1
|
Choi SH, Park JW, Cho Y, Yang G, Yoon HI. Automated Organ Segmentation for Radiation Therapy: A Comparative Analysis of AI-Based Tools Versus Manual Contouring in Korean Cancer Patients. Cancers (Basel) 2024; 16:3670. [PMID: 39518109 PMCID: PMC11544936 DOI: 10.3390/cancers16213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Accurate delineation of tumors and organs at risk (OARs) is crucial for intensity-modulated radiation therapy. This study aimed to evaluate the performance of OncoStudio, an AI-based auto-segmentation tool developed for Korean patients, compared with Protégé AI, a globally developed tool that uses data from Korean cancer patients. METHODS A retrospective analysis of 1200 Korean cancer patients treated with radiotherapy was conducted. Auto-contours generated via OncoStudio and Protégé AI were compared with manual contours across the head and neck and thoracic, abdominal, and pelvic organs. Accuracy was assessed using the Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff distance (HD). Feedback was obtained from 10 participants, including radiation oncologists, residents, and radiation therapists, via an online survey with a Turing test component. RESULTS OncoStudio outperformed Protégé AI in 85% of the evaluated OARs (p < 0.001). For head and neck organs, OncoStudio achieved a similar DSC (0.70 vs. 0.70, p = 0.637) but significantly lower MSD and 95% HD values (p < 0.001). In thoracic organs, OncoStudio performed excellently in 90% of cases, with a significantly greater DSC (male: 0.87 vs. 0.82, p < 0.001; female: 0.95 vs. 0.87, p < 0.001). OncoStudio also demonstrated superior accuracy in abdominal (DSC 0.88 vs. 0.81, p < 0.001) and pelvic organs (male: DSC 0.95 vs. 0.85, p < 0.001; female: DSC 0.82 vs. 0.73, p < 0.001). Clinicians favored OncoStudio in 70% of cases, with 90% endorsing its clinical suitability for Korean patients. CONCLUSIONS OncoStudio, which is tailored for Korean patients, demonstrated superior segmentation accuracy across multiple anatomical regions, suggesting its suitability for radiotherapy planning in this population.
Collapse
Affiliation(s)
- Seo Hee Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.H.C.)
| | - Jong Won Park
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.H.C.)
| | - Yeona Cho
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Gowoon Yang
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.H.C.)
- Department of Radiation Oncology, Cha University Ilsan Cha Hospital, Cha University School of Medicine, Goyang 10414, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.H.C.)
| |
Collapse
|
2
|
Gao Y, Xie H, Chang CW, Peng J, Pan S, Qiu RL, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model. Med Phys 2024; 51:6246-6258. [PMID: 38889368 PMCID: PMC11489029 DOI: 10.1002/mp.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Iodine maps, derived from image-processing of contrast-enhanced dual-energy computed tomography (DECT) scans, highlight the differences in tissue iodine intake. It finds multiple applications in radiology, including vascular imaging, pulmonary evaluation, kidney assessment, and cancer diagnosis. In radiation oncology, it can contribute to designing more accurate and personalized treatment plans. However, DECT scanners are not commonly available in radiation therapy centers. Additionally, the use of iodine contrast agents is not suitable for all patients, especially those allergic to iodine agents, posing further limitations to the accessibility of this technology. PURPOSE The purpose of this work is to generate synthetic iodine map images from non-contrast single-energy CT (SECT) images using conditional denoising diffusion probabilistic model (DDPM). METHODS One-hundered twenty-six head-and-neck patients' images were retrospectively investigated in this work. Each patient underwent non-contrast SECT and contrast DECT scans. Ground truth iodine maps were generated from contrast DECT scans using commercial software syngo.via installed in the clinic. A conditional DDPM was implemented in this work to synthesize iodine maps. Three-fold cross-validation was conducted, with each iteration selecting the data from 42 patients as the test dataset and the remainder as the training dataset. Pixel-to-pixel generative adversarial network (GAN) and CycleGAN served as reference methods for evaluating the proposed DDPM method. RESULTS The accuracy of the proposed DDPM was evaluated using three quantitative metrics: mean absolute error (MAE) (1.039 ± 0.345 mg/mL), structural similarity index measure (SSIM) (0.89 ± 0.10) and peak signal-to-noise ratio (PSNR) (25.4 ± 3.5 db) respectively. Compared to the reference methods, the proposed technique showcased superior performance across the evaluated metrics, further validated by the paired two-tailed t-tests. CONCLUSION The proposed conditional DDPM framework has demonstrated the feasibility of generating synthetic iodine map images from non-contrast SECT images. This method presents a potential clinical application, which is providing accurate iodine contrast map in instances where only non-contrast SECT is accessible.