1
|
Zhang Z, Yu P, Bai L. Hsa_circular RNA_0045474 Facilitates Osteoarthritis Via Modulating microRNA-485-3p and Augmenting Transcription Factor 4. Mol Biotechnol 2024; 66:1174-1187. [PMID: 38206529 DOI: 10.1007/s12033-023-01019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Circular RNA (circRNA) influences on the pathological process of osteoarthritis (OA) and may be a potential marker for disease diagnosis. The study was to scrutinize the association of circ_0045474 with OA. Clinical samples of OA patients were collected, and 12 circRNAs derived from KPNA2 gene were examined. CHON-001 cells were stimulated with IL-1β to construct an OA chondrocyte model. miR-485-3p, transcription factor 4 (TCF4) and circ_0045474, type II procollagen (COL2A1), and human collagenase-3 (MMP13) were tested. Furthermore, cell activities were analyzed. The relationship between miR-485-3p, TCF4, and circ_0045474 was determined. The role of circ_0045474 in vivo was further confirmed by constructing an OA mouse model by anterior cruciate ligament transection. circ_0045474 expression was elevated in OA patients. Suppressing circ_0045474 restrained IL-1β-stimulated extracellular matrix degradation, inflammatory cytokine secretion, and chondrocyte apoptosis. Circ_0045474 competitively combined with miR-485-3p, while TCF4 was the target of miR-485-3p. Circ_0045474 modulated IL-1β-stimulated extracellular matrix degradation, inflammatory cytokine secretion, and chondrocyte apoptosis via miR-485-3p/TCF4 axis. Suppressing circ 0045474 was effective to alleviate OA in mice. Silenced circ_0045474 suppresses OA progression in vitro and vivo via miR-485-3p/TCF4 axis. In short, circ_0045474 can be considered a novel therapeutic target for OA.
Collapse
Affiliation(s)
- ZhenXing Zhang
- Department of Orthopaedics II, Haining People's Hospital, Haining, 314400, Zhejiang, China
| | - PingHua Yu
- Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - LinGang Bai
- Trauma Center, The Second People's Hospital of Lianyungang, No.41, Hailian East Road, Xinpu District, Lianyungang, 222002, Jiangsu, China.
| |
Collapse
|
2
|
Zhang Y, Chen H, Wu J, McVicar A, Chen Y, Su J, Li YP, Chen W. Deficiency of Cbfβ in articular cartilage leads to osteoarthritis-like phenotype through Hippo/Yap, TGFβ, and Wnt/β-catenin signaling pathways. Int J Biol Sci 2024; 20:1965-1977. [PMID: 38617544 PMCID: PMC11008268 DOI: 10.7150/ijbs.90250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/05/2024] [Indexed: 04/16/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disorder, causing physical impairments among the elderly. Core binding factor subunit β (Cbfβ) has a critical role in bone homeostasis and cartilage development. However, the function and mechanism of Cbfβ in articular cartilage and OA remains unclear. We found that Cbfβf/fAggrecan-CreERT mice with Cbfβ-deficiency in articular cartilage developed a spontaneous osteoarthritis-like phenotype with articular cartilage degradation. Immunofluorescence staining showed that Cbfβf/fAggrecan-CreERT mice exhibited a significant increase in the expression of articular cartilage degradation markers and inflammatory markers in the knee joints. RNA-sequencing analysis demonstrated that Cbfβ orchestrated Hippo/Yap, TGFβ/Smad, and Wnt/β-catenin signaling pathways in articular cartilage, and Cbfβ deficiency resulted in the abnormal expression of downstream genes involved in maintaining articular cartilage homeostasis. Immunofluorescence staining results showed Cbfβ deficiency significantly increased active β-catenin and TCF4 expression while reducing Yap, TGFβ1, and p-Smad 2/3 expression. Western blot and qPCR validated gene expression changes in hip articular cartilage of Cbfβ-deficient mice. Our results demonstrate that deficiency of Cbfβ in articular cartilage leads to an OA-like phenotype via affecting Hippo/Yap, TGFβ, and Wnt/β-catenin signaling pathways, disrupting articular cartilage homeostasis and leading to the pathological process of OA in mice. Our results indicate that targeting Cbfβ may be a potential therapeutic target for the design of novel and effective treatments for OA.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, Xi'an 710049, P.R. China
| | - Huiwen Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jinjin Wu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, 70112, USA
| | - Yilin Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, 70112, USA
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, P.R. China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, 70112, USA
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, 70112, USA
| |
Collapse
|
3
|
