1
|
Krattiger LA, Guex AG. Complex in vitro model systems to understand the biointerfaces of dental implants. Dent Mater 2025:S0109-5641(25)00625-6. [PMID: 40360331 DOI: 10.1016/j.dental.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/11/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVES This narrative review aims to provide an overview of in vitro models to evaluate new materials or surface functionalities in dental implant research. The focus lies on concepts and models rather than specific materials or cell types. METHODS Literature searches were conducted using PubMed, Web of Science, and google scholar. Major focus was on in vitro studies using mammalian cells that evaluated different implant materials with respect to soft tissue adhesion or osseointegration. Keywords were combinations of in vitro models, dental materials, dental implantology, cells, cell material interactions, or biointerfaces. A total of 147 articles are included in this review. RESULTS The majority of studies report on first-line in vitro evaluations with static 2D cell cultures on cylindrical discs of the material of interest. One step further, more advanced 2D models incorporated multiple cell types or studied signaling pathways and mechanisms. Only few publications reported on truly 3D models. A new category of dynamic culture models or integrated implant-on-a-chip systems is arising. We conclude that more research is needed to understand clinical observations on the cellular level and that standardized protocols are needed to evaluate new materials. SIGNIFICANCE To accommodate patient-specific requirements, new technologies for surface treatments and functionalizations are required. Thereby, the portfolio of standard titanium or zirconia-based dental implants will undoubtedly be complemented with novel materials. In the scope of reducing, refining and replacing animal studies, preceding in vitro evaluations must be more predictive to account for the increasing demand for material evaluations and medical device regulations.
Collapse
Affiliation(s)
- Lisa A Krattiger
- Department Research, University Center for Dental Medicine Basel UZB, University of Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Anne Géraldine Guex
- Department Research, University Center for Dental Medicine Basel UZB, University of Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| |
Collapse
|
2
|
Moghaddam MM, Jooybar E, Imani R, Ehrbar M. Development of injectable microgel-based scaffolds via enzymatic cross-linking of hyaluronic acid-tyramine/gelatin-tyramine for potential bone tissue engineering. Int J Biol Macromol 2024; 279:135176. [PMID: 39214205 DOI: 10.1016/j.ijbiomac.2024.135176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the healing of large bone defects relies on invasive surgeries and the transplantation of autologous bone. As a less invasive treatment option, the provision of microenvironments that promote the regeneration of defective bones holds great promise. Here, we developed hyaluronic acid (HA)/gelatin (Ge) microgel-based scaffolds to guide bone regeneration. To enable the formation of microgels by enzymatic cross-linking in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), we modified the polymers with tyramine (TA). Spectrophotometry and proton nuclear magnetic resonance (1H NMR) spectroscopy analysis confirmed successful tyramine substitution on polymer backbones. To enable the formation of microgels by a water-in-oil emulsion approach, the HRP and H2O2 concentrations were tuned to achieve the gelation in a few seconds. By varying the stirring speed from 600 to 1000 rpm, spherical microgels were produced with an average size of 116 ± 8.7 and 68 ± 4.7 μm, respectively. The results showed that microgels were injectable through needles and showed good biocompatibility with the cultured human osteosarcoma cell line (MG-63). HA/Ge-TA microgels served as a promising substrate for MG-63 cells since they improved the alkaline phosphatase activity and level of calcium deposition. In summary, the developed HA/Ge-TA microgels are promising injectable microgel-based scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Melika Mansouri Moghaddam
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elaheh Jooybar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Killinger M, Kratochvilová A, Reihs EI, Matalová E, Klepárník K, Rothbauer M. Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures. J Biol Eng 2023; 17:77. [PMID: 38098075 PMCID: PMC10722696 DOI: 10.1186/s13036-023-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Three-dimensional (3D) cell cultures are to date the gold standard in biomedical research fields due to their enhanced biological functions compared to conventional two-dimensional (2D) cultures. 3D cell spheroids, as well as organoids, are better suited to replicate tissue functions, which enables their use both as in vitro models for basic research and toxicology, as well as building blocks used in tissue/organ biofabrication approaches. Culturing 3D spheroids from bone-derived cells is an emerging technology for both disease modelling and drug screening applications. Bone tissue models are mainly limited by the implementation of sophisticated devices and procedures that can foster a tissue-specific 3D cell microenvironment along with a dynamic cultivation regime. In this study, we consequently developed, optimized and characterized an advanced perfused microfluidic platform to improve the reliability of 3D bone cell cultivation and to enhance aspects of bone tissue maturation in vitro. Moreover, biomechanical stimulation generated by fluid flow inside the arrayed chamber, was used to mimic a more dynamic cell environment emulating a highly vascularized bone we expected to improve the osteogenic 3D microenvironment in the developed multifunctional spheroid-array platform. The optimized 3D cell culture protocols in our murine bone-on-a-chip spheroid model exhibited increased mineralization and viability compared to static conditions. As a proof-of-concept, we successfully confirmed on the beneficial effects of a dynamic culture environment on osteogenesis and used our platform for analysis of bone-derived spheroids produced from primary human pre-osteoblasts. To conclude, the newly developed system represents a powerful tool for studying human bone patho/physiology in vitro under more relevant and dynamic culture conditions converging the advantages of microfluidic platforms with multi-spheroid array technologies.
