1
|
Rama Caamaño J, Iglesias Sousa O. [Effectiveness of low-intensity pulsed ultrasound in patients after osteotomy: A systematic review]. Rehabilitacion (Madr) 2024; 58:100826. [PMID: 38141421 DOI: 10.1016/j.rh.2023.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/23/2023] [Accepted: 05/15/2023] [Indexed: 12/25/2023]
Abstract
The use of low intensity pulsed ultrasound (LIPUS) therapy for bone healing and fracture treatment is increasingly considered as a therapeutic alternative with moderate economic cost and none or minimal adverse effects (e.g., low reaction to the conductive gel). However, there is some controversy regarding its scientific evidence. The present review seeks to shed some light on this controversy and to cover an area of study not occupied by previous or current work on ultrasound therapy. It is necessary to know the real impact of the treatment with low intensity pulsed ultrasound in patients with osteotomy, as well as its applicability as a post-surgery protocol to improve the recovery and rehabilitation processes and, at the end of the day, to reduce the time of disability.
Collapse
|
2
|
Mohaghegh S, Alirezaei F, Ahmadi N, Kouhestani F, Motamedian SR. Application of chemical factors for acceleration of consolidation phase of the distraction osteogenesis: a scoping review. Oral Maxillofac Surg 2023; 27:559-579. [PMID: 35852720 DOI: 10.1007/s10006-022-01097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aimed to analyze the effect of injecting chemical factors compared to conventional distraction osteogenesis (DO) treatment on the bone formation of the distracted area of the maxillofacial region in human and animal studies. METHOD Electronic search was done in PubMed, Scopus, Embase, and Cochrane database for studies published until September 2021. The studies' risk of bias (ROB) was assessed using the Cochrane Collaborations and NIH quality assessment tools. Meta-analyses were performed to assess the difference in the amount of bone formation and maximal load tolerance. RESULTS Among a total of 58 included studies, eight studies analyzed the bone formation rate of the distracted area in human models and others in animal models. Results of the human studies showed acceptable outcomes in the case of using bone morphogenic protein-2 (BMP-2), autologous bone-platelet gel, and calcium sulfate. However, using platelet reach plasma does not increase the rate of bone formation significantly. Quantitative analyses showed that both BMP-2 (SMD = 26.57; 95% CI = 18.86 to 34.28) and neuron growth factor (NGF) (SMD = 16.19; 95% CI = 9.64 to 22.75) increase the amount of bone formation. Besides, NGF increased the amount of load tolerance significantly (SMD = 30.03; 95% CI = 19.91 to 40.16). Additionally, BMP-2 has no significant impact on the post-treatment maxillary length (SMD = 9.19; 95% CI = - 2.35 to 20.73). CONCLUSION Limited number of human studies with low quality used chemical factors to enhance osteogenesis and showed acceptable results. However, more studies with higher quality are required.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Fatemeh Alirezaei
- Department of Orthodontics, School of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Nima Ahmadi
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran.
| |
Collapse
|
3
|
Jeong CH, Lim SY, Um JE, Lim HW, Hwang KH, Park KM, Yun JS, Kim D, Huh JK, Kim HS, Yook JI, Kim NH, Kwak YH. Micellized protein transduction domain-bone morphogenetic protein-2 accelerates bone healing in a rat tibial distraction osteogenesis model. Acta Biomater 2023; 170:360-375. [PMID: 37611691 DOI: 10.1016/j.actbio.2023.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
The clinical application of growth factors such as recombinant human bone morphogenetic protein-2 (rh-BMP-2), for functional bone regeneration remains challenging due to limited in vivo efficacy and adverse effects of previous modalities. To overcome the instability and short half-life of rh-BMP-2 in vivo, we developed a novel osteogenic supplement by fusing a protein transduction domain (PTD) with BMP-2, effectively creating a prodrug of BMP-2. In this study, we first created an improved PTD-BMP-2 formulation using lipid nanoparticle (LNP) micellization, resulting in downsizing from micrometer to nanometer scale and achieving a more even distribution. The micellized PTD-BMP-2 (mPTD-BMP-2) demonstrated improved distribution and aggregation profiles. As a prodrug of BMP-2, mPTD-BMP-2 