1
|
Awais M, Rehman A, Bukhari SS. Advances in liquid biopsy and virtual biopsy for care of patients with glioma: a narrative review. Expert Rev Anticancer Ther 2025; 25:529-550. [PMID: 40183671 DOI: 10.1080/14737140.2025.2489629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION The World Health Organization's 2021 classification of central nervous system neoplasms incorporated molecular and genetic features for classifying gliomas. Classification of gliomas located in deep-seated structures became a clinical conundrum given the absence of crucial pathological and molecular data. Advances in noninvasive imaging modalities offered virtual biopsy as a novel solution to this problem by identifying surrogate radiomic signatures. Liquid biopsies of blood or cerebrospinal fluid provided another enormous opportunity for identifying genomic, metabolomic and proteomic signatures. AREAS COVERED We summarize and appraise the current state of evidence with regards to virtual biopsy and liquid biopsy in the care of patients with gliomas. PubMed, Embase and Google Scholar were searched on 7/30/2024 for relevant articles published after the year 2013 in the English language. EXPERT OPINION A large body of preclinical and preliminary clinical evidence suggests that virtual biopsy is possible with the combined use of multiple novel imaging modalities in conjunction with machine learning and radiomics. Likewise, liquid biopsy in conjunction with focused ultrasound may be a valuable tool to obtain proteomic and genomic data regarding glioma in a minimally invasive manner. These modalities will likely become an integral part of care for patients with glioma in the future.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Radiology, The Aga Khan University, Karachi, Pakistan
| | - Abdul Rehman
- Department of Medicine, Tidal Health Peninsula Regional, Salisbury, MD, USA
| | - Syed Sarmad Bukhari
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Zhao H, Hou Z, He Q, Liu X, Xie J. The diagnostic and prediction performance of MR diffusion kurtosis imaging in the glioma molecular classification: a systematic review and meta-analysis. Front Neurol 2025; 16:1543619. [PMID: 40352771 PMCID: PMC12061957 DOI: 10.3389/fneur.2025.1543619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Background Although diffusion magnetic resonance imaging (dMRI), particularly diffusion kurtosis imaging (DKI), has demonstrated efficacy in distinguishing between low- and high-grade gliomas, its predictive utility across various molecular genotypes remains unclear. Evaluating the accuracy of DKI and identifying sources of heterogeneity in its predictive performance could advance noninvasive molecular diagnostic methods and support the development of personalized treatment strategies. Materials and methods A literature search of the PubMed, Web of Science, Cochrane Library, Embase, and Medline databases was performed. The studies retrieved were screened by two researchers (HFZ and ZGH), and those fulfilling the inclusion criteria were subsequently included in the meta-analysis. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. The analyses summarized the mean differences in mean kurtosis (MK) and mean diffusivity (MD) in patients harboring various genotypes using suitable models, and explored heterogeneity. Finally, a bivariate restricted maximum likelihood estimation method and meta-regression analysis were performed to assess diagnostic potential and stability. Results Fourteen studies comprising 886 patients were included in this meta-analysis. Regarding MK and MD, the mean difference between isocitrate dehydrogenase (IDH) mutation and IDH wild type was -0.21 (95% confidence interval [CI] -0.27 to -0.15; I 2 = 93%) and 0.22 (95% CI 0.11 to 0.33; I 2 = 92%), respectively. This heterogeneity could be explained by imaging parameters such as repetition time, echo time, maximal b-value, and number of diffusion directions. However, the mean difference did not reflect the genetic status of 1p/19q, α-thalassemia/mental retardation syndrome-X-linked (ATRX) gene, or O6-methylguanine-DNA-methyltransferase (MGMT). Analysis of diagnostic accuracy revealed that the pooled areas under the curve for MK and MD, based on IDH status, were 0.96 (95% CI 0.93 to 0.97) and 0.76 (95% CI 0.71 to 0.81), respectively. Heterogeneity was not observed for these DKI parameters. Conclusion MK and MD exhibited potential diagnostic utility in the prediction of glioma molecular status and should be explored in medical practice. These parameters should be compared with other MRI models to develop a stable and suitable genetic molecular prediction method for patients with gliomas. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024568923, CRD42024568923.
