1
|
Hu K, Meyer F, Deng ZL, Asgari E, Kuo TH, Münch PC, McHardy AC. Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes. Brief Bioinform 2024; 25:bbae206. [PMID: 38706320 PMCID: PMC11070729 DOI: 10.1093/bib/bbae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
The advent of rapid whole-genome sequencing has created new opportunities for computational prediction of antimicrobial resistance (AMR) phenotypes from genomic data. Both rule-based and machine learning (ML) approaches have been explored for this task, but systematic benchmarking is still needed. Here, we evaluated four state-of-the-art ML methods (Kover, PhenotypeSeeker, Seq2Geno2Pheno and Aytan-Aktug), an ML baseline and the rule-based ResFinder by training and testing each of them across 78 species-antibiotic datasets, using a rigorous benchmarking workflow that integrates three evaluation approaches, each paired with three distinct sample splitting methods. Our analysis revealed considerable variation in the performance across techniques and datasets. Whereas ML methods generally excelled for closely related strains, ResFinder excelled for handling divergent genomes. Overall, Kover most frequently ranked top among the ML approaches, followed by PhenotypeSeeker and Seq2Geno2Pheno. AMR phenotypes for antibiotic classes such as macrolides and sulfonamides were predicted with the highest accuracies. The quality of predictions varied substantially across species-antibiotic combinations, particularly for beta-lactams; across species, resistance phenotyping of the beta-lactams compound, aztreonam, amoxicillin/clavulanic acid, cefoxitin, ceftazidime and piperacillin/tazobactam, alongside tetracyclines demonstrated more variable performance than the other benchmarked antibiotics. By organism, Campylobacter jejuni and Enterococcus faecium phenotypes were more robustly predicted than those of Escherichia coli, Staphylococcus aureus, Salmonella enterica, Neisseria gonorrhoeae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Streptococcus pneumoniae and Mycobacterium tuberculosis. In addition, our study provides software recommendations for each species-antibiotic combination. It furthermore highlights the need for optimization for robust clinical applications, particularly for strains that diverge substantially from those used for training.
Collapse
Affiliation(s)
- Kaixin Hu
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Fernando Meyer
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Zhi-Luo Deng
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ehsaneddin Asgari
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, USA
| | - Tzu-Hao Kuo
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Philipp C Münch
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover Braunschweig, Braunschweig, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Green AG, Yoon CH, Chen ML, Ektefaie Y, Fina M, Freschi L, Gröschel MI, Kohane I, Beam A, Farhat M. A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis. Nat Commun 2022; 13:3817. [PMID: 35780211 PMCID: PMC9250494 DOI: 10.1038/s41467-022-31236-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Long diagnostic wait times hinder international efforts to address antibiotic resistance in M. tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution. However, generalizability and clinical adoption have been limited by a lack of interpretability, especially in deep learning methods. Here, we present two deep convolutional neural networks that predict antibiotic resistance phenotypes of M. tuberculosis isolates: a multi-drug CNN (MD-CNN), that predicts resistance to 13 antibiotics based on 18 genomic loci, with AUCs 82.6-99.5% and higher sensitivity than state-of-the-art methods; and a set of 13 single-drug CNNs (SD-CNN) with AUCs 80.1-97.1% and higher specificity than the previous state-of-the-art. Using saliency methods to evaluate the contribution of input sequence features to the SD-CNN predictions, we identify 18 sites in the genome not previously associated with resistance. The CNN models permit functional variant discovery, biologically meaningful interpretation, and clinical applicability.
Collapse
Affiliation(s)
- Anna G Green
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Chang Ho Yoon
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, OX37LF, UK
| | - Michael L Chen
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
- Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, 94305, USA
| | - Yasha Ektefaie
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Mack Fina
- Harvard College, Cambridge, MA, 02138, USA
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Matthias I Gröschel
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Isaac Kohane
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Andrew Beam
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.