successfully activated Smad1/5/8 and induced mineralization with osteogenic gene induction in vitro. In vivo pharmacokinetic analysis revealed that mPTD-BMP-2 had a much more stable pharmacokinetic profile than rh-BMP-2, with a 7.5-fold longer half-life. The in vivo BMP-responsive element (BRE) reporter system was also successfully activated by mPTD-BMP-2. In the in vivo rat tibia distraction osteogenesis (DO) model, micro-computed tomography (micro-CT) scan findings indicated that mPTD-BMP-2 significantly increased bone volume, bone surface, axis moment of inertia (MOI), and polar MOI. Furthermore, it increased the expression of osteogenesis-related genes, and induced bone maturation histologically. Based on these findings, mPTD-BMP-2 could be a promising candidate for the next-generation osteogenesis drug to promote new bone formation in DO surgery. STATEMENT OF SIGNIFICANCE: This study introduces micellized bone morphogenetic protein-2 (mPTD-BMP-2), a next-generation osteogenic supplement that combines protein transduction domain (PTD) and nano-sized micelle formulation technique to improve transduction efficiency and stability. The use of PTD represents a novel approach, and our results demonstrate the superiority of mPTD-BMP-2 over rh-BMP-2 in terms of in vivo pharmacokinetic profile and osteogenic potential, particularly in a rat tibial model of distraction osteogenesis. These findings have significant scientific impact and potential clinical applications in the treatment of bone defects that require distraction osteogenesis. By advancing the field of osteogenic supplements, our study has the potential to contribute to the development of more effective treatments for musculoskeletal disorders.
Collapse
Affiliation(s)
- Cheol Hee Jeong
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Song-Yi Lim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, 05505, Korea
| | - Jo Eun Um
- MET Life Science, Seoul, 03722, Korea
| | - Hyo Won Lim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, 05505, Korea
| | | | - Kyeong-Mee Park
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jun Seop Yun
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Dohun Kim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, 05505, Korea
| | - Jong-Ki Huh
- Department of Oral and Maxillofacial Surgery, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, 06273, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea; MET Life Science, Seoul, 03722, Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Korea; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea; MET Life Science, Seoul, 03722, Korea
| | - Nam Hee Kim
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea; MET Life Science, Seoul, 03722, Korea.
| | - Yoon Hae Kwak
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
4
|
Jia W, Zhou Z, Zhan W. Musculoskeletal Biomaterials: Stimulated and Synergized with Low Intensity Pulsed Ultrasound. J Funct Biomater 2023; 14:504. [PMID: 37888169 PMCID: PMC10607075 DOI: 10.3390/jfb14100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Clinical biophysical stimulating strategies, which have significant effects on improving the function of organs or treating diseases by causing the salutary response of body, have shown many advantages, such as non-invasiveness, few side effects, and controllable treatment process. As a critical technique for stimulation, the low intensity pulsed ultrasound (LIPUS) has been explored in regulating osteogenesis, which has presented great promise in bone repair by delivering a combined effect with biomaterials. This review summarizes the musculoskeletal biomaterials that can be synergized with LIPUS for enhanced biomedical application, including bone regeneration, spinal fusion, osteonecrosis/osteolysis, cartilage repair, and nerve regeneration. Different types of biomaterials are categorized for summary and evaluation. In each subtype, the verified biological mechanisms are listed in a table or graphs to prove how LIPUS was effective in improving musculoskeletal tissue regeneration. Meanwhile, the acoustic excitation parameters of LIPUS that were promising to be effective for further musculoskeletal tissue engineering are discussed, as well as their limitations and some perspectives for future research. Overall, coupled with biomimetic scaffolds and platforms, LIPUS may be a powerful therapeutic approach to accelerate musculoskeletal tissue repair and even in other regenerative medicine applications.