Yan M, Zhang D, Yang M. Saikosaponin D alleviates inflammatory response of osteoarthritis and mediates autophagy via elevating microRNA-199-3p to target transcription Factor-4. J Orthop Surg Res 2024; 19:151. [PMID: 38389105 PMCID: PMC10882832 DOI: 10.1186/s13018-024-04607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE This study was to investigate the underlying mechanism by which Saikosaponin D (SSD) mitigates the inflammatory response associated with osteoarthritis (OA) and regulates autophagy through upregulation of microRNA (miR)-199-3p and downregulation of transcription Factor-4 (TCF4). METHODS A mouse OA model was established. Mice were intragastrically administered with SSD (0, 5, 10 μmol/L) or injected with miR-199-3p antagomir into the knee. Then, pathological changes in cartilage tissues were observed. Normal chondrocytes and OA chondrocytes were isolated and identified. Chondrocytes were treated with SSD and/or transfected with oligonucleotides or plasmid vectors targeting miR-199-3p and TCF4. Cell viability, apoptosis, inflammation, and autophagy were assessed. miR-199-3p and TCF4 expressions were measured, and their targeting relationship was analyzed. RESULTS In in vivo experiments, SSD ameliorated cartilage histopathological damage, decreased inflammatory factor content and promoted autophagy in OA mice. miR-199-3p expression was downregulated and TCF4 expression was upregulated in cartilage tissues of OA mice. miR-199-3p expression was upregulated and TCF4 expression was downregulated after SSD treatment. Downregulation of miR-199-3p attenuated the effect of SSD on OA mice. In in vitro experiments, SSD inhibited the inflammatory response and promoted autophagy in OA chondrocytes. Downregulation of miR-199-3p attenuated the effect of SSD on OA chondrocytes. In addition, upregulation of miR-199-3p alone inhibited inflammatory responses and promoted autophagy in OA chondrocytes. miR-199-3p targeted TCF4. Upregulation of TCF4 attenuated the effects of miR-199-3p upregulation on OA chondrocytes. CONCLUSIONS SSD alleviates inflammatory response and mediates autophagy in OA via elevating miR-199-3p to target TCF4.
Collapse
Affiliation(s)
- Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China
| | - DaWei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China.
| |
Collapse
|
4
|
Zhou Q, Liu J, Xin L, Hu Y, Qi Y. The Diagnostic Features of Peripheral Blood Biomarkers in Identifying Osteoarthritis Individuals: Machine Learning Strategies and Clinical Evidence. Curr Comput Aided Drug Des 2024; 20:928-942. [PMID: 37594094 DOI: 10.2174/1573409920666230818092427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND People with osteoarthritis place a huge burden on society. Early diagnosis is essential to prevent disease progression and to select the best treatment strategy more effectively. In this study, the aim was to examine the diagnostic features and clinical value of peripheral blood biomarkers for osteoarthritis. OBJECTIVE The goal of this project was to investigate the diagnostic features of peripheral blood and immune cell infiltration in osteoarthritis (OA). METHODS Two eligible datasets (GSE63359 and GSE48556) were obtained from the GEO database to discern differentially expressed genes (DEGs). The machine learning strategy was employed to filtrate diagnostic biomarkers for OA. Additional verification was implemented by collecting clinical samples of OA. The CIBERSORT website estimated relative subsets of RNA transcripts to evaluate the immune-inflammatory states of OA. The link between specific DEGs and clinical immune-inflammatory markers was found by correlation analysis. RESULTS Overall, 67 robust DEGs were identified. The nuclear receptor subfamily 2 group C member 2 (NR2C2), transcription factor 4 (TCF4), stromal antigen 1 (STAG1), and interleukin 18 receptor accessory protein (IL18RAP) were identified as effective diagnostic markers of OA in peripheral blood. All four diagnostic markers showed significant increases in expression in OA. Analysis of immune cell infiltration revealed that macrophages are involved in the occurrence of OA. Candidate diagnostic markers were correlated with clinical immune-inflammatory indicators of OA patients. CONCLUSION We highlight that DEGs associated with immune inflammation (NR2C2, TCF4, STAG1, and IL18RAP) may be potential biomarkers for peripheral blood in OA, which are also associated with clinical immune-inflammatory indicators.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Ling Xin
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Yuedi Hu
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yajun Qi
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
5
|