- Division of Pulmonary & Critical Care, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Verschuuren TD, Bosch T, Mascaro V, Willems RJL, Kluytmans JAJW. External validation of WGS-based antimicrobial susceptibility prediction tools, KOVER-AMR and ResFinder 4.1 for Escherichia coli clinical isolates. Clin Microbiol Infect 2022; 28:1465-1470. [PMID: 35662642 DOI: 10.1016/j.cmi.2022.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To externally validate whole genome sequence-antimicrobial susceptibility testing (WGS-AST) phenotype prediction tools KOVER-AMR and ResFinder 4.1 for Escherichia coli clinical isolates from Dutch routine care. METHODS A random sample of 234 E. coli, and 283 3rd generation cephalosporin-resistant E. coli isolates from urine and blood were collected (2014-17). Culture-AST was performed using VITEK 2 and BD Phoenix. Sequences were used as input for KOVER-AMR-SCM, KOVER-AMR-CART and ResFinder 4.1. The concordance, major error rate (MER), and very major error rate (VMER) were calculated, with subsequent comparison to U.S. Food and Drug Administration (FDA) criteria (MER ≤3%, and VMER with a 95% confidence interval (CI) ≤1.5%-≤7.5%). RESULTS ResFinder 4.1 performed better than KOVER-AMR-models, however, neither tools achieved overall (V)MERs below FDA criteria. KOVER-AMR-SCM, KOVER-AMR-CART, and ResFinder 4.1, MER (cumulative all antimicrobials) were: 5.1% (4.4-5.9), 4.3% (3.6-5.0), and 5.1% (4.5-5.8), respectively. MERs ≤3% were achieved for 6 (SCM) and 5 (CART) of the 11 tested antimicrobials for KOVER-AMR-models, and for 9/13 antimicrobials tested with ResFinder 4.1. KOVER-AMR-SCM, KOVER-AMR-CART, and ResFinder 4.1, cumulative VMERs were: 26% (24-28), 29% (27-31), and 11% (9.2-12). VMERs with a 95%CI ≤1.5-≤7.5 were only achieved for 4/13 tested antimicrobials with ResFinder 4.1. CONCLUSION In this study, WGS-AST phenotype prediction tools, KOVER-AMR and ResFinder 4.1, did not meet the FDA criteria needed for clinical diagnostic use in 517 E. coli clinical isolates from Dutch routine care. The tested tools should be further improved before they can be used for clinical decision making.
Collapse
Affiliation(s)
- T D Verschuuren
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands.
| | - T Bosch
- the Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - V Mascaro
- ASST Rhodense, G. Salvini Hospital, Garbagnate Milanese, Italy
| | - R J L Willems
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - J A J W Kluytmans
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands; Amphia Hospital Breda, Breda, the Netherlands
| |
Collapse
|
6
|
Walker TM, Miotto P, Köser CU, Fowler PW, Knaggs J, Iqbal Z, Hunt M, Chindelevitch L, Farhat MR, Cirillo DM, Comas I, Posey J, Omar SV, Peto TEA, Suresh A, Uplekar S, Laurent S, Colman RE, Nathanson CM, Zignol M, Walker AS, Crook DW, Ismail N, Rodwell TC, CRyPTIC Consortium, the Seq&Treat ConsortiumWalkerA SarahSteynAdrie J CLalvaniAjitBaulardAlainChristoffelsAlanMendoza-TiconaAlbertoTrovatoAlbertoSkrahinaAlenaLachapelleAlexander SBrankinAlicePiatekAmyGibertoni CruzAnaKochAnastasiaCabibbeAndrea