Collapse
Affiliation(s)
- Michael Killinger
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Kratochvilová
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Eva Ingeborg Reihs
- Cell Chip Group, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technical University Vienna, Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Matalová
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Karel Klepárník
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences, Brno, Czech Republic
| | - Mario Rothbauer
- Cell Chip Group, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technical University Vienna, Vienna, Austria.
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Tong X, Zhang Y, Zhao Y, Li Y, Li T, Zou H, Yuan Y, Bian J, Liu Z, Gu J. Vitamin D Alleviates Cadmium-Induced Inhibition of Chicken Bone Marrow Stromal Cells' Osteogenic Differentiation In Vitro. Animals (Basel) 2023; 13:2544. [PMID: 37570352 PMCID: PMC10417335 DOI: 10.3390/ani13152544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Vitamin D is a lipid soluble vitamin that is mostly used to treat bone metabolism-related diseases. In this study, the effect of Cd toxicity in vitro on osteogenic differentiation derived from BMSCs and the alleviating effect of lα, 25-(OH)2D3 were investigated. Cell index in real time was monitored using a Real-time cell analyzer (RTCA) system. The activity of alkaline phosphatase (ALP), and the calcified nodules and the distribution of Runx2 protein were detected using ALP staining, alizarin red staining, and immunofluorescence, respectively. Furthermore, the mitochondrial membrane potential and the apoptotic rate of BMSCs, the mRNA levels of RUNX2 and type Ⅰ collagen alpha2 (COL1A2) genes, and the protein expression of Col1 and Runx2 were detected using flow cytometry, qRT-PCR and western blot, respectively. The proliferation of BMSCs and osteogenic differentiation were enhanced after treatment with different concentrations of lα, 25-(OH)2D3 compared with the control group. However, 5 μmol/L Cd inhibited the proliferation of BMSCs. In addition, 10 nmol/L lα,25-(OH)2D3 attenuated the toxicity and the apoptosis of BMSCs treated by Cd, and also promoted the osteogenic differentiation including the activity of ALP, and the protein expression of Col1 and Runx2. lα, 25-(OH)2D3 can alleviate cadmium-induced osteogenic toxicity in White Leghorn chickens in vitro.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Ying Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Yutian Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yawen Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Tan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Hui Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yan Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jianchun Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
5
|
Man K, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. J Nanobiotechnology 2023; 21:137. [PMID: 37106449 PMCID: PMC10134574 DOI: 10.1186/s12951-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Research and Clinical Innovation, Royal Centre for Defence Medicine, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, UK
- Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
- Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College, Dublin 2, D02 DK07, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, D02 VN51, Dublin, Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Roberts FL, MacRae VE. Bone mineralisation and glucose metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 29:100446. [PMID: 39184263 PMCID: PMC11339533 DOI: 10.1016/j.coemr.2023.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 08/27/2024]
Abstract
Recent advancements in the bone biology field have identified a novel bone-metabolism axis. In this review, we highlight several novel studies that further our knowledge of new endocrine functions of bone; explore remaining unanswered questions; and discuss translational challenges in this complex era of bone biology research.