Collapse
Affiliation(s)
- Hongfang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qifeng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinlong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Xie
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Hou H, Yu J, Diao Y, Xu M, Li Z, Song T, Liu Y, Wang L. Diagnostic performance of multiparametric nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating IDH mutation status. Clin Radiol 2025; 82:106791. [PMID: 39837107 DOI: 10.1016/j.crad.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/07/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
AIM To evaluate the diagnostic performance of nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating isocitrate dehydrogenase (IDH) mutation status. MATERIALS AND METHODS Patients with diagnoses confirmed by postoperative pathology were enrolled. Quantitative parameters, including the relative amide proton transfer-weighted (rAPTW), relative cerebral blood flow (CBF), and apparent diffusion coefficient (ADC) were applied to grade gliomas and correlate IDH mutation status. MRI parameters were compared with an independent-sample t-test. The diagnostic performance was assessed and compared with a receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC). RESULTS The rAPTW signal and rCBF values were significantly higher in high-grade gliomas (HGG) than in low-grade glioma (LGG), whereas ADC values were significantly lower in HGG than in LGG. Compared with 3D-pCASL imaging and diffusion-weighted imaging (DWI), 3D-APTW imaging had the best diagnostic performance in distinguishing LGG from HGG, with an AUC of 0.930, a sensitivity of 91.2% and a specificity of 87.5%. By adding 3D-APTW imaging to 3D-pCASL imaging, or DWI, the diagnostic performance of both sequences increased. Furthermore, APTW, rAPTW, CBF, and rCBF values in the IDH mutant-type (IDH-mut) group were significantly lower than those in the IDH wild-type (IDH-wt) group, ADC values were significantly higher in IDH-mut group than in IDH-wt group. CONCLUSION 3D-APTW imaging demonstrated better diagnostic performance than DWI or 3D-pCASL imaging in grading gliomas. Moreover, 3D-APTW imaging had added value in addition to both 3D-pCASL imaging and DWI in distinguishing LGG from HGG. 3D-APTW, 3D-pCASL, and DWI imaging could be used to discriminate between IDH-mut and IDH-wt group.
Collapse
Affiliation(s)
- H Hou
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - J Yu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - Y Diao
- Department of Radiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 264200, China
| | - M Xu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - Z Li
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - T Song
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Y Liu
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - L Wang
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China.
| |
Collapse
|
4
|
Mohammadi S, Ghaderi S, Jouzdani AF, Azinkhah I, Alibabaei S, Azami M, Omrani V. Differentiation Between High-Grade Glioma and Brain Metastasis Using Cerebral Perfusion-Related Parameters (Cerebral Blood Volume and Cerebral Blood Flow): A Systematic Review and Meta-Analysis of Perfusion-weighted MRI Techniques. J Magn Reson Imaging 2025; 61:758-768. [PMID: 38899965 DOI: 10.1002/jmri.29473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Distinguishing high-grade gliomas (HGGs) from brain metastases (BMs) using perfusion-weighted imaging (PWI) remains challenging. PWI offers quantitative measurements of cerebral blood flow (CBF) and cerebral blood volume (CBV), but optimal PWI parameters for differentiation are unclear. PURPOSE To compare CBF and CBV derived from PWIs in HGGs and BMs, and to identify the most effective PWI parameters and techniques for differentiation. STUDY TYPE Systematic review and meta-analysis. POPULATION Twenty-four studies compared CBF and CBV between HGGs (n = 704) and BMs (n = 488). FIELD STRENGTH/SEQUENCE Arterial spin labeling (ASL), dynamic susceptibility contrast (DSC), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast-enhanced (DSCE) sequences at 