Bai RJ, Liu D, Li YS, Tian J, Yu DJ, Li HZ, Zhang FJ. OPN inhibits autophagy through CD44, integrin and the MAPK pathway in osteoarthritic chondrocytes. Front Endocrinol (Lausanne) 2022; 13:919366. [PMID: 36034459 PMCID: PMC9411521 DOI: 10.3389/fendo.2022.919366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background To investigate whether osteopontin (OPN) affects autophagy in human osteoarthritic chondrocytes and determine the roles of CD44, αvβ3 integrin and the Mitogen-activated protein kinase (MAPK) pathway in this progress. Methods First, we compared the autophagy levels in the human osteoarthritis (OA) and normal cartilage, then, we cultured human OA chondrocytes in vitro and treated cells with recombinant human OPN (rhOPN) to determine autophagy changes. Next, the anti-CD44 and anti-CD51/61 monoclonal antibodies (Abs) or isotype IgG were used to determine the possible role of CD44 and αvβ3 integrin; subsequently, an inhibitor of the ERK MAPK pathway was used to investigate the role of ERK MAPK. Western blotting was used to measure the Beclin1, LC3 II and MAPK proteins expressions, mRFP-GFP-LC3 confocal imaging and transmission electron microscopy were also used to detect the autophagy levels. Cell Counting Kit-8 (CCK-8) was used to assay the proliferation and activity of chondrocytes. Results The LC3 protein was greatly decreased in OA cartilage compared to normal cartilage, and OPN suppressed the autophagy activity in chondrocytes in vitro. Blocking experiments with anti-CD44 and anti-CD51/61 Abs indicated that OPN could suppress the expression of LC3II and Beclin1 through αvβ3 integrin and CD44. Our results also indicated that the ratio of p-ERK/ERK but not p-P38/P38 and p-JNK/JNK was increased after the rhOPN treatment. The ERK inhibitor inhibited the activity of OPN in the suppression of autophagy, and the CCK-8 results showed that rhOPN could promote chondrocyte proliferation. Conclusion OPN inhibited chondrocyte autophagy through CD44 and αvβ3 integrin receptors and via the ERK MAPK signaling pathway.
Collapse
Affiliation(s)
- Rui-Jun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Deng-Jie Yu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Heng-Zhen Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Qin R, Cui Z, Zhou H, Guo R, Yao X, Wang T, Qin X, He X. Effect of lentivirus-mediated BMP2 from autologous tooth on the proliferative and osteogenic capacity of human periodontal ligament cells. J Periodontal Res 2022; 57:869-879. [PMID: 35730345 DOI: 10.1111/jre.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/28/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a chronic progressive inflammation that invades periodontal supporting tissues, in which periodontal tissue regeneration engineering offers new hope for prevention and treatment, including seed cells, scaffolds, and growth factors. In recent years, scholars have shown that autologous teeth can be used as new bone tissue repair materials for periodontal regeneration and bone tissue repair. The aim of this study was to establish a human periodontal ligament cell line that expresses the human bone morphogenetic protein 2 gene (BMP2) in a stable manner using lentiviral mediation in order to explore the effect of BMP2 from autologous tooth on the proliferative and osteogenic capacity of human periodontal ligament cells (hPDLCs). MATERIALS AND METHODS Human periodontal ligament cells were cultured, subcultured, and identified, and then homologous recombinant lentivirus plasmid plv-BMP2 was constructed and transfected into the third passage (P3 ) hPDLCs. After that, the effect of BMP2 on its proliferation was detected by CCK-8, at the same time, the osteogenic induction of hPDLCs was carried out at 7, 14, and 21 days, and then the effect of BMP2 on its osteogenic ability was detected by alizarin red staining, alkaline phosphatase activity determination, and the mRNA expression levels of osteogenic-related genes using real-time fluorescence quantitative PCR, including alkaline phosphatase, runt-related transcription factor 2, bone sialoprotein, osteocalcin, osteopontin, and collagen I. Finally, spss26.0 software was used for statistical processing. RESULTS The results showed that cells transfected with the homologous recombinant lentiviral plasmid pLV-BMP2 had a similar morphology to normal hPDLCs, showing a typical radial arrangement; the cell proliferative capacity of the pLV-BMP2 group as measured by CCK-8 was enhanced compared with the control group and the pLV-puro group (p < .05); alizarin red staining and alkaline phosphatase activity assay showed that the osteogenic ability of pLV-BMP2 was significantly enhanced compared with the control and pLV-puro groups (p < .01), and the findings of real-time fluorescence-based quantitative PCR showed high expression of osteogenic-related genes in pLV-BMP2 group (p < .01). CONCLUSION In conclusion, a stable periodontal ligament cell line overexpressing BMP2 was successfully established by a lentivirus-mediated method, which proved that BMP2 has a strong ability to promote the proliferation and osteogenesis of hPDLCs, thereby providing an opportunity for the study of periodontal tissue regeneration as well as providing an experimental basis for the application of autologous teeth as a new type of bone repair material for periodontal therapy and even for maxillofacial bone tissue repair.