Collapse
Affiliation(s)
| | - Vicky E. MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
7
|
Rudolph SE, Longo BN, Tse MW, Houchin MR, Shokoufandeh MM, Chen Y, Kaplan DL. Crypt-Villus Scaffold Architecture for Bioengineering Functional Human Intestinal Epithelium. ACS Biomater Sci Eng 2022; 8:4942-4955. [PMID: 36191009 PMCID: PMC10379436 DOI: 10.1021/acsbiomaterials.2c00851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crypt-villus architecture in the small intestine is crucial for the structural integrity of the intestinal epithelium and maintenance of gut homeostasis. We utilized three-dimensional (3D) printing and inverse molding techniques to form three-dimensional (3D) spongy scaffold systems that resemble the intestinal crypt-villus microarchitecture. The scaffolds consist of silk fibroin protein with curved lumens with rows of protruding villi with invaginating crypts to generate the architecture. Intestinal cell (Caco-2, HT29-MTX) attachment and growth, as well as long-term culture support were demonstrated with cell polarization and tissue barrier properties compared to two-dimensional (2D) Transwell culture controls. Further, physiologically relevant oxygen gradients were generated in the 3D system. The various advantages of this system may be ascribed to the more physiologically relevant 3D environment, offering a system for the exploration of disease pathogenesis, host-microbiome interactions, and therapeutic discovery.
Collapse
Affiliation(s)
- Sara E Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Brooke N Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Megan W Tse
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Megan R Houchin
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Mina M Shokoufandeh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022; 11:cells11081313. [PMID: 35455993 PMCID: PMC9029885 DOI: 10.3390/cells11081313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are capable of renewing the progenitor cell fraction or differentiating in a tissue-specific manner. Adipogenic differentiation of adipose-tissue-derived MSC (adMSC) is important in various pathological processes. Adipocytes and their progenitors are metabolically active and secrete molecules (adipokines) that have both pro- and anti-inflammatory properties. Cell culturing in 2D is commonly used to study cellular responses, but the 2D environment does not reflect the structural situation for most cell types. Therefore, 3D culture systems have been developed to create an environment considered more physiological. Since knowledge about the effects of 3D cultivation on adipogenic differentiation is limited, we investigated its effects on adipogenic differentiation and adipokine release of adMSC (up to 28 days) and compared these with the effects in 2D. We demonstrated that cultivation conditions are crucial for cell behavior: in both 2D and 3D culture, adipogenic differentiation occurred only after specific stimulation. While the size and structure of adipogenically stimulated 3D spheroids remained stable during the experiment, the unstimulated spheroids showed signs of disintegration. Adipokine release was dependent on culture dimensionality; we found upregulated adiponectin and downregulated pro-inflammatory factors. Our findings are relevant for cell therapeutic applications of adMSC in complex, three-dimensionally arranged tissues.
Collapse
|
9
|
Arora S, Cooper PR, Ratnayake JT, Friedlander LT, Rizwan SB, Seo B, Hussaini HM. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int Endod J 2022; 55 Suppl 1:3-13. [PMID: 35030284 PMCID: PMC9303903 DOI: 10.1111/iej.13684] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
Background The pulp contains a resident population of stem cells which can be stimulated to differentiate in order to repair the tooth by generating a mineralized extracellular matrix. Over recent decades there has been considerable interest in utilizing in vitro cell culture models to study dentinogenesis, with the aim of developing regenerative endodontic procedures, particularly where some vital pulp tissue remains. Objectives The purpose of this review is to provide a structured oversight of in vitro research methodologies which have been used to study human pulp mineralization processes. Method The literature was screened in the PubMed database up to March 2021 to identify manuscripts reporting the use of human dental pulp cells to study mineralization. The dataset identified 343 publications initially which were further screened and consequently 166 studies were identified and it was methodologically mined for information on: i) study purpose, ii) source and characterization of cells, iii) mineralizing supplements and concentrations, and iv) assays and markers used to characterize mineralization and differentiation, and the data was used to write this narrative review. Results Most published studies aimed at characterizing new biological stimulants for mineralization as well as determining the effect of scaffolds and dental (bio)materials. In general, pulp cells were isolated by enzymatic digestion, although the pulp explant technique was also common. For enzymatic digestion, a range of enzymes and concentrations were utilized, although collagenase type I and dispase were the most frequent. Isolated cells were not routinely characterized using either fluorescence‐activated cell sorting (FACS) and magnetic‐activated cell sorting (MACS) approaches and there was little consistency in terming cultures as dental pulp cells or dental pulp stem cells. A combination of media supplements, at a range of concentrations, of dexamethasone, ascorbic acid and beta‐glycerophosphate, were frequently applied as the basis for the experimental conditions. Alizarin Red S (ARS) staining was the method of choice for assessment of mineralization at 21‐days. Alkaline phosphatase assay was relatively frequently applied, solely or in combination with ARS staining. Further assessment of differentiation status was performed using transcript or protein markers, with dentine sialophosphoprotein (DSPP), osteocalcin and dentine matrix protein‐1 (DMP ‐1), the most frequent. Discussion While this review highlights variability among experimental approaches, it does however identify a consensus experimental approach. Conclusion Standardization of experimental conditions and sustained research will significantly benefit endodontic patient outcomes in the future.