MaurizioSpitaleriAndreaBrandaoAngela PChaiprasertAngkanaSureshAnitaBarbovaAnnaVan RieAnneliesGhodousiArashBainomugisaArnoldMandalAyanRoohiAyshaJavidBabakZhuBaoliLetcherBriceRodriguesCamillaNimmoCamusNATHANSONCarl-MichaelDuncanCarlaCoulterChristopherUtpatelChristianLiuChunfaGrazianClaraKongClareKöserClaudio UWilsonDaniel JCirilloDaniela MariaMatiasDanielaJorgensenDanielleZimenkovDanilaChettyDarrenMooreDavid AJCliftonDavid ACrookDerrick Wvan SoolingenDickLiuDongxinKohlerschmidtDonnaBarreiraDraurioNgcamuDumisaniSantos LazaroElias DavidKellyEllisBorroniEmanueleRoycroftEmmaAndreEmmanuelBöttgerErik CRobinsonEstherMenardoFabrizioMendesFlavia FJamiesonFrances BCollFrancescGaoGeorge FuKasuleGeorge WRossoliniGian MariaRodgerGillianSmithE GraceMeintjesGraemeThwaitesGuyHoffmannHaraldAlbertHeidiCoxHelenLaurensonIan FComasIñakiArandjelovicIrenaBarilarIvanRobledoJaimeMillardJamesJohnstonJamesPoseyJamieAndrewsJason RKnaggsJeffGardyJenniferGuthrieJenniferTaylorJillWerngrenJimMetcalfeJohnCoronelJorgeSheaJosephCarterJoshuaPinhataJuliana MWKusJulianne VTodtKatharinaHoltKathrynNilgiriwalaKayzad SGhisiKelen TMaloneKerri MFaksriKiatichaiMusserKimberlee AJosephLavaniaRigoutsLeenChindelevitchLeonidJarrettLisaGrandjeanLouisFerrazoliLucilaineRodriguesMabelFarhatMahaSchitoMarcoFitzgibbonMargaret MLoembéMarguerite MassingaWijkanderMariaBallifMarieRabodoariveloMarie-SylvianneMihalicMarinaWILCOXMarkHuntMartinZIGNOLMatteoMerkerMatthiasEggerMatthiasO'DonnellMaxCawsMaxineWuMei-HuaWhitfieldMichael GInouyeMichaelMansjöMikaelDang ThiMinh HaJolobaMosesKamalSM MostofaOkoziNanaISMAILNazirMistryNergesHoangNhung NRakotosamimananaNiainaPatonNicholas IRancoitaPaola M VMiottoPaoloLapierrePascalHallPatricia JTangPatrickClaxtonPaulineWintringerPenelopeKellerPeter MThaiPhan Vuong KhacFowlerPhilip WSupplyPhilipSrilohasinPrapapornSuriyapholPrapatRathodPritiKambliPritiGroenheitRamonaColmanRebecca EOngRick Twee-HeeWarrenRobin MWilkinsonRobert JDielRolandOliveiraRosangela SKhotRukhsarJouRuwenTahseenSabiraLaurentSachaGharbiaSaheerKouchakiSamanehShahSanchiPlesnikSaraEarleSarah GDunstanSarahHoosdallySarah JMitaraiSatoshiGagneuxSebastienOmarShaheed VYaoShen-YuanGrandjean LapierreSimonBattagliaSimoneNiemannStefanPandeySushilUplekarSwapnaHalseTanya ACohenTedCortesTeresaPrammanananTherdsakKohlThomas AThuongNguyen T TTeoTik YingPetoTimothy E ARodwellTimothy CWilliamTimothyWalkerTimothy MRogersThomas RSurveUtkarshaMathysVanessaFurióVictoriaCookVictoriaVijaySrinivasanEscuyerVincentDreyerViolaSintchenkoVitaliSaphonnVonthanakSolanoWalterLinWan-Hsuanvan GemertWayneHeWencongYangYangZhaoYanlinQinYouwenXiaoYu-XinHasanZahraIqbalZaminPuyenZully M, Steyn AJC, Lalvani A, Baulard A, Christoffels A, Mendoza-Ticona A, Trovato A, Skrahina A, Lachapelle AS, Brankin A, Piatek A, Gibertoni Cruz A, Koch A, Cabibbe AM, Spitaleri A, Brandao AP, Chaiprasert A, Suresh A, Barbova A, Van Rie A, Ghodousi A, Bainomugisa A, Mandal A, Roohi A, Javid B, Zhu B, Letcher B, Rodrigues C, Nimmo C, NATHANSON CM, Duncan C, Coulter C, Utpatel C, Liu C, Grazian C, Kong C, Köser CU, Wilson DJ, Cirillo DM, Matias D, Jorgensen D, Zimenkov D, Chetty D, Moore DAJ, Clifton DA, Crook DW, van