1
|
Wang M, Zhou Z, Wei Y, He R, Yang J, Zhang X, Li X, Zhao D, Li Z, Leng X, Dong H. Dissecting the mechanisms of velvet antler extract against diabetic osteoporosis via network pharmacology and proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119334. [PMID: 39800246 DOI: 10.1016/j.jep.2025.119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Velvet antler (VAE) is a famous traditional Chinese medicine (TCM), which has been used for thousands of years to treat bone-related diseases. Nonetheless, whether VAE has anti-diabetic osteoporosis (DOP) properties remains to be elucidated. AIM OF THE STUDY The therapeutic mechanism of VAE on DOP is based on integrated proteomics of network pharmacology strategies to study related targets and pathways. MATERIALS AND METHODS Liquid chromatography-mass spectrometry (LC/MS) was used to analyze the main molecular components present in the VAE. The DOP mouse model was created by combining a high-fat diet with streptozotocin (STZ). High glucose (HG) induced MC3T3-E1 cells were used as a cell model to evaluate the therapeutic effect of VAE. The mechanisms of VAE in treating DOP were predicted through proteomics. Molecular docking, molecular dynamics simulations, DARTS and functional experiments were employed to further verify its mechanisms. RESULTS Altogether 30 components were identified by LC-MS. In vitro and in vivo results were confirmed that VAE had a protective effect on DOP. Combined with network pharmacology, proteomics and functional experiments revealed that TNF/PI3K-AKT signaling pathway may be the potential biochemical pathway for VAE in treating DOP. CONCLUSIONS The innovation of this study was investigating the effectiveness of VAE in treating DOP in vivo and in vitro and suggested that VAE might exert anti-DOP effects through the TNF/PI3K-AKT signaling pathway by network pharmacology and proteomics and found that ATK1 was the core target of VAE, which provided valuable insights for the clinical application of VAE in DOP.
Collapse
Affiliation(s)
- Mingyue Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenwei Zhou
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Rong He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Xudong Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China.
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
2
|
Tang Y, Mu Z, Pan D, Liu R, Hong S, Xiong Z. The role and mechanism of β-catenin-mediated skeletal muscle satellite cells in osteoporotic fractures by Jian-Pi-Bu-Shen formula. J Mol Histol 2024; 55:875-893. [PMID: 39105942 DOI: 10.1007/s10735-024-10238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Osteoporosis is a metabolic bone disease. β-Catenin is associated with fractures. Jian-Pi-Bu-Shen (JPBS) can promote the healing of osteoporotic fractures (OPF). However, the mechanism of β-catenin-mediated skeletal muscle satellite cells (SMSCs) in OPF by the JPBS is unclear. SMSCs were isolated and divided into five groups. The results showed that the survival rate of SMSCs was significantly higher in the low, medium, and high dose JPBS-containing serum groups after 7 days of incubation. The ALP activity and the number of SMSCs mineralized in the JPBS-containing serum intervention group were elevated. Axin, GSK-3β, β-catenin siRNAs were constructed and transfected into cells. Transfection of siRNAs reduced Axin, GSK-3β, and β-catenin expressions, respectively. β-Catenin-siRNA reversed ALP activity, the number of SMSCs mineralized, and the expression of β-catenin, BMP2, Runx2, COL-I, SP7/Ostrix, Osteocalcin, and BMP-7. Transcriptomic results suggested that the TNF signaling pathway associated with OPF was enriched. SD rats were subjected to the construction of OPF model by removing the ovaries. JPBS decreased the levels of PINP, ALP, CTX, and NTX through β-catenin in OPF rats, while increasing Runx2, β-catenin expressions through β-catenin at the broken end of fractures. Moreover, JPBS decreased BMC, BMD, and BV/TV and improved pathological damage through β-catenin in OPF rats. JPBS decreased the expression of Axin, GSK-3β mRNA, and protein, but increased the expressions of β-catenin, Pax7, COL-II, COL-II, BMP2, and Runx2 through β-catenin in OPF rats. In conclusion, JPBS inhibits Axin/GSK-3β expression, activates the β-catenin signaling, and promotes the osteogenic differentiation of SMSCs.
