depuydt T. Technical Note: Development of 3D‐printed breast phantoms for end‐to‐end testing of whole breast volumetric arc radiotherapy. J Appl Clin Med Phys 2020. [PMCID: PMC7484846 DOI: 10.1002/acm2.12976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
End‐to‐end testing of a new breast radiotherapy technique preferably requires realistic phantom geometries, which is challenging to achieve using currently commercially available solutions. We have developed a series of three‐dimensional (3D)‐printed breast phantoms, with ionization chamber and radiochromic film inserts, which can be attached to a commercial anthropomorphic thorax phantom. A contoured left breast from a patient’s planning CT was mapped onto a CT of the CIRS E2E thorax phantom (CIRS Inc.) and cropped to fit the surface. Four versions of the breast were 3D printed, containing a cavity for an ionization chamber and slits for radiochromic film insertion in the three cardinal planes, respectively. The phantoms were fully compatible with surface scanning technology used for setup. The phantoms were validated using a whole‐breast volumetric modulated arc therapy protocol with a simultaneous integrated boost to the tumor bed (VMAT‐SIB). Six patient plans and one original plan on the breast phantom were verified with planar portal imaging, point dose, and film measurements in the MultiCube phantom and planar γ‐analysis using ArcCHECK diode array. Six patient plans were recalculated on the breast phantom (hybrid plans) and delivered with point dose and film measurements with 3% (local)/2 mm γ‐analysis. One complete end‐to‐end test on the breast phantom was performed. All plan quality verifications had point dose differences below 2.4% from the calculated dose and γ‐agreement scores (γAS) > 87.3% for film measurements in the MultiCube, portal dosimetry, and ArcCHECK. Point dose differences in the 3D‐printed phantoms were below 2.6% (median −1.4%, range −2.6%; 0.3%). Median γAS was 96.4% (range 80.1%–99.7%) for all film inserts. The proposed 3D‐printed attachable breast dosimetry phantoms have been shown to be a valuable tool for end‐to‐end testing of a new radiotherapy protocol. The workflow described in this report can aid users to create their own phantom‐specific breast 3D‐printed phantoms.
Collapse
Affiliation(s)
| | - Saskia Petillion
- Department of Radiation Oncology University Hospitals Leuven Leuven Belgium
| | - Caroline Weltens
- Department of Oncology KU Leuven Leuven Belgium
- Department of Radiation Oncology University Hospitals Leuven Leuven Belgium
| | | | - Truus Reynders
- Department of Radiation Oncology University Hospitals Leuven Leuven Belgium
| | - Tom Depuydt
- Department of Oncology KU Leuven Leuven Belgium
- Department of Radiation Oncology University Hospitals Leuven Leuven Belgium
| |
Collapse
|
38
|
Freislederer P, Kügele M, Öllers M, Swinnen A, Sauer TO, Bert C, Giantsoudi D, Corradini S, Batista V. Recent advanced in Surface Guided Radiation Therapy. Radiat Oncol 2020; 15:187. [PMID: 32736570 PMCID: PMC7393906 DOI: 10.1186/s13014-020-01629-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 01/27/2023] Open
Abstract
The growing acceptance and recognition of Surface Guided Radiation Therapy (SGRT) as a promising imaging technique has supported its recent spread in a large number of radiation oncology facilities. Although this technology is not new, many aspects of it have only recently been exploited. This review focuses on the latest SGRT developments, both in the field of general clinical applications and special techniques.SGRT has a wide range of applications, including patient positioning with real-time feedback, patient monitoring throughout the treatment fraction, and motion management (as beam-gating in free-breathing or deep-inspiration breath-hold). Special radiotherapy modalities such as accelerated partial breast irradiation, particle radiotherapy, and pediatrics are the most recent SGRT developments.The fact that SGRT is nowadays used at various body sites has resulted in the need to adapt SGRT workflows to each body site. Current SGRT applications range from traditional breast irradiation, to thoracic, abdominal, or pelvic tumor sites, and include intracranial localizations.Following the latest SGRT applications and their specifications/requirements, a stricter quality assurance program needs to be ensured. Recent publications highlight the need to adapt quality assurance to the radiotherapy equipment type, SGRT technology, anatomic treatment sites, and clinical workflows, which results in a complex and extensive set of tests.Moreover, this review gives an outlook on the leading research trends. In particular, the potential to use deformable surfaces as motion surrogates, to use SGRT to detect anatomical variations along the treatment course, and to help in the establishment of personalized patient treatment (optimized margins and motion management strategies) are increasingly important research topics. SGRT is also emerging in the field of patient safety and integrates measures to reduce common radiotherapeutic risk events (e.g. facial and treatment accessories recognition).This review covers the latest clinical practices of SGRT and provides an outlook on potential applications of this imaging technique. It is intended to provide guidance for new users during the implementation, while triggering experienced users to further explore SGRT applications.