Collapse
Affiliation(s)
- Wanru Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
5
|
Kitano M, Kawahata H, Okawa Y, Handa T, Nagamori H, Kitayama Y, Miyashita T, Sakamoto K, Fukumoto Y, Kudo S. Effects of low-intensity pulsed ultrasound on the infrapatellar fat pad in knee osteoarthritis: a randomized, double blind, placebo-controlled trial. J Phys Ther Sci 2023; 35:163-169. [PMID: 36866007 PMCID: PMC9974316 DOI: 10.1589/jpts.35.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/01/2022] [Indexed: 03/04/2023] Open
Abstract
[Purpose] We investigated the effects of low-intensity pulsed ultrasound (LIPUS) irradiation of the infrapatellar fat pad (IFP) combined with therapeutic exercise for management of knee osteoarthritis (knee OA). [Participants and Methods] The study included 26 patients with knee OA, who were randomized into the LIPUS group (patients underwent LIPUS + therapeutic exercise) and the therapeutic exercise group (patients underwent sham LIPUS + therapeutic exercise). We measured changes in the patellar tendon-tibial angle (PTTA) and in IFP thickness, IFP gliding, and IFP echo intensity after 10 treatment sessions to determine the effects of the aforementioned interventions. We additionally recorded changes in the visual analog scale, Timed Up and Go Test, the Western Ontario and McMaster Universities Osteoarthritis Index, and Kujala scores, as well as range of motion in each group at the same end-point. [Results] Compared with patients in the therapeutic exercise group, those in the LIPUS group showed significant post-treatment improvements in PTTA, VAS, and Kujala scores, as well as in range of motion. [Conclusion] The combined use of LIPUS irradiation of the IFP and therapeutic exercise is a safe and effective modality to reduce IFP swelling, relieve pain, and improve function in patients with knee OA.
Collapse
Affiliation(s)
- Masashi Kitano
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan, Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Yamamuro Orthopedics Clinic, Japan
| | - Hirohisa Kawahata
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Department of Medical Technology, Morinomiya University of
Medical Sciences, Japan
| | - Yuse Okawa
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Morinomiya University of Medical Sciences Acupuncture
Information Center, Japan
| | | | | | | | - Toshinori Miyashita
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan
| | - Kodai Sakamoto
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan
| | - Yusuke Fukumoto
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan
| | - Shintarou Kudo
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan, Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Department of Physical Therapy, Morinomiya University of
Medical Sciences, Japan,Corresponding author. Shintarou Kudo (E-mail: )
| |
Collapse
|
6
|
Sun L, Guo X, Wang Q, Shang Z, Du Y, Song G. Does low-intensity pulsed ultrasound accelerate phasic calcium phosphate ceramic-induced bone formation? Acta Cir Bras 2023; 38:e380023. [PMID: 36820702 PMCID: PMC10037561 DOI: 10.1590/acbe380023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/01/2022] [Indexed: 02/22/2023] Open
Abstract
PURPOSE Low-intensity pulsed ultrasound (LIPUS) has been used to stimulate the healing of the fresh fracture, delayed union, and non-union in both animal and clinical studies. Besides, biphasic calcium phosphate ceramic (BCP) is a promising biomaterial for bone repair as it shows favorable biocompatibility, osteoinduction, and osteoconduction. However, scarcity is known about the combined effect of LIPUS and BCP on bone formation. METHODS The combined effect of LIPUS and BCP was studied in a beagle model. Twelve dogs were used. BCP granules without any additions were implanted into bilateral erector spinae muscles. One side is the BCP group, while the counterlateral side is LIPUS + BCP group. Histological and histomorphometric analyses, and quantitative real-time polymerase chain reaction were evaluated. RESULTS Compared with BCP alone, the LIPUS + BCP showed no advantages in early bone formation. Furthermore, the Notch signaling pathway-related mRNA has no significant difference between the two groups. CONCLUSIONS The preliminary results showed that the BCP, which has intrinsic osteoinduction nature, was an effective and promising material. However, LIPUS has no enhanced effect in BCP induced ectopic bone formation. Furthermore, LIPUS has no effect on the Notch signaling pathway. Whether costly LIPUS could be used in combination with BCP should be a rethink.
Collapse
Affiliation(s)
- Lanying Sun
- Jinan Stomatological Hospital - Oral Implantology Center - Jinan, China
| | - Xiaoshuang Guo
- Plastic Surgery Hospital - Oral and Maxillofacial Surgery Department - Chinese Academy of Medical Sciences & Peking Union Medical College - Beijing, China
| | - Qibao Wang
- Jinan Stomatological Hospital - Department of Endodontics - Jinan, China
| | - Zhongshuai Shang
- Jinan Stomatological Hospital - Oral Implantology Center - Jinan, China
| | - Yi Du
- Jinan Stomatological Hospital - Department of Endodontics - Jinan, China
| | - Guodong Song
- Plastic Surgery Hospital - Oral and Maxillofacial Surgery Department - Chinese Academy of Medical Sciences & Peking Union Medical College - Beijing, China
| |
Collapse
|
7
|
The Distraction Osteogenesis Callus: a Review of the Literature. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-021-09282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
McCarthy C, Camci-Unal G. Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. MICROMACHINES 2021; 12:1488. [PMID: 34945337 PMCID: PMC8707172 DOI: 10.3390/mi12121488] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.