Soolingen D, Liu D, Kohlerschmidt D, Barreira D, Ngcamu D, Santos Lazaro ED, Kelly E, Borroni E, Roycroft E, Andre E, Böttger EC, Robinson E, Menardo F, Mendes FF, Jamieson FB, Coll F, Gao GF, Kasule GW, Rossolini GM, Rodger G, Smith EG, Meintjes G, Thwaites G, Hoffmann H, Albert H, Cox H, Laurenson IF, Comas I, Arandjelovic I, Barilar I, et alWalker TM, Miotto P, Köser CU, Fowler PW, Knaggs J, Iqbal Z, Hunt M, Chindelevitch L, Farhat MR, Cirillo DM, Comas I, Posey J, Omar SV, Peto TEA, Suresh A, Uplekar S, Laurent S, Colman RE, Nathanson CM, Zignol M, Walker AS, Crook DW, Ismail N, Rodwell TC, CRyPTIC Consortium, the Seq&Treat ConsortiumWalkerA SarahSteynAdrie J CLalvaniAjitBaulardAlainChristoffelsAlanMendoza-TiconaAlbertoTrovatoAlbertoSkrahinaAlenaLachapelleAlexander SBrankinAlicePiatekAmyGibertoni CruzAnaKochAnastasiaCabibbeAndrea MaurizioSpitaleriAndreaBrandaoAngela PChaiprasertAngkanaSureshAnitaBarbovaAnnaVan RieAnneliesGhodousiArashBainomugisaArnoldMandalAyanRoohiAyshaJavidBabakZhuBaoliLetcherBriceRodriguesCamillaNimmoCamusNATHANSONCarl-MichaelDuncanCarlaCoulterChristopherUtpatelChristianLiuChunfaGrazianClaraKongClareKöserClaudio UWilsonDaniel JCirilloDaniela MariaMatiasDanielaJorgensenDanielleZimenkovDanilaChettyDarrenMooreDavid AJCliftonDavid ACrookDerrick Wvan SoolingenDickLiuDongxinKohlerschmidtDonnaBarreiraDraurioNgcamuDumisaniSantos LazaroElias DavidKellyEllisBorroniEmanueleRoycroftEmmaAndreEmmanuelBöttgerErik CRobinsonEstherMenardoFabrizioMendesFlavia FJamiesonFrances BCollFrancescGaoGeorge FuKasuleGeorge WRossoliniGian MariaRodgerGillianSmithE GraceMeintjesGraemeThwaitesGuyHoffmannHaraldAlbertHeidiCoxHelenLaurensonIan FComasIñakiArandjelovicIrenaBarilarIvanRobledoJaimeMillardJamesJohnstonJamesPoseyJamieAndrewsJason RKnaggsJeffGardyJenniferGuthrieJenniferTaylorJillWerngrenJimMetcalfeJohnCoronelJorgeSheaJosephCarterJoshuaPinhataJuliana MWKusJulianne VTodtKatharinaHoltKathrynNilgiriwalaKayzad SGhisiKelen TMaloneKerri MFaksriKiatichaiMusserKimberlee AJosephLavaniaRigoutsLeenChindelevitchLeonidJarrettLisaGrandjeanLouisFerrazoliLucilaineRodriguesMabelFarhatMahaSchitoMarcoFitzgibbonMargaret MLoembéMarguerite MassingaWijkanderMariaBallifMarieRabodoariveloMarie-SylvianneMihalicMarinaWILCOXMarkHuntMartinZIGNOLMatteoMerkerMatthiasEggerMatthiasO'DonnellMaxCawsMaxineWuMei-HuaWhitfieldMichael GInouyeMichaelMansjöMikaelDang ThiMinh HaJolobaMosesKamalSM MostofaOkoziNanaISMAILNazirMistryNergesHoangNhung NRakotosamimananaNiainaPatonNicholas IRancoitaPaola M VMiottoPaoloLapierrePascalHallPatricia JTangPatrickClaxtonPaulineWintringerPenelopeKellerPeter MThaiPhan Vuong KhacFowlerPhilip WSupplyPhilipSrilohasinPrapapornSuriyapholPrapatRathodPritiKambliPritiGroenheitRamonaColmanRebecca EOngRick Twee-HeeWarrenRobin MWilkinsonRobert JDielRolandOliveiraRosangela SKhotRukhsarJouRuwenTahseenSabiraLaurentSachaGharbiaSaheerKouchakiSamanehShahSanchiPlesnikSaraEarleSarah GDunstanSarahHoosdallySarah JMitaraiSatoshiGagneuxSebastienOmarShaheed VYaoShen-YuanGrandjean LapierreSimonBattagliaSimoneNiemannStefanPandeySushilUplekarSwapnaHalseTanya ACohenTedCortesTeresaPrammanananTherdsakKohlThomas AThuongNguyen