Collapse
Affiliation(s)
- Ruoshan Qin
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu, China
| | - Ziwei Cui
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu, China
| | - Hongli Zhou
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu, China
| | - Ru Guo
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu, China
| | - Xuanxuan Yao
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Wang
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiangyi He
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Liang X, Jin Q, Yang X, Jiang W. Dickkopf‑3 and β‑catenin play opposite roles in the Wnt/β‑catenin pathway during the abnormal subchondral bone formation of human knee osteoarthritis. Int J Mol Med 2022; 49:48. [PMID: 35137918 PMCID: PMC8904073 DOI: 10.3892/ijmm.2022.5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is condition which poses a main concern to the aging population and its severity is expected to increase with the increasing life expectancy. In the future, several possible targets for OA treatment need to be defined. Dickkopf-related protein 3 (DKK3) is an atypical member of the Wnt-antagonistic dickkopf-related protein (DKK) family. The availability of research into the role of DKK3 in the abnormal remodeling of subchondral bone in human knee joints is currently limited. Thus, the aim of the present study was the evaluation of DKK3 expression in the abnormal bone remodeling of subchondral bone in human knee OA in order to clarify the role of DKK3 in subchondral bone remodeling and to acknowledge its potential relevance to β-catenin. In total, 38 specimens were collected from osteotomies of the medial tibial plateau of the human knee. The patient samples were then divided into the normal, mild, moderate and severe symptom groups, according to the Osteoarthritis Research Society International (OARSI) score. Following hematoxylin and eosin (H&E) and Safranin O-fast green staining for alkaline phosphatase (AZO method), changes in the distribution and number of osteocytes in the subchondral bone and the degree of sclerosis of the subchondral bone were observed. Immunohistochemical staining, immunofluorescence, western blot analysis and reverse-transcription quantitative PCR (RT-qPCR) were used for the detection of DKK3 and β-catenin expression level changes in osteoblasts in the subchondral bone of the medial tibial plateau. H&E and alkaline phosphatase staining revealed that the total number of osteocytes in the subchondral bone increased with the severity of the disease. The samples were also evaluated using Safranin O-Fast Green staining and were attributed a score according to the OARSI scoring system: The scoring number and cartilage damage increased along with OA severity. Immunohistochemistry and immunofluorescence assays demonstrated that β-catenin expression in osteocytes increased from mild to moderate, whereas DKK3 expression decreased with the development of arthritis from normal, mild to moderate. According to the results of western blot analysis, β-catenin expression was higher in moderate OA and then decreased in severe OA. On the other hand, the DKK3 levels decreased along with the progression from normal, mild to moderate OA. The results of RT-qPCR demonstrated that β-catenin and DKK3 gene expression differed with the degree of OA. On the whole, the present study demonstrates that DKK3 and β-catenin may play opposite roles in OA subchondral bone remodeling.