Collapse
Affiliation(s)
- P. Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - M. Kügele
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - M. Öllers
- Maastricht Radiation Oncology (MAASTRO), Maastricht, the Netherlands
| | - A. Swinnen
- Maastricht Radiation Oncology (MAASTRO), Maastricht, the Netherlands
| | - T.-O. Sauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - C. Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - D. Giantsoudi
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - S. Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - V. Batista
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| |
Collapse
|
39
|
Chen L, Bai S, Li G, Li Z, Xiao Q, Bai L, Li C, Xian L, Hu Z, Dai G, Wang G. Accuracy of real-time respiratory motion tracking and time delay of gating radiotherapy based on optical surface imaging technique. Radiat Oncol 2020; 15:170. [PMID: 32650819 PMCID: PMC7350729 DOI: 10.1186/s13014-020-01611-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background Surface-guided radiation therapy (SGRT) employs a non-invasive real-time optical surface imaging (OSI) technique for patient surface motion monitoring during radiotherapy. The main purpose of this study is to verify the real-time tracking accuracy of SGRT for respiratory motion and provide a fitting method to detect the time delay of gating. Methods A respiratory motion phantom was utilized to simulate respiratory motion using 17 cosine breathing pattern curves with various periods and amplitudes. The motion tracking of the phantom was performed by the Catalyst™ system. The tracking accuracy of the system (with period and amplitude variations) was evaluated by analyzing the adjusted coefficient of determination (A_R2) and root mean square error (RMSE). Furthermore, 13 actual respiratory curves, which were categorized into regular and irregular patterns, were selected and then simulated by the phantom. The Fourier transform was applied to the respiratory curves, and tracking accuracy was compared through the quantitative analyses of curve similarity using the Pearson correlation coefficient (PCC). In addition, the time delay of amplitude-based respiratory-gating radiotherapy based on the OSI system with various beam hold times was tested using film dosimetry for the Elekta Versa-HD and Varian Edge linacs. A dose convolution-fitting method was provided to accurately measure the beam-on and beam-off time delays. Results A_R2 and RMSE for the cosine curves were 0.9990–0.9996 and 0.110–0.241 mm for periods ranging from 1 s to 10 s and 0.9990–0.9994 and 0.059–0.175 mm for amplitudes ranging from 3 mm to 15 mm. The PCC for the actual respiratory curves ranged from 0.9955 to 0.9994, which was not significantly affected by breathing patterns. For gating radiotherapy, the average beam-on and beam-off time delays were 1664 ± 72 and 25 ± 30 ms for Versa-HD and 303 ± 45 and 34 ± 25 ms for Edge, respectively. The time delay was relatively stable as the beam hold time increased. Conclusions The OSI technique provides high accuracy for respiratory motion tracking. The proposed dose convolution-fitting method can accurately measure the time delay of respiratory-gating radiotherapy. When the OSI technique is used for respiratory-gating radiotherapy, the time delay for the beam-on is considerably longer than the beam-off.