Collapse
Affiliation(s)
- Yanghua Tang
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China
| | - Zhuosong Mu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Dong Pan
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Renqi Liu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shenghu Hong
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China
| | - Zhenfei Xiong
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China.
| |
Collapse
|
3
|
Cheng L, Wang G, Lu H, Li S, Xiong W, Wang J. Effect of Bushen Tiansui Decoction on Delayed Fracture Healing: A Systematic Review and Meta-analysis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:471-488. [PMID: 38037365 PMCID: PMC10696372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
This review aimed to validate the therapeutic potential of Bushen Tiansui decoction (BSTSD), a traditional Chinese formulation, in treating delayed union of fractures. Comprehensive database searches identified randomized controlled trials up to September 13, 2022, assessing BSTSD's efficacy in delayed fracture healing. Outcomes were bone metabolism indexes and Harris hip scores. Quality and risk assessments were conducted using the Cochrane Collaboration's tools. Data were analyzed using RevMan software, with sensitivity analysis through Stata. BSTSD significantly improved bone GLA protein (SMD=1.76, P<0.00001) and alkaline phosphatase (SMD=1.31, P<0.00001). Additionally, Harris hip scores for pain, function, deformity, and motion showed marked improvement. BSTSD treatment also demonstrated enhanced clinical efficiency (RR=1.27, P<0.00001) with fewer complications. Sensitivity analyses indicated consistent results. BSTSD shows promise in treating delayed fracture unions, yet conclusions necessitate further high-quality research for validation.
Collapse
Affiliation(s)
- Ling Cheng
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, China
| | - Gao Wang
- Orthopedics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, China
| | - Hualong Lu
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, China
| | - Song Li
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, China
| | - Wei Xiong
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, China
| | - Jun Wang
- General Surgery Department of Trauma Center, The First Hospital of Nanchang, China
| |
Collapse
|
4
|
Integrated RNA-Seq Analysis Uncovers the Potential Mechanism of the “Kidney Governing Bones” Theory of TCM. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7044775. [PMID: 35399624 PMCID: PMC8986393 DOI: 10.1155/2022/7044775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
Abstract
Background. As in philosophy of traditional Chinese medicine (TCM), the theory of “kidney governing bones” has been demonstrated by a series of scientific studies. Furthermore, many groups including ours have explored the molecular mechanisms related to bone development, growth, and regeneration using modern biology technologies, such as RNA sequencing (RNA-Seq) and isobaric tags for relative and absolute quantification (ITRAQ), and have demonstrated that the underlying molecular mechanisms were highly consistent with the “kidney governing bones” theory. Objective. Kidney-yang deficiency (YD), as a pathological condition, has a passive effect on the skeleton growth; more specifically, it is a state of skeletal metabolic disorder. However, the exact molecular mechanisms related to the “kidney governing bones” theory under the control of multiple organs and systems are still unknown. Methods. In this study, we performed RNA-Seq analysis to investigate and compare the gene expression patterns of six types of tissue (bone, cartilage, kidney, testicle, thyroid gland, and adrenal gland) from YD rats and normal rats and analyzed the interaction effects controlled by multiple functional genes and signaling pathways between those tissues. Results. Our results showed that, in the state of YD, the functions of bone and cartilage were inhibited. Furthermore, multiple organs involving the reproductive, endocrine, and urinary systems were also investigated, and our results showed that YD could cause dysfunctions of these systems by downregulating multiple functional genes and signaling pathways that positively regulate the homeostasis of these tissues. Conclusion. We ensure that “kidney governing bones” was not a simple change in a single gene but the changes in complex biological networks caused by functional changes in multiple genes. This also coincides with the holistic view of TCM, which holds that the human body itself is an organic whole and the functional activities of each organ coordinate with each other.