1.5 T and 3.0 T. ASSESSMENT Following the PRISMA guidelines, four major databases were searched from 2000 to 2024 for studies evaluating CBF or CBV using PWI in HGGs and BMs. STATISTICAL TESTS Standardized mean difference (SMD) with 95% CIs was used. Risk of bias (ROB) and publication bias were assessed, and I2 statistic was used to assess statistical heterogeneity. A P-value<0.05 was considered significant. RESULTS HGGs showed a significant modest increase in CBF (SMD = 0.37, 95% CI: 0.05-0.69) and CBV (SMD = 0.26, 95% CI: 0.01-0.51) compared with BMs. Subgroup analysis based on region, sequence, ROB, and field strength for CBF (HGGs: 375 and BMs: 222) and CBV (HGGs: 493 and BMs: 378) values were conducted. ASL showed a considerable moderate increase (50% overlapping CI) in CBF for HGGs compared with BMs. However, no significant difference was found between ASL and DSC (P = 0.08). DATA CONCLUSION ASL-derived CBF may be more useful than DSC-derived CBF in differentiating HGGs from BMs. This suggests that ASL may be used as an alternative to DSC when contrast medium is contraindicated or when intravenous injection is not feasible. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fathi Jouzdani
- Neuroscience and Artificial Intelligence Research Group (NAIRG), Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iman Azinkhah
- Medical Physics Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Alibabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mobin Azami
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vida Omrani
- School Medical Physics Department, School of paramedical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
5
|
Vella S, Lauri J, Grech R. Comparison of Arterial Spin-Labeling and DSC Perfusion MR Imaging in Pediatric Brain Tumors: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2025; 46:178-185. [PMID: 39122472 PMCID: PMC11735421 DOI: 10.3174/ajnr.a8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Brain tumors are a leading cause of mortality in children. Accurate tumor grading is essential to plan treatment and for prognostication. Perfusion imaging has been shown to correlate well with tumor grade in adults, however there are fewer studies in pediatric patients. Moreover, there is no consensus regarding which MR perfusion technique demonstrates the highest accuracy in the latter population. PURPOSE We sought to compare the diagnostic test accuracy of DSC and arterial spin-labeling (ASL), in their ability to differentiate between low- and high-grade pediatric brain tumors at first presentation. DATA SOURCES Articles were retrieved from online electronic databases: MEDLINE (Ovid), Web of Science Core Collection, and Scopus. STUDY SELECTION Studies in pediatric patients with a treatment-naïve diagnosed brain tumor and imaging including either ASL or DSC or both, together with a histologic diagnosis were included. Studies involving adult patient or mixed age populations, studies with incomplete data, and those that used dynamic contrast-enhanced perfusion were excluded. DATA ANALYSIS The sensitivities and specificities obtained from each study were used to calculate the true-positive, true-negative, false-positive, and false-negative count. A case was defined as a histologically proved high-grade tumor. The random-effect model was used to merge statistics. Significance level was set at P < .05. DATA SYNTHESIS Forest plots showing pairs of sensitivity and specificity, with their 95% CIs, were constructed for each study. The bivariate model was applied to account for between-study variability. The summary receiver operating characteristics (SROC) plots were constructed from the obtained data sets. The area under the curve for the SROC of all studies was estimated to determine the overall diagnostic test accuracy of perfusion MRI, followed by a separate comparison of the SROC of ASL versus DSC studies. LIMITATIONS There was a small and heterogeneous sample size. CONCLUSIONS The diagnostic accuracy of ASL was found to be comparable and not inferior to DSC, thus its use in the diagnostic assessment of pediatric patients should continue to be supported.