Collapse
Affiliation(s)
- Li Chen
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,School of Physics and Technology, Wuhan University, Wuhan, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangjun Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhibin Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Long Bai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Changhu Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lixun Xian
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenyao Hu
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guyu Dai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangyu Wang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Reitz D, Walter F, Schönecker S, Freislederer P, Pazos M, Niyazi M, Landry G, Alongi F, Bölke E, Matuschek C, Reiner M, Belka C, Corradini S. Stability and reproducibility of 6013 deep inspiration breath-holds in left-sided breast cancer. Radiat Oncol 2020; 15:121. [PMID: 32448224 PMCID: PMC7247126 DOI: 10.1186/s13014-020-01572-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Patients with left-sided breast cancer frequently receive deep inspiration breath-hold (DIBH) radiotherapy to reduce the risk of cardiac side effects. The aim of the present study was to analyze intra-breath-hold stability and inter-fraction breath-hold reproducibility in clinical practice. Material and methods Overall, we analyzed 103 patients receiving left-sided breast cancer radiotherapy using a surface-guided DIBH technique. During each treatment session the vertical motion of the patient was continuously measured by a surface guided radiation therapy (SGRT) system and automated gating control (beam on/off) was performed using an audio-visual patient feedback system. Dose delivery was automatically triggered when the tracking point was within a predefined gating window. Intra-breath-hold stability and inter-fraction reproducibility across all fractions of the entire treatment course were analyzed per patient. Results In the present series, 6013 breath-holds during beam-on time were analyzed. The mean amplitude of the gating window from the baseline breathing curve (maximum expiration during free breathing) was 15.8 mm (95%-confidence interval: [8.5–30.6] mm) and had a width of 3.5 mm (95%-CI: [2–4.3] mm). As a measure of intra-breath-hold stability, the median standard deviation of the breath-hold level during DIBH was 0.3 mm (95%-CI: [0.1–0.9] mm). Similarly, the median absolute intra-breath-hold linear amplitude deviation was 0.4 mm (95%-CI: [0.01–2.1] mm). Reproducibility testing showed good inter-fractional reliability, as the maximum difference in the breathing amplitudes in all patients and all fractions were 1.3 mm on average (95%-CI: [0.5–2.6] mm). Conclusion The clinical integration of an optical surface scanner enables a stable and reliable DIBH treatment delivery during SGRT for left-sided breast cancer in clinical routine.
Collapse
Affiliation(s)
- D Reitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - F Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Schönecker
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - P Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - M Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - M Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - G Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - F Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy.,University of Brescia, Brescia, Italy
| | - E Bölke
- Department of Radiation Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - C Matuschek
- Department of Radiation Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - M Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - C Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
41
|
Koban KC, Etzel L, Li Z, Pazos M, Schönecker S, Belka C, Giunta RE, Schenck TL, Corradini S. Three-dimensional surface imaging in breast cancer: a new tool for clinical studies? Radiat Oncol 2020; 15:52. [PMID: 32111228 PMCID: PMC7049187 DOI: 10.1186/s13014-020-01499-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Three-dimensional Surface Imaging (3DSI) is a well-established method to objectively monitor morphological changes in the female breast in the field of plastic surgery. In contrast, in radiation oncology we are still missing effective tools, which can objectively and reproducibly assess and document adverse events in breast cancer radiotherapy within the framework of clinical studies. The aim of the present study was to apply structured-light technology as a non-invasive and objective approach for the documentation of cosmetic outcome and early effects of breast radiotherapy as a proof of principle. Methods Weekly 3DSI images of patients receiving either conventionally fractionated radiation treatment (CF-RT) or hypofractionated radiation treatment (HF-RT) were acquired during the radiotherapy treatment and clinical follow-up. The portable Artec Eva scanner (Artec 3D Inc., Luxembourg) recorded 3D surface images for the analysis of breast volumes and changes in skin appearance. Statistical analysis compared the impact of the two different fractionation regimens and the differences between the treated and the contralateral healthy breast. Results Overall, 38 patients and a total of 214 breast imaging sessions were analysed. Patients receiving CF-RT showed a significantly higher frequency of breast erythema compared to HF-RT (93.3% versus 34.8%, p = 0.003) during all observed imaging sessions. Moreover, we found a statistically significant (p < 0.05) volumetric increase of the treated breast of the entire cohort between baseline (379 ± 196 mL) and follow-up imaging at 3 months (437 ± 224 mL), as well as from week 3 of radiotherapy (391 ± 198 mL) to follow-up imaging. In both subgroups of patients undergoing either CF-RT or HF-RT, there was a statistically significant increase (p < 0.05) in breast volumes between baseline and 3 months follow-up. There were no statistically significant skin or volumetric changes of the untreated healthy breasts. Conclusions This is the first study utilizing 3D structured-light technology as a non-invasive and objective approach for the documentation of patients receiving breast radiotherapy. 3DSI offers potential as a non-invasive tool to objectively and precisely monitor the female breast in a radiooncological setting, allowing clinicians to objectively distinguish outcomes of different therapy modalities.
Collapse
Affiliation(s)
- Konstantin Christoph Koban
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Pettenkoferstraße 8a, 80336, Munich, Germany.
| | - Lucas Etzel
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Pettenkoferstraße 8a, 80336, Munich, Germany
| | - Zhouxiao Li
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Pettenkoferstraße 8a, 80336, Munich, Germany
| | - Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Riccardo Enzo Giunta
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Pettenkoferstraße 8a, 80336, Munich, Germany
| | - Thilo Ludwig Schenck
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Pettenkoferstraße 8a, 80336, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|