Collapse
|
5
|
Zhang D, Fan L, Yang N, Li Z, Sun Z, Jiang S, Luo X, Li H, Wei Q, Ye X. Discovering the main "reinforce kidney to strengthening Yang" active components of salt Morinda officinalis based on the spectrum-effect relationship combined with chemometric methods. J Pharm Biomed Anal 2022; 207:114422. [PMID: 34688201 DOI: 10.1016/j.jpba.2021.114422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Morinda officinalis, a well-known traditional herbal medicine in China, is used to treat deficiency of kidney-yang syndrome. Although this medicine has the property of "reinforcing kidney to strengthening Yang," the chemical constituents responsible for this effect remain to be elucidated. Here, we aimed to identify the main active compounds responsible for reinforcing kidney to strengthening Yang, based on spectrum-effect relationships combined with chemometrics. We used the UPLC-diode array detection method to establish the chromatography fingerprint of M. officinalis. Hydrocortisone-induced and adenine-induced kidney-yang deficiency patterns were established to evaluate the efficacy of M. officinalis. Serum triiodothyronine, free thyroxine, thyrotropin, testosterone, cortisol, luteinizing hormone, follicle-stimulating hormone, corticotropin-releasing hormone, and adrenocorticotropic hormone levels were determined as pharmacodynamic indices. Analytic hierarchy process was used to determine the weight of each index to the total pharmacodynamic contribution. Lastly, the spectrum-effect between the fingerprint and the pharmacological effects were established using grey relational analysis and partial least squares. Our findings indicated that peaks 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 15, 17, and 20 might represent the main components that positively correlated to the total effect, of which four were identified by comparison with reference standards. The identified components were monotropein (peak 1), deacetyl asperulosidic acid (peak 3), asperulosidic acid (peak 8), and asperuloside (peak 9). Our results suggest that the "reinforce kidney to strengthening Yang" effects were attributable to the combined effects of the multiple chemical components of M. officinalis and provide a valuable method to identify the active "reinforce kidney to strengthening Yang" components of M. officinalis and establish the quality control of M. officinalis.
Collapse
Affiliation(s)
- Dandan Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Luodi Fan
- Infinitus (China) Company Ltd, Guangzhou 510623 China
| | - Nan Yang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenglei Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhimeng Sun
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - SiYi Jiang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xinyao Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Huijun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qiong Wei
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaochuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
6
|
Zhou Z, Zhao D, Zhang P, Zhang M, Leng X, Yao B. The enzymatic hydrolysates from deer sinew promote MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. BMC Complement Med Ther 2021; 21:59. [PMID: 33568122 PMCID: PMC7877118 DOI: 10.1186/s12906-021-03240-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background Deer Sinew serves as a medicinal food, and has been used for treating skeletal diseases, especially bone diseases in a long history. Thus, it could become an alternative option for the prevention and therapeutic remedy of bone-related diseases. In our previous study, we established an optimal extraction process of the enzymatic hydrolysates from Chinese Sika deer sinews (DSEH), and we demonstrated that DSEH significantly promoted the proliferation of MC3T3-E1 cells (an osteoblast-like cell line) with a certain dose-effect relationship. However, the precise molecular mechanism of deer sinew in regulating bone strength is still largely unknown. The aim of this study was to explore the underlying molecular mechanism of DSEH on MC3T3-E1 cells proliferation and extracellular matrix synthesis. Methods Preparation and quality control were performed as previously described. The effect of DSEH at different administrated concentrations on cell proliferation was measured using both CCK-8 and MTT assays, and the capacity of DSEH on extracellular matrix synthesis was detected by Alizarin red staining and quantification. The gene expression pattern change of MC3T3-E1 cells under the treatment of DSEH was investigated by RNA-seq analysis accompanied with validation methods. Results We demonstrated that DSEH promoted MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. DSEH significantly increased the expression levels of genes that promoted cell proliferation such as Gstp1, Timp1, Serpine1, Cyr61, Crlf1, Thbs1, Ctgf, P4ha2, Sod3 and Nqo1. However, DSEH significantly decreased the expression levels of genes that inhibited cell proliferation such as Mt1, Cdc20, Gas1, Nrp2, Cmtm3, Dlk2, Sema3a, Rbm25 and Hspb6. Furthermore, DSEH mildly increased the expression levels of osteoblast gene markers. Conclusions Our findings suggest that DSEH facilitate MC3T3-E1 cell proliferation and extracellular matrix synthesis to consolidate bone formation and stability, but prevent MC3T3-E1 cells from oxidative stress-induced damage, apoptosis and further differentiation. These findings deepened the current understanding of DSEH on regulating bone development, and provided theoretical support for the discovery of optional prevention and treatment for bone-related diseases.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengcheng Zhang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|