Collapse
Affiliation(s)
- Stephanie Vella
- From the Medical Imaging Department (S.V., R.G.), Mater Dei Hospital, Msida, Malta
| | - Josef Lauri
- Department of Mathematics and Statistics (J.L.), Faculty of Science, University of Malta, Msida, Malta
| | - Reuben Grech
- From the Medical Imaging Department (S.V., R.G.), Mater Dei Hospital, Msida, Malta
| |
Collapse
|
6
|
Iacoban CG, Ramaglia A, Severino M, Tortora D, Resaz M, Parodi C, Piccardo A, Rossi A. Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art. Neuroradiology 2024; 66:2093-2116. [PMID: 39382639 DOI: 10.1007/s00234-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In the pediatric age group, brain neoplasms are the second most common tumor category after leukemia, with an annual incidence of 6.13 per 100,000. Conventional MRI sequences, complemented by CT whenever necessary, are fundamental for the initial diagnosis and surgical planning as well as for post-operative evaluations, assessment of response to treatment, and surveillance; however, they have limitations, especially concerning histopathologic or biomolecular phenotyping and grading. In recent years, several advanced MRI sequences, including diffusion-weighted imaging, diffusion tensor imaging, arterial spin labelling (ASL) perfusion, and MR spectroscopy, have emerged as a powerful aid to diagnosis as well as prognostication; furthermore, other techniques such as diffusion kurtosis, amide proton transfer imaging, and MR elastography are being translated from the research environment to clinical practice. Molecular imaging, especially PET with amino-acid tracers, complement MRI in several aspects, including biopsy targeting and outcome prediction. Finally, radiomics with radiogenomics are opening entirely new perspectives for a quantitative approach aiming at identifying biomarkers that can be used for personalized, precision management strategies.
Collapse
Affiliation(s)
| | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Martina Resaz
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Costanza Parodi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
7
|
Zhang X, Shi Z, Xie Y, Wang Y, Shen C, Qi Z, Zhang L, Yang B, Yu J, Ding H. Quantitative analysis using intraoperative contrast-enhanced ultrasound in adult-type diffuse gliomas with isocitrate dehydrogenase mutations: association between hemodynamics and molecular features. Ultrasonography 2023; 42:561-571. [PMID: 37710388 PMCID: PMC10555694 DOI: 10.14366/usg.23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023] Open
Abstract
PURPOSE The relationship between contrast-enhanced ultrasound (CEUS) hemodynamics and the molecular biomarkers of adult-type diffuse gliomas, particularly isocitrate dehydrogenase (IDH), remains unclear. This study was conducted to provide a comprehensive description of the vascularization of adult-type diffuse gliomas using quantitative indicators. Additionally, it was designed to identify any variables with the potential to intraoperatively predict IDH mutation status. METHODS This prospective study enrolled patients with adult-type diffuse gliomas between November 2021 and September 2022. Intraoperative CEUS was performed, and CEUS videos were recorded for 90-second periods. Hemodynamic parameters, including the peak enhancement (PE) difference, were calculated based on the time-intensity curve of the region of interest. A differential analysis was performed on the CEUS parameters with respect to molecular biomarkers and grades. Receiver operating characteristic curves for various parameters were analyzed to evaluate the ability of those parameters to predict IDH mutation status. RESULTS Sixty patients with adult-type diffuse gliomas were evaluated. All hemodynamic parameters, apart from rising time, demonstrated significant differences between IDH-mutant and IDH-wildtype adult-type diffuse gliomas. The PE difference emerged as the optimal indicator for differentiating between IDH-wildtype and IDH-mutant gliomas, with an area under the curve of 0.958 (95% confidence interval, 0.406 to 0.785). Additionally, the hemodynamic parameters revealed significant differences across both grades and types of adult-type diffuse gliomas. CONCLUSION Hemodynamic parameters can be used intraoperatively to effectively distinguish between IDHwildtype and IDH-mutant adult-type diffuse gliomas. Additionally, quantitative CEUS equips neurosurgeons with dynamic perfusion information for various types and grades of adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhifeng Shi