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Gao Y, Qiu RLJ, Xie H, Chang CW, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic contrast-enhanced dual-energy CT generation using conditional denoising diffusion probabilistic model. Phys Med Biol 2024; 69:165015. [PMID: 39053511 PMCID: PMC11294926 DOI: 10.1088/1361-6560/ad67a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Objective.The study aimed to generate synthetic contrast-enhanced Dual-energy CT (CE-DECT) images from non-contrast single-energy CT (SECT) scans, addressing the limitations posed by the scarcity of DECT scanners and the health risks associated with iodinated contrast agents, particularly for high-risk patients.Approach.A conditional denoising diffusion probabilistic model (C-DDPM) was utilized to create synthetic images. Imaging data were collected from 130 head-and-neck (HN) cancer patients who had undergone both non-contrast SECT and CE-DECT scans.Main Results.The performance of the C-DDPM was evaluated using Mean Absolute Error (MAE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). The results showed MAE values of 27.37±3.35 Hounsfield Units (HU) for high-energy CT (H-CT) and 24.57±3.35HU for low-energy CT (L-CT), SSIM values of 0.74±0.22 for H-CT and 0.78±0.22 for L-CT, and PSNR values of 18.51±4.55 decibels (dB) for H-CT and 18.91±4.55 dB for L-CT.Significance.The study demonstrates the efficacy of the deep learning model in producing high-quality synthetic CE-DECT images, which significantly benefits radiation therapy planning. This approach provides a valuable alternative imaging solution for facilities lacking DECT scanners and for patients who are unsuitable for iodine contrast imaging, thereby enhancing the reach and effectiveness of advanced imaging in cancer treatment planning.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
4
|
Han S, Kim JM, Park J, Kim SW, Park S, Cho J, Park SJ, Chung HJ, Ham SM, Park SJ, Kim JH. Clinical feasibility of deep learning based synthetic contrast enhanced abdominal CT in patients undergoing non enhanced CT scans. Sci Rep 2024; 14:17635. [PMID: 39085456 PMCID: PMC11291756 DOI: 10.1038/s41598-024-68705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Our objective was to develop and evaluate the clinical feasibility of deep-learning-based synthetic contrast-enhanced computed tomography (DL-SynCCT) in patients designated for nonenhanced CT (NECT). We proposed a weakly supervised learning with the utilization of virtual non-contrast CT (VNC) for the development of DL-SynCCT. Training and internal validations were performed with 2202 pairs of retrospectively collected contrast-enhanced CT (CECT) images with the corresponding VNC images acquired from dual-energy CT. Clinical validation was performed using an external validation set including 398 patients designated for true nonenhanced CT (NECT), from multiple vendors at three institutes. Detection of lesions was performed by three radiologists with only NECT in the first session and an additionally provided DL-SynCCT in the second session. The mean peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM) of the DL-SynCCT compared to CECT were 43.25 ± 0.41 and 0.92 ± 0.01, respectively. With DL-SynCCT, the pooled sensitivity for lesion detection (72.0% to 76.4%, P < 0.001) and level of diagnostic confidence (3.0 to 3.6, P < 0.001) significantly increased. In conclusion, DL-SynCCT generated by weakly supervised learning showed significant benefit in terms of sensitivity in detecting abnormal findings when added to NECT in patients designated for nonenhanced CT scans.
Collapse
Affiliation(s)
- Seungchul Han
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
- Department of Radiology, Samsung Medical Center, 81 Irwon-Ro Gangnam-gu, Seoul, 03087, Republic of Korea
| | - Jong-Min Kim
- Research and Science Division, MEDICALIP Co., Ltd., Seoul, Korea
| | - Junghoan Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Se Woo Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Sungeun Park
- Department of Radiology, Konkuk University Medical Center, 4-12 Hwayang Gwangjin-gu, Seoul, 03087, Republic of Korea
| | - Jungheum Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Sae-Jin Park
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Han-Jae Chung
- Research and Science Division, MEDICALIP Co., Ltd., Seoul, Korea
| | - Seung-Min Ham
- Research and Science Division, MEDICALIP Co., Ltd., Seoul, Korea
| | - Sang Joon Park
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
- Research and Science Division, MEDICALIP Co., Ltd., Seoul, Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
| |
Collapse
|
5
|
Chang JY, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging. Diagnostics (Basel) 2024; 14:1456. [PMID: 39001346 PMCID: PMC11240935 DOI: 10.3390/diagnostics14131456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of artificial intelligence (AI) is revolutionizing medicine, particularly radiology. With the development of newer models, AI applications are demonstrating improved performance and versatile utility in the clinical setting. Thoracic imaging is an area of profound interest, given the prevalence of chest imaging and the significant health implications of thoracic diseases. This review aims to highlight the promising applications of AI within thoracic imaging. It examines the role of AI, including its contributions to improving diagnostic evaluation and interpretation, enhancing workflow, and aiding in invasive procedures. Next, it further highlights the current challenges and limitations faced by AI, such as the necessity of 'big data', ethical and legal considerations, and bias in representation. Lastly, it explores the potential directions for the application of AI in thoracic radiology.