Collapse
Affiliation(s)
- Xuegang Liang
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Qunhua Jin
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Xiaochun Yang
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Wenhui Jiang
- Clinical Medical College, Xi'an Medical College, Xi'an, Shanxi 710000, P.R. China
| |
Collapse
|
8
|
Xi P, Zhang CL, Wu SY, Liu L, Li WJ, Li YM. CircRNA circ-IQGAP1 Knockdown Alleviates Interleukin-1β-Induced Osteoarthritis Progression via Targeting miR-671-5p/TCF4. Orthop Surg 2021; 13:1036-1046. [PMID: 33675175 PMCID: PMC8126892 DOI: 10.1111/os.12923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To explore the function of circular RNA IQ motif‐containing GTPase‐activating protein 1 (circ‐IQGAP1) in interleukin (IL)‐1β‐induced osteoarthritis (OA) model and to explore whether circ‐IQGAP1 can modulate microRNA‐671‐5p (miR‐671‐5p) and transcription factor 4 (TCF4) to regulate chondrocyte apoptosis, inflammatory injury, and extracellular matrix degradation. Methods The cartilage tissues were collected from 32 OA patients or normal subjects. Human chondrocyte CHON‐001 cells were challenged via different doses of IL‐1β for 24 hours. CHON‐001 cells were transfected with circ‐IQGAP1 overexpression vector, TCF4 overexpression vector, small interfering RNA (siRNA) for circ‐IQGAP1, miR‐671‐5p mimic, miR‐671‐5p inhibitor or corresponding negative controls. Circ‐IQGAP1, miR‐671‐5p and TCF4 abundances in cartilage tissues or CHON‐001 cells were examined via quantitative reverse transcription polymerase chain reaction (qRT‐PCR) or western blot. Cell viability was investigated by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT). Cell apoptosis was measured by flow cytometry. The inflammatory injury was analyzed by the secretion levels of inflammatory cytokines (IL‐6, IL‐8 and tumor necrosis factor‐α [TNF‐α]) by enzyme‐linked immunosorbent assay (ELISA). The extracellular matrix degradation was evaluated by expression of aggrecan and matrix metalloproteinase 13 (MMP13) via western blot. The target relationship of miR‐671‐5p and circ‐IQGAP1 or TCF4 was analyzed via dual‐luciferase reporter and RNA immunoprecipitation (RIP) analyses. Results Circ‐IQGAP1 abundance was enhanced in the cartilage tissues from OA patients compared with normal subjects (n = 32), and its expression was increased in CHON‐001 cells after treatment of IL‐1β in a dose‐dependent pattern. MiR‐671‐5p expression was decreased in the cartilage tissues from OA patients (n = 32) and IL‐1β‐challenged CHON‐001 cells. MiR‐671‐5p expression was negatively associated with circ‐IQGAP1 level in OA patients. Circ‐IQGAP1 silence mitigated IL‐1β‐caused chondrocyte viability reduction, apoptosis promotion, secretion of inflammatory cytokine (IL‐6, IL‐8 and TNF‐α), and extracellular matrix degradation (reduction of aggrecan and increase of MMP13). MiR‐671‐5p was targeted and inhibited via circ‐IQGAP1. MiR‐671‐5p knockdown attenuated the influence of circ‐IQGAP1 interference on IL‐1β‐caused chondrocyte apoptosis, inflammatory injury, and extracellular matrix degradation. TCF4 was targeted via miR‐671‐5p, and TCF4 expression was increased in the cartilage tissues from OA patients (n = 32) and IL‐1β‐challenged CHON‐001 cells. TCF4 abundance in OA patients was negatively correlated with miR‐671‐5p expression. MiR‐671‐5p overexpression alleviated IL‐1β‐mediated chondrocyte apoptosis, inflammatory injury, and extracellular matrix degradation via decreasing TCF4 expression. Circ‐IQGAP1 silence reduced TCF4 expression via regulating miR‐671‐5p in IL‐1β‐challenged CHON‐001 cells. Conclusion Circ‐IQGAP1 knockdown attenuated IL‐1β‐caused chondrocyte apoptosis, inflammatory injury, and extracellular matrix degradation. Circ‐IQGAP1 could regulate miR‐671‐5p/TCF4 axis to modulate IL‐1β‐caused chondrocyte damage. Circ‐IQGAP1 might act as a new target for the treatment of OA.
Collapse
Affiliation(s)
- Peng Xi
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Cai-Lin Zhang
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Shi-Yan Wu
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Lei Liu
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Wen-Ju Li
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| | - Yi-Mei Li
- Pain Department, the First Affiliated Hospital ofXinjiang Medical University, Urumqi, China
| |
Collapse
|