Collapse
Affiliation(s)
- Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Yukata K, Nikawa T, Takahashi M, Yasui N. Overexpressed osteoactivin reduced osteoclastic callus resorption during distraction osteogenesis in mice. J Pediatr Orthop B 2021; 30:500-506. [PMID: 32732799 DOI: 10.1097/bpb.0000000000000789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Distraction osteogenesis is a widely used surgical technique to treat bone deformity and shortening. Several biological treatments have been studied to enhance bone formation during distraction osteogenesis in animals. However, role of osteoactivin in the osseous tissues during distraction osteogenesis remains poorly understood. In this animal experimental study, we investigated the spatiotemporal expression of osteoactivin by immunohistochemistry and real-time PCR using a mouse model for tibial lengthening. Furthermore, to address the role of osteoactivin in bone lengthening, we subjected the osteoactivin-transgenic mice to distraction osteogenesis model. During the lag phase, the fibroblast-like cells (possible progenitors of the osteoblasts or chondrocytes), which mainly express osteoactivin, were infiltrated into the osteotomy site. Osteoactivin was ubiquitously expressed in the lengthened segment during the distraction and consolidation phases. Consistent with the immunohistochemical analysis, the levels of the osteoactivin transcripts in the tibias were significantly increased throughout the distraction osteogenesis process. The bone mineral content in the osteoactivin-transgenic mice calculated using peripheral quantitative computed tomography was also significantly increased at the remodeling zone. The histomorphometric analysis revealed that newly formed callus resorption in the remodeling zone was significantly reduced but bone formation was not altered in the osteoactivin-transgenic mice. We conclude that osteoactivin functions as an inhibitor of callus resorption during the consolidation phase of distraction osteogenesis.
Collapse
Affiliation(s)
- Kiminori Yukata
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima
- Department of Orthopedic Surgery, Ogori Daiichi General Hospital, Yamaguchi
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Mitsuhiko Takahashi
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima
| | - Natsuo Yasui
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima
| |
Collapse
|
10
|
Hatefi S, Alizargar J, Le Roux F, Hatefi K, Etemadi Sh M, Davids H, Hsieh NC, Smith F, Abou-El-Hossein K. Review of physical stimulation techniques for assisting distraction osteogenesis in maxillofacial reconstruction applications. Med Eng Phys 2021; 91:28-38. [PMID: 34074463 DOI: 10.1016/j.medengphy.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Distraction Osteogenesis (DO) is an emerging limb lengthening method for the reconstruction of the hard tissue and the surrounding soft tissue, in different human body zones. DO plays an important role in treating bone defects in Maxillofacial Reconstruction Applications (MRA) due to reduced side effects and better formed bone tissue compared to conventional reconstruction methods i.e. autologous bone graft, and alloplast implantation. Recently, varying techniques have been evaluated to enhance the characteristics of the newly formed tissues and process parameters. Promising results have been shown in assisting DO treatments while benefiting bone formation mechanisms by using physical stimulation techniques, including photonic, electromagnetic, electrical, and mechanical stimulation technique. Using assisted DO techniques has provided superior results in the outcome of the DO procedure compared to a standard DO procedure. However, DO methods, as well as assisting technologies applied during the DO procedure, are still emerging. Studies and experiments on developed solutions related to this field have been limited to animal and clinical trials. In this review paper, recent advances in physical stimulation techniques and their effects on the outcome of the DO treatment in MRA are surveyed. By studying the effects of using assisting techniques during the DO treatment, enabling an ideal assisted DO technique in MRA can be possible. Although mentioned techniques have shown constructive effects during the DO procedure, there is still a need for more research and investigation to be done to fully understand the effects of assisting techniques and advanced technologies for use in an ultimate DO procedure in MRA.