T TTeoTik YingPetoTimothy E ARodwellTimothy CWilliamTimothyWalkerTimothy MRogersThomas RSurveUtkarshaMathysVanessaFurióVictoriaCookVictoriaVijaySrinivasanEscuyerVincentDreyerViolaSintchenkoVitaliSaphonnVonthanakSolanoWalterLinWan-Hsuanvan GemertWayneHeWencongYangYangZhaoYanlinQinYouwenXiaoYu-XinHasanZahraIqbalZaminPuyenZully M, Steyn AJC, Lalvani A, Baulard A, Christoffels A, Mendoza-Ticona A, Trovato A, Skrahina A, Lachapelle AS, Brankin A, Piatek A, Gibertoni Cruz A, Koch A, Cabibbe AM, Spitaleri A, Brandao AP, Chaiprasert A, Suresh A, Barbova A, Van Rie A, Ghodousi A, Bainomugisa A, Mandal A, Roohi A, Javid B, Zhu B, Letcher B, Rodrigues C, Nimmo C, NATHANSON CM, Duncan C, Coulter C, Utpatel C, Liu C, Grazian C, Kong C, Köser CU, Wilson DJ, Cirillo DM, Matias D, Jorgensen D, Zimenkov D, Chetty D, Moore DAJ, Clifton DA, Crook DW, van Soolingen D, Liu D, Kohlerschmidt D, Barreira D, Ngcamu D, Santos Lazaro ED, Kelly E, Borroni E, Roycroft E, Andre E, Böttger EC, Robinson E, Menardo F, Mendes FF, Jamieson FB, Coll F, Gao GF, Kasule GW, Rossolini GM, Rodger G, Smith EG, Meintjes G, Thwaites G, Hoffmann H, Albert H, Cox H, Laurenson IF, Comas I, Arandjelovic I, Barilar I, Robledo J, Millard J, Johnston J, Posey J, Andrews JR, Knaggs J, Gardy J, Guthrie J, Taylor J, Werngren J, Metcalfe J, Coronel J, Shea J, Carter J, Pinhata JMW, Kus JV, Todt K, Holt K, Nilgiriwala KS, Ghisi KT, Malone KM, Faksri K, Musser KA, Joseph L, Rigouts L, Chindelevitch L, Jarrett L, Grandjean L, Ferrazoli L, Rodrigues M, Farhat M, Schito M, Fitzgibbon MM, Loembé MM, Wijkander M, Ballif M, Rabodoarivelo MS, Mihalic M, WILCOX M, Hunt M, ZIGNOL M, Merker M, Egger M, O'Donnell M, Caws M, Wu MH, Whitfield MG, Inouye M, Mansjö M, Dang Thi MH, Joloba M, Kamal SMM, Okozi N, ISMAIL N, Mistry N, Hoang NN, Rakotosamimanana N, Paton NI, Rancoita PMV, Miotto P, Lapierre P, Hall PJ, Tang P, Claxton P, Wintringer P, Keller PM, Thai PVK, Fowler PW, Supply P, Srilohasin P, Suriyaphol P, Rathod P, Kambli P, Groenheit R, Colman RE, Ong RTH, Warren RM, Wilkinson RJ, Diel R, Oliveira RS, Khot R, Jou R, Tahseen S, Laurent S, Gharbia S, Kouchaki S, Shah S, Plesnik S, Earle SG, Dunstan S, Hoosdally SJ, Mitarai S, Gagneux S, Omar SV, Yao SY, Grandjean Lapierre S, Battaglia S, Niemann S, Pandey S, Uplekar S, Halse TA, Cohen T, Cortes T, Prammananan T, Kohl TA, Thuong NTT, Teo TY, Peto TEA, Rodwell TC, William T, Walker TM, Rogers TR, Surve U, Mathys V, Furió V, Cook V, Vijay S, Escuyer V, Dreyer V, Sintchenko V, Saphonn V, Solano W, Lin WH, van Gemert W, He W, Yang Y, Zhao Y, Qin Y, Xiao YX, Hasan Z, Iqbal Z, Puyen ZM. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis. THE LANCET. MICROBE 2022; 3:e265-e273. [PMID: 35373160 PMCID: PMC7612554 DOI: 10.1016/s2666-5247(21)00301-3] [Show More Authors] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background Molecular diagnostics are considered the most promising route to achieving rapid, universal drug susceptibility testing for Mycobacterium tuberculosiscomplex (MTBC). We aimed to generate a WHO endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods A candidate gene approach was used to identify mutations as associated with resistance, or consistent with susceptibility, for 13 WHO endorsed anti-tuberculosis drugs. 