Collapse
Affiliation(s)
- Jin Y Chang
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Lai TY, Hu YW, Wang TH, Chen JP, Shiau CY, Huang PI, Lai IC, Tseng LM, Huang N, Liu CJ. Association of radiation dose to cardiac substructures with major ischaemic events following breast cancer radiotherapy. Eur Heart J 2023; 44:4796-4807. [PMID: 37585426 DOI: 10.1093/eurheartj/ehad462] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND AND AIMS Patients with left-sided breast cancer receive a higher mean heart dose (MHD) after radiotherapy, with subsequent risk of ischaemic heart disease. However, the optimum dosimetric predictor among cardiac substructures has not yet been determined. METHODS AND RESULTS This study retrospectively reviewed 2158 women with breast cancer receiving adjuvant radiotherapy. The primary endpoint was a major ischaemic event. The dose-volume parameters of each delineated cardiac substructure were calculated. The risk factors for major ischaemic events and the association between MHD and major ischaemic events were analysed by Cox regression. The optimum dose-volume predictors among cardiac substructures were explored in multivariable models by comparing performance metrics of each model. At a median follow-up of 7.9 years (interquartile range 5.6-10.8 years), 89 patients developed major ischaemic events. The cumulative incidence rate of major ischaemic events was significantly higher in left-sided disease (P = 0.044). Overall, MHD increased the risk of major ischaemic events by 6.2% per Gy (hazard ratio 1.062, 95% confidence interval 1.01-1.12; P = 0.012). The model containing the volume of the left ventricle receiving 25 Gy (LV V25) with the cut-point of 4% presented with the best goodness of fit and discrimination performance in left-sided breast cancer. Age, chronic kidney disease, and hyperlipidaemia were also significant risk factors. CONCLUSION Risk of major ischaemic events exist in the era of modern radiotherapy. LV V25 ≥ 4% appeared to be the optimum parameter and was superior to MHD in predicting major ischaemic events. This dose constraint could aid in achieving better heart protection in breast cancer radiotherapy, though a further validation study is warranted.
Collapse
Affiliation(s)
- Tzu-Yu Lai
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, 112201 Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yu-Wen Hu
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, 112201 Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ti-Hao Wang
- Department of Radiation Oncology, China Medical University Hospital, 404327 Taichung, Taiwan
- Department of Medicine, China Medical University, 404333 Taichung, Taiwan
- Everfortune.AI, 403020 Taichung, Taiwan
| | - Jui-Pin Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, 112201 Taipei, Taiwan
| | - Cheng-Ying Shiau
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, 112201 Taipei, Taiwan
| | - Pin-I Huang
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, 112201 Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - I Chun Lai
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, 112201 Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, 112201 Taipei, Taiwan
| | - Nicole Huang
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chia-Jen Liu
- School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 112201 Taipei, Taiwan
| |
Collapse
|
7
|
Azarfar G, Ko SB, Adams SJ, Babyn PS. Applications of deep learning to reduce the need for iodinated contrast media for CT imaging: a systematic review. Int J Comput Assist Radiol Surg 2023; 18:1903-1914. [PMID: 36947337 DOI: 10.1007/s11548-023-02862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE The usage of iodinated contrast media (ICM) can improve the sensitivity and specificity of computed tomography (CT) for many clinical indications. However, the adverse effects of ICM administration can include renal injury, life-threatening allergic-like reactions, and environmental contamination. Deep learning (DL) models can generate full-dose ICM CT images from non-contrast or low-dose ICM administration or generate non-contrast CT from full-dose ICM CT. Eliminating the need for both contrast-enhanced and non-enhanced imaging or reducing the amount of required contrast while maintaining diagnostic capability may reduce overall patient risk, improve efficiency and minimize costs. We reviewed the current capabilities of DL to reduce the need for contrast administration in CT. METHODS We conducted a systematic review of articles utilizing DL to reduce the amount of ICM required in CT, searching MEDLINE, Embase, Compendex, Inspec, and Scopus to identify papers published from 2016 to 2022. We classified the articles based on the DL model and ICM reduction. RESULTS Eighteen papers met the inclusion criteria for analysis. Of these, ten generated synthetic full-dose (100%) ICM from real non-contrast CT, while four augmented low-dose to full-dose ICM CT. Three used DL to create synthetic non-contrast CT from real 100% ICM CT, while one paper used DL to translate the 100% ICM to non-contrast CT and vice versa. DL models commonly used generative adversarial networks trained and tested by paired contrast-enhanced and non-contrast or low ICM CTs. Image quality metrics such as peak signal-to-noise ratio and structural similarity index were frequently used for comparing synthetic versus real CT image quality. CONCLUSION DL-generated contrast-enhanced or non-contrast CT may assist in diagnosis and radiation therapy planning; however, further work to optimize protocols to reduce or eliminate ICM for specific pathology is still needed along with a dedicated assessment of the clinical utility of these synthetic images.