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanxin Xie
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Shen
- Institute of Neurosurgery, Fudan University, Shanghai, China
| | - Zengxin Qi
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liqiong Zhang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Bojie Yang
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Chatha G, Dhaliwal T, Castle-Kirszbaum MD, Amukotuwa S, Lai L, Kwan E. The utility of arterial spin labelled perfusion-weighted magnetic resonance imaging in measuring the vascularity of high grade gliomas - A prospective study. Heliyon 2023; 9:e17615. [PMID: 37519684 PMCID: PMC10372548 DOI: 10.1016/j.heliyon.2023.e17615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Background Dynamic susceptibility contrast (DSC) perfusion weighted imaging (PWI) currently remains the gold standard technique for measuring cerebral perfusion in glioma diagnosis and surveillance. Arterial spin labelling (ASL) PWI is a non-invasive alternative that does not require gadolinium contrast administration, although it is yet to be applied in widespread clinical practice. This study aims to assess the utility of measuring signal intensity in ASL PWI in predicting glioma vascularity by measuring maximal tumour signal intensity in patients based on pre-operative imaging and comparing this to maximal vessel density on histopathology. Methods Pseudocontinuous ASL (pCASL) and DSC images were acquired pre-operatively in 21 patients with high grade gliomas. The maximal signal intensity within the gliomas over a region of interest of 100 mm2 was measured and also normalised to the contralateral cerebral cortex (nTBF-C), and cerebellum (nTBF-Cb). Maximal vessel density per 1 mm2 was determined on histopathology using CD31 and CD34 immunostaining on all participants. Results Using ASL, statistically significant correlation was observed between maximal signal intensity (p < 0.05) and nTBF-C (p < 0.05) to maximal vessel density based on histopathology. Although a positive trend was also observed nTBF-Cb, this did not reach statistical significance. Using DSC, no statistically significant correlation was found between signal intensity, nTBF-C and nTBF-Cb. There was no correlation between maximal signal intensity between ASL and DSC. Average vessel density did not correlate with age, sex, previous treatment, or IDH status. Conclusions ASL PWI imaging is a reliable marker of evaluating the vascularity of high grade gliomas and may be used as an adjunct to DSC PWI.
Collapse
Affiliation(s)
- Gurkirat Chatha
- Department of Neurosurgery, Monash Health, Melbourne, Australia
| | | | - Mendel David Castle-Kirszbaum
- Department of Neurosurgery, Monash Health, Melbourne, Australia
- Department of Surgery, Monash University, Melbourne, Australia
| | | | - Leon Lai
- Department of Neurosurgery, Monash Health, Melbourne, Australia
- Department of Surgery, Monash University, Melbourne, Australia
| | - Edward Kwan
- Department of Pathology, Monash Health, Melbourne, Australia
| |
Collapse
|
9
|
Luna LP, Ahmed A, Daftaribesheli L, Deng F, Intrapiromkul J, Lanzman BA, Yedavalli V. Arterial spin labeling clinical applications for brain tumors and tumor treatment complications: A comprehensive case-based review. Neuroradiol J 2023; 36:129-141. [PMID: 35815750 PMCID: PMC10034709 DOI: 10.1177/19714009221114444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Arterial spin labeling (ASL) is a noninvasive neuroimaging technique that allows for quantifying cerebral blood flow without intravenous contrast. Various neurovascular disorders and tumors have cerebral blood flow alterations. Identifying these perfusion changes through ASL can aid in the diagnosis, especially in entities with normal structural imaging. In addition, complications of tumor treatment and tumor progression can also be monitored using ASL. In this case-based review, we demonstrate the clinical applications of ASL in diagnosing and monitoring brain tumors and treatment complications.