Collapse
Affiliation(s)
- Shahrokh Hatefi
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Francis Le Roux
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Katayoun Hatefi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
| | - Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hajierah Davids
- Department of Physiology, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Nan-Chen Hsieh
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Farouk Smith
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Khaled Abou-El-Hossein
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| |
Collapse
|
11
|
Inoue S, Hatakeyama J, Aoki H, Kuroki H, Niikura T, Oe K, Fukui T, Kuroda R, Akisue T, Moriyama H. Effects of ultrasound, radial extracorporeal shock waves, and electrical stimulation on rat bone defect healing. Ann N Y Acad Sci 2021; 1497:3-14. [PMID: 33619772 DOI: 10.1111/nyas.14581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/27/2022]
Abstract
Fractures associated with osteoporosis are a major public health concern. Current treatments for fractures are limited to surgery or fixation, leading to long-term bedrest, which is linked to increased mortality. Alternatively, utilization of physical agents has been suggested as a promising therapeutic approach for fractures. Here, we examined the effects of ultrasound, radial extracorporeal shock waves, and electrical stimulation on normal or osteoporotic fracture healing. Femoral bone defects were created in normal or ovariectomized rats. Rats were divided into four groups: untreated, and treated with ultrasound, shock waves, or electrical stimulation after surgery. Samples were collected at 2 or 4 weeks after surgery, and the healing process was evaluated with micro-CT, histological, and immunohistochemical analyses. Ultrasound at intensities of 0.5 and 1.0 W/cm2 , but not 0.05 W/cm2 , accelerated new bone formation. Shock wave exposure also increased newly formed bone, but formed abnormal periosteal callus around the defect site. Conversely, electrical stimulation did not affect the healing process. Ultrasound exposure increased osteoblast activity and cell proliferation and decreased sclerostin-positive osteocytes. We demonstrated that higher-intensity ultrasound and radial extracorporeal shock waves accelerate fracture healing, but shock wave treatment may increase the risk of periosteal callus formation.
Collapse
Affiliation(s)
- Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hitoshi Aoki
- OG Wellness Technologies Co., Ltd., Okayama, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshihiro Akisue
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Emelianov VY, Preobrazhenskaia EV, Nikolaev NS. Evaluating the Effectiveness of Biophysical Methods of Osteogenesis Stimulation: Review. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2021; 27:86-96. [DOI: https:/doi.org/10.21823/2311-2905-2021-27-1-86-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Background. Stimulation of osteogenesis (SO) by biophysical methods has been widely used in practice to accelerate healing or stimulate the healing of fractures with non-unions, since the middle of the XIX century. SO can be carried out by direct current electrostimulation, or indirectly by low-intensity pulsed ultrasound, capacitive electrical coupling stimulation, and pulsed electromagnetic field stimulation. SO simulates natural physiological processes: in the case of electrical stimulation, it changes the electromagnetic potential of damaged cell tissues in a manner similar to normal healing processes, or in the case of low-intensity pulsed ultrasound, it produces weak mechanical effects on the fracture area. SO increases the expression of factors and signaling pathways responsible for tissue regeneration and bone mineralization and ultimately accelerates bone union.The purpose of this review was to present the most up-to-date data from laboratory and clinical studies of the effectiveness of SO.Material and Methods. The results of laboratory studies and the final results of metaanalyses for each of the four SO methods published from 1959 to 2020 in the PubMed, EMBASE, and eLibrary databases are reviewed.Conclusion. The use of SO effectively stimulates the healing of fractures with the correct location of the sensors, compliance with the intensity and time of exposure, as well as the timing of use for certain types of fractures. In case of non-union or delayed union of fractures, spondylodesis, arthrodesis, preference should be given to non-invasive methods of SO. Invasive direct current stimulation can be useful for non-union of long bones, spondylodesis with the risk of developing pseudoarthrosis.
Collapse
|
13
|
Emelianov VY, Preobrazhenskaia EV, Nikolaev NS. Evaluating the Effectiveness of Biophysical Methods of Osteogenesis Stimulation: Review. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2021; 27:86-96. [DOI: 10.21823/2311-2905-2021-27-1-86-96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background. Stimulation of osteogenesis (SO) by biophysical methods has been widely used in practice to accelerate healing or stimulate the healing of fractures with non-unions, since the middle of the XIX century. SO can be carried out by direct current electrostimulation, or indirectly by low-intensity pulsed ultrasound, capacitive electrical coupling stimulation, and pulsed electromagnetic field stimulation. SO simulates natural physiological processes: in the case of electrical stimulation, it changes the electromagnetic potential of damaged cell tissues in a manner similar to normal healing processes, or in the case of low-intensity pulsed ultrasound, it produces weak mechanical effects on the fracture area. SO increases the expression of factors and signaling pathways responsible for tissue regeneration and bone mineralization and ultimately accelerates bone union.The purpose of this review was to present the most up-to-date data from laboratory and clinical studies of the effectiveness of SO.Material and Methods. The results of laboratory studies and the final results of metaanalyses for each of the four SO methods published from 1959 to 2020 in the PubMed, EMBASE, and eLibrary databases are reviewed.Conclusion. The use of SO effectively stimulates the healing of fractures with the correct location of the sensors, compliance with the intensity and time of exposure, as well as the timing of use for certain types of fractures. In case of non-union or delayed union of fractures, spondylodesis, arthrodesis, preference should be given to non-invasive methods of SO. Invasive direct current stimulation can be useful for non-union of long bones, spondylodesis with the risk of developing pseudoarthrosis.