Collapse
Affiliation(s)
- Ghazal Azarfar
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Seok-Bum Ko
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott J Adams
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Paul S Babyn
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Shen J, Gu P, Wang Y, Wang Z. Advances in automatic delineation of target volume and cardiac substructure in breast cancer radiotherapy (Review). Oncol Lett 2023; 25:110. [PMID: 36817059 PMCID: PMC9932716 DOI: 10.3892/ol.2023.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Postoperative adjuvant radiotherapy plays an important role in the treatment of patients with breast cancer. With the continuous development of radiotherapeutic technologies, the requirements for radiotherapeutic accuracy are increasingly high. The accuracy of target volume and organ at risk delineation significantly affects the effect of radiotherapy. Automatic delineation software has been continuously developed for the automatic delineation of target areas and organs at risk. Automatic segmentation based on an atlas and deep learning is a hot topic in current clinical research. Automatic delineation can not only reduce the workload and delineation times, but also establish a uniform delineation standard and reduce inter-observer and intra-observer differences. In patients with breast cancer, especially in patients who undergo left breast radiotherapy, the protection of the heart is particularly important. Treating the whole heart as an organ at risk cannot meet the clinical needs, and it is necessary to limit the dose to specific cardiac substructures. The present review discusses the importance of automatic delineation of target volume and cardiac substructure in radiotherapy for patients with breast cancer.
Collapse
Affiliation(s)
- Jingjing Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200438, P.R. China
| | - Peihua Gu
- Department of Oncology and Radiotherapy, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200438, P.R. China
| | - Yun Wang
- Department of Oncology and Radiotherapy, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200438, P.R. China
| | - Zhongming Wang
- Department of Oncology and Radiotherapy, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200438, P.R. China
| |
Collapse
|
9
|
Pasquini L, Napolitano A, Pignatelli M, Tagliente E, Parrillo C, Nasta F, Romano A, Bozzao A, Di Napoli A. Synthetic Post-Contrast Imaging through Artificial Intelligence: Clinical Applications of Virtual and Augmented Contrast Media. Pharmaceutics 2022; 14:pharmaceutics14112378. [PMID: 36365197 PMCID: PMC9695136 DOI: 10.3390/pharmaceutics14112378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Contrast media are widely diffused in biomedical imaging, due to their relevance in the diagnosis of numerous disorders. However, the risk of adverse reactions, the concern of potential damage to sensitive organs, and the recently described brain deposition of gadolinium salts, limit the use of contrast media in clinical practice. In recent years, the application of artificial intelligence (AI) techniques to biomedical imaging has led to the development of 'virtual' and 'augmented' contrasts. The idea behind these applications is to generate synthetic post-contrast images through AI computational modeling starting from the information available on other images acquired during the same scan. In these AI models, non-contrast images (virtual contrast) or low-dose post-contrast images (augmented contrast) are used as input data to generate synthetic post-contrast images, which are often undistinguishable from the native ones. In this review, we discuss the most recent advances of AI applications to biomedical imaging relative to synthetic contrast media.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Unit, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
- Correspondence:
| | - Matteo Pignatelli
- Radiology Department, Castelli Hospital, Via Nettunense Km 11.5, 00040 Ariccia, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Chiara Parrillo
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Francesco Nasta
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
- Neuroimaging Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|