Collapse
Affiliation(s)
- Licia P Luna
- Russell H. Morgan Department of
Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MA, USA
| | - Amara Ahmed
- Florida State University College of
Medicine, Tallahassee, FL, USA
| | - Laleh Daftaribesheli
- Russell H. Morgan Department of
Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MA, USA
| | - Francis Deng
- Massachusetts General Hospital and
Harvard Medical School, Boston, MA, USA
| | - Jarunee Intrapiromkul
- Russell H. Morgan Department of
Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MA, USA
| | - Bryan A Lanzman
- Department of Radiology, Stanford University, California, USA
| | - Vivek Yedavalli
- Russell H. Morgan Department of
Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MA, USA
| |
Collapse
|
10
|
Anti-Vascular Endothelial Growth Factor Therapy Abolishes Glioma-Associated Endothelial Cell-Induced Tumor Invasion. J Mol Neurosci 2023; 73:104-116. [PMID: 36653624 DOI: 10.1007/s12031-023-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Tumor-remodeled endothelial cells not only facilitate the formation of tumor angiogenesis but also promote tumorigenesis. In this study, we aimed to explore the interaction between glioma-associated endothelial cells (GAEs) and glioma cells. We found that different subtypes of glioma owned distinct GAE abundance. Glioma patients with high GAE abundance exhibited poor prognosis. Both the results of the bioinformatics analysis and the in vitro co-culture system assay revealed that GAE promoted glioma cell invasion. Besides, anti-vascular endothelial growth factor (VEGF) therapy partially abolished the effects of GAE on gliomas. Moreover, anti-VEGF therapy upregulated IL-2 expression in GAE, and exogenous IL-2 administration inhibits GAE-induced glioma cell invasion. Collectively, our present study provides a novel outstanding of the interaction between GAE and glioma cells.
Collapse
|
11
|
Advanced Neuroimaging Approaches to Pediatric Brain Tumors. Cancers (Basel) 2022; 14:cancers14143401. [PMID: 35884462 PMCID: PMC9318188 DOI: 10.3390/cancers14143401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary After leukemias, brain tumors are the most common cancers in children, and early, accurate diagnosis is critical to improve patient outcomes. Beyond the conventional imaging methods of computed tomography (CT) and magnetic resonance imaging (MRI), advanced neuroimaging techniques capable of both structural and functional imaging are moving to the forefront to improve the early detection and differential diagnosis of tumors of the central nervous system. Here, we review recent developments in neuroimaging techniques for pediatric brain tumors. Abstract Central nervous system tumors are the most common pediatric solid tumors; they are also the most lethal. Unlike adults, childhood brain tumors are mostly primary in origin and differ in type, location and molecular signature. Tumor characteristics (incidence, location, and type) vary with age. Children present with a variety of symptoms, making early accurate diagnosis challenging. Neuroimaging is key in the initial diagnosis and monitoring of pediatric brain tumors. Conventional anatomic imaging approaches (computed tomography (CT) and magnetic resonance imaging (MRI)) are useful for tumor detection but have limited utility differentiating tumor types and grades. Advanced MRI techniques (diffusion-weighed imaging, diffusion tensor imaging, functional MRI, arterial spin labeling perfusion imaging, MR spectroscopy, and MR elastography) provide additional and improved structural and functional information. Combined with positron emission tomography (PET) and single-photon emission CT (SPECT), advanced techniques provide functional information on tumor metabolism and physiology through the use of radiotracer probes. Radiomics and radiogenomics offer promising insight into the prediction of tumor subtype, post-treatment response to treatment, and prognostication. In this paper, a brief review of pediatric brain cancers, by type, is provided with a comprehensive description of advanced imaging techniques including clinical applications that are currently utilized for the assessment and evaluation of pediatric brain tumors.