Collapse
|
14
|
Histological and Radiological Evaluation of Low-Intensity Pulsed Ultrasound Versus Whole Body Vibration on Healing of Mandibular Bone Defects in Rats. ACTA ACUST UNITED AC 2020; 56:medicina56090457. [PMID: 32911827 PMCID: PMC7558129 DOI: 10.3390/medicina56090457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Background and Objectives: Mechanical stimulation can improve the structural properties of the fracture site and induce the differentiation of different cell types for bone regeneration. This study aimed to compare the effect of low-intensity pulsed ultrasound stimulation (LIPUS) versus whole body vibration (WBV) on healing of mandibular bone defects. Materials and Methods: A mandibular defect was created in 66 rats. The rats were randomly divided into two groups of rats. Each group was subdivided randomly by three groups (n = 11) as follows: (I) control group, (II) treatment with LIPUS, and (III) treatment with WBV. The radiographic changes in bone density, the ratio of lamellar bone to the entire bone volume, the ratio of the newly formed bone to the connective tissue and inflammation grade were evaluated after 1 and 2 months. Results: LIPUS significantly increased the radiographic bone density change compared to the control group at the first and second month postoperatively (p < 0.01). WBV only significantly increased the bone density compared to the control group at the second month after the surgery (p < 0.01). Conclusions: Application of LIPUS and WBV may enhance the regeneration of mandibular bone defects in rats. Although LIPUS and WBV are effective in mandibular bone healing, the effects of LIPUS are faster and greater than WBV.
Collapse
|
15
|
Wu CT, Yang TH, Chen MC, Chung YP, Guan SS, Long LH, Liu SH, Chen CM. Low Intensity Pulsed Ultrasound Prevents Recurrent Ischemic Stroke in a Cerebral Ischemia/Reperfusion Injury Mouse Model via Brain-derived Neurotrophic Factor Induction. Int J Mol Sci 2019; 20:ijms20205169. [PMID: 31635269 PMCID: PMC6834125 DOI: 10.3390/ijms20205169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of stroke recurrence is still higher despite the advanced progression of therapeutic treatment and medical technology. Low intensity pulsed ultrasound (LIPUS) has been demonstrated to possess therapeutic effects on neuronal diseases and stroke via brain-derived neurotrophic factor (BDNF) induction. In this study, we hypothesized that LIPUS treatment possessed therapeutic benefits for the improvement of stroke recurrence. Adult male C57BL/6J mice were subjected to a middle cerebral artery occlusion (MCAO) surgery and then followed to secondary MCAO surgery as a stroke recurrence occurred after nine days from the first MCAO. LIPUS was administered continuously for nine days before secondary MCAO. LIPUS treatment not only decreased the mortality but also significantly moderated neuronal function injury including neurological score, motor activity, and brain pathological score in the recurrent stroke mice. Furthermore, the administration of LIPUS attenuated the apoptotic neuronal cells and increased Bax/Bcl-2 protein expression ratio and accelerated the expression of BDNF in the brain of the recurrent stroke mice. Taken together, these results demonstrate for the first time that LIPUS treatment arouses the expression of BDNF and possesses a therapeutic benefit for the improvement of stroke recurrence in a mouse model. The neuroprotective potential of LIPUS may provide a useful strategy for the prevention of a recurrent stroke.