38,215 MTBC isolates with paired whole-genome sequencing and phenotypic drug susceptibility testing data were amassed from 45 countries. For each mutation, a contingency table of binary phenotypes and presence or absence of the mutation computed positive predictive value, and Fisher's exact tests generated odds ratios and Benjamini-Hochberg corrected p-values. Mutations were graded as Associated with Resistance if present in at least 5 isolates, if the odds ratio was >1 with a statistically significant corrected p-value, and if the lower bound of the 95% confidence interval on the positive predictive value for phenotypic resistance was >25%. A series of expert rules were applied for final confidence grading of each mutation. Findings 15,667 associations were computed for 13,211 unique mutations linked to one or more drugs. 1,149/15,667 (7·3%) mutations were classified as associated with phenotypic resistance and 107/15,667 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was >80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were classified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation This first WHO endorsed catalogue of molecular targets for MTBC drug susceptibility testing provides a global standard for resistance interpretation. Its existence should encourage the implementation of molecular diagnostics by National Tuberculosis Programmes. Funding UNITAID, Wellcome, MRC, BMGF.
Collapse
Affiliation(s)
- Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam,Correspondence to: Dr Timothy M Walker, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Paolo Miotto
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Philip W Fowler
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jeff Knaggs
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,European Bioinformatics Institute, Hinxton, UK
| | - Zamin Iqbal
- European Bioinformatics Institute, Hinxton, UK
| | - Martin Hunt
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,European Bioinformatics Institute, Hinxton, UK
| | | | | | | | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain,CIBER Epidemiology and Public Health, Madrid, Spain
| | - James Posey
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shaheed V Omar
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Timothy EA Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institutes for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | | | | | | | | | | | - Matteo Zignol
- Global Tuberculosis Programme, WHO, Geneva, Switzerland
| | - Ann Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institutes for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institutes for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Nazir Ismail
- Global Tuberculosis Programme, WHO, Geneva, Switzerland
| | - Timothy C Rodwell
- FIND, Geneva, Switzerland,Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, CA, USA,Prof Timothy C Rodwell, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|