Collapse
|
12
|
Scola E, Desideri I, Bianchi A, Gadda D, Busto G, Fiorenza A, Amadori T, Mancini S, Miele V, Fainardi E. Assessment of brain tumors by magnetic resonance dynamic susceptibility contrast perfusion-weighted imaging and computed tomography perfusion: a comparison study. LA RADIOLOGIA MEDICA 2022; 127:664-672. [PMID: 35441970 DOI: 10.1007/s11547-022-01470-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/11/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To investigate the association and agreement between magnetic resonance dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) and computed tomography perfusion (CTP) in determining vascularity and permeability of primary and secondary brain tumors. MATERIAL AND METHODS DSC-PWI and CTP studies from 97 patients with high-grade glioma, low-grade glioma and solitary brain metastasis were retrospectively reviewed. Normalized cerebral blood flow (nCBF), cerebral blood volume (nCBV), capillary transfer constant (nK2) and permeability surface area product (nPS) values were obtained. Variables among groups were compared, and correlation and agreement between DSC-PWI and CTP were tested. RESULTS All DSC-PWI and CTP parameters were higher in high-grade than in low-grade gliomas (p < 0.01 and p < 0.001). Metastases had greater DSC-PWI nCBV (p < 0.05), nCTP-CBF (p < 0.05), nCTP-CBV (p < 0.01) and nCTP-PS (p < 0.0001) than low-grade gliomas and more elevated nCTP-PS (p < 0.01) than high-grade gliomas. The correlation was strong between DSC-PWI nCBF and CTP nCBF (r = 0.79; p < 0.00001) and between DSC-PWI nCBV and CTP nCBV (r = 0.83; p < 0.00001), weaker between DSC-PWI nK2 and CTP nPS (r = 0.29; p < 0.01). Bland-Altman plots indicated that the agreement was strong between DSC-PWI nCBF and CTP nCBF, good between DSC-PWI nCBV and CTP nCBV and poorer between DSC-PWI nK2 and CTP nPS. CONCLUSION DSC-PWI and CTP CBF and CBV maps were comparable and interchangeable in the assessment of tumor vascularity, unlike DSC-PWI K2 and CTP PS maps that were more discordant in the analysis of tumor permeability. CTP could be an alternative method to quantify tumor neoangiogenesis when MRI is not available or when the patient does not tolerate it.
Collapse
Affiliation(s)
- Elisa Scola
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy.
| | - Ilaria Desideri
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Andrea Bianchi
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Davide Gadda
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Giorgio Busto
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Alessandro Fiorenza
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Tommaso Amadori
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Sara Mancini
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy.,Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
13
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
14
|
Wang P, Weng L, Xie S, He J, Ma X, Li B, Yuan P, Wang S, Zhang H, Niu G, Wu Q, Gao Y. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma. Eur J Radiol 2021; 138:109622. [PMID: 33721768 DOI: 10.1016/j.ejrad.2021.109622] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To evaluate the diagnostic -->performance of mean apparent propagator-magnetic resonance imaging (MAP-MRI) in distinguishing the grades of diffuse gliomas. METHOD Thirty-six patients with pathologically confirmed diffuse gliomas were enrolled in this study. MAP-MRI parameters were measured in the parenchymal area of the tumour: non-Gaussianity (NG), non-Gaussianity axial (NGAx), non-Gaussianity vertical (NGRad), Q-space inverse variance (QIV), return to the origin probability (RTOP), return to the axis probability (RTAP), return to the plane probability (RTPP), and mean square displacement (MSD). Differences in the parameters between any two grades were compared, the characteristics of the parameters for different diffuse glioma grades were analysed, and receiver operating characteristic (ROC) curves were plotted to analyse the diagnostic value of each parameter. RESULTS Compared with grade III gliomas, grade II gliomas had lower NG, NGAx and NGRad values. NG, NGAx and NGRad had great area under the ROC curve (AUC) values (0.823, 0.835, and 0.838, P < 0.05). Compared with those of grade IV glioma, the NG, NGAx, NGRad, RTAP and RTOP values for grade II glioma were lower, the QIV values were higher (all P < 0.05). NG, NGAx, NGRad, RTAP, RTOP and QIV had great area under the ROC curve (AUC) values (0.923, 0.929, 0.923,0.793,0.822, and 0.769, P < 0.05). CONCLUSIONS Quantitative MAP-MRI parameters can distinguish grade II and III and grade II and IV gliomas before surgery but not grade III and IV gliomas. Thus, these parameters have clinical guiding value in the noninvasive preoperative evaluation of tumour pathological grading.
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Lixin Weng
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Shenghui Xie
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Jinlong He
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Xueying Ma
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Bo Li
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Pengxuan Yuan
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, 201318, China.
| | - Huapeng Zhang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, 201318, China.
| | - Guangming Niu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Qiong Wu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Yang Gao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| |
Collapse
|