Collapse
Affiliation(s)
- Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
- Master Program of Food and Drug Safety, China Medical University, Taichung 40402, Taiwan.
| | - Ting-Hua Yang
- Department of Otolaryngology, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan.
| | - Man-Chih Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Yao-Pang Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan.
| | - Lin-Hwa Long
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan.
| | - Chang-Mu Chen
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
16
|
Song MH, Kim TJ, Kang SH, Song HR. Low-intensity pulsed ultrasound enhances callus consolidation in distraction osteogenesis of the tibia by the technique of lengthening over the nail procedure. BMC Musculoskelet Disord 2019; 20:108. [PMID: 30871538 PMCID: PMC6419405 DOI: 10.1186/s12891-019-2490-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/04/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) has been widely accepted in promoting the fracture healing process. However, there have been limited clinical trials focused on the efficacy of LIPUS during distraction osteogenesis (DO) by the technique of lengthening over the nail procedure. The purpose of the current study was to evaluate the efficacy of LIPUS during DO. METHODS We retrospectively evaluated 30 patients (60 segments) who underwent simultaneous bilateral tibial lengthening over the nail. The patients were grouped into the LIPUS group and the control group based on LIPUS stimulation. The two patient groups were compared for demographic data (sex, age at operation, preoperative height, BMI, and smoking history), qualitative assessments of the callus (callus shape and type), external fixation index, and four cortical healing indexes. RESULTS Fifteen patients (30 segments) were classified as the LIPUS group, and another 15 patients (30 segments) were classified as the control group. No significant differences were found in the assessed demographic data between the groups. LIPUS stimulated a more cylindrical, more homogenous, and denser type of callus formation at the end of the distraction phase. The two groups exhibited equivalent outcomes in terms of external fixation index (p = 0.579). However, significant differences were found in healing indexes of the anterior and medial cortices (p < 0.001 and p = 0.002, respectively). The healing indexes of those cortices in the LIPUS group (mean of 36.6 days/cm and 32.5 days/cm, respectively) reflected their significantly faster healing compared to the control group (mean HI of 57.5 days/cm and 44.2 days/cm, respectively). There were no LIPUS-related complications. CONCLUSIONS LIPUS is a noninvasive and effective adjuvant therapy to enhance callus maturation during DO. It enhances callus consolidation and may have a positive effect on the appropriate callus shape and type.
Collapse
Affiliation(s)
- Mi Hyun Song
- Department of Orthopaedic Surgery and Institute for Rare Diseases, Korea University Medical Center, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Tae-Jin Kim
- Department of Orthopaedic Surgery and Institute for Rare Diseases, Korea University Medical Center, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Sung Hyun Kang
- Department of Orthopaedic Surgery and Institute for Rare Diseases, Korea University Medical Center, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Hae-Ryong Song
- Department of Orthopaedic Surgery and Institute for Rare Diseases, Korea University Medical Center, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| |
Collapse
|
17
|
Song D, Xu P, Liu S, Wu S. Dental pulp stem cells expressing SIRT1 improve new bone formation during distraction osteogenesis. Am J Transl Res 2019; 11:832-843. [PMID: 30899383 PMCID: PMC6413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Distraction osteogenesis (DO) is one of the most promising reconstructive methods for repairing large craniofacial defects or growth deficiencies through bone regeneration, but it is also a challenge because of an undesirably long process and its complications, which limit its application in clinical practice. The transplantation of mesenchymal stem cells (MSCs) is regarded as an innovative approach to accelerate bone regeneration. Dental pulp stem cells (DPSCs) have shown some advantages over other human adult MSCs, and DPSCs have been regarded as one of the most promising cell sources used in the endogenous tissue engineering. Furthermore, using stem cells modified by gene engineering in DO has been reported in previous studies. It has been shown that Sirtuin-1 (SIRT1) can directly regulate the differentiation of MSCs into osteoblasts. In this study, DPSCs expressing SIRT1 were prepared and their effects on the new bone formation were further investigated in rabbits with tibia. Rabbits were injected with the adenovirus (Adv)-SIRT1-green fluorescent protein (GFP)-transfected DPSCs (overexpression group, Group OE), Adv-GFP transfected DPSCs (negative control group, Group NC) or physiologic saline (control group, Groups CON) into the distraction gap. The new bone tissues in the distraction gap were harvested 8 weeks later, and subjected to by radiographic examination, micro-CT evaluation, and histological and mechanical testing. The better bone formation, the highest bone mineral density (BMD) and the highest bone mineral content (BMC) were observed in the OE group. In conclusion, SIRT1-modified DPSCs in DO was more effective to promote new bone formation during DO, which provides evidence for further investigation about the role of of SIRT1 in the DO.
Collapse
Affiliation(s)
- Donghui Song
- Department of Stomatology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Ping Xu
- Department of Stomatology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Shu Liu
- Department of Stomatology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Senbin Wu
- Department of Stomatology, Affiliated Hospital of Nantong University Nantong 226001, China
| |
Collapse
|