Collapse
Affiliation(s)
- Shelly Arora
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Jithendra T Ratnayake
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Lara T Friedlander
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | | | - Benedict Seo
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Haizal M Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| |
Collapse
|
10
|
Font Tellado S, Delgado JA, Poh SPP, Zhang W, García-Vallés M, Martínez S, Gorustovich A, Morejón L, van Griensven M, Balmayor ER. Phosphorous pentoxide-free bioactive glass exhibits dose-dependent angiogenic and osteogenic capacities which are retained in glass polymeric composite scaffolds. Biomater Sci 2021; 9:7876-7894. [PMID: 34676835 DOI: 10.1039/d1bm01311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive glasses (BGs) are attractive materials for bone tissue engineering because of their bioactivity and osteoinductivity. In this study, we report the synthesis of a novel phosphorous pentoxide-free, silicate-based bioactive glass (52S-BG) composed of 52.1% SiO2, 23.2% Na2O and 22.6% CaO (wt%). The glass was thoroughly characterized. The biocompatibility and osteogenic properties of 52S-BG particles were analyzed in vitro with human adipose-derived mesenchymal stem cells (AdMSCs) and human osteoblasts. 52S-BG particles were biocompatible and induced mineralized matrix deposition and the expression of osteogenic markers (RunX2, alkaline phosphatase, osteocalcin, osteopontin, collagen I) and the angiogenic marker vascular endothelial growth factor (VEGF). Angiogenic properties were additionally confirmed in a zebrafish embryo model. 52S-BG was added to poly-ε-caprolactone (PCL) to obtain a composite with 10 wt% glass content. Composite PCL/52S-BG scaffolds were fabricated by additive manufacturing and displayed high porosity (76%) and pore interconnectivity. The incorporation of 52S-BG particles increased the Young's modulus of PCL scaffolds from 180 to 230 MPa. AdMSC seeding efficiency and proliferation were higher in PCL/52S-BG compared to PCL scaffolds, indicating improved biocompatibility. Finally, 52S-BG incorporation improved the scaffolds' osteogenic and angiogenic properties by increasing mineral deposition and inducing relevant gene expression and VEGF protein secretion. Overall, 52S-BG particles and PCL/52S-BG composites may be attractive for diverse bone engineering applications requiring concomitant angiogenic properties.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - José Angel Delgado
- Center for Biomaterials, University of Havana, 10400 Havana, Cuba.,Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Su Ping Patrina Poh
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Wen Zhang
- Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Ethris GmbH, 82152 Planegg, Germany
| | - Maite García-Vallés
- Mineralogy, Petrology and Applied Geology Department, University of Barcelona, 08028 Barcelona, Spain
| | - Salvador Martínez
- Mineralogy, Petrology and Applied Geology Department, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD Salta, Argentina
| | - Lizette Morejón
- Center for Biomaterials, University of Havana, 10400 Havana, Cuba
| | - Martijn van Griensven
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Elizabeth Rosado Balmayor
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
11
|
Alnahash AZ, Song YM, Min SK, Lee HJ, Kim MJ, Park YH, Park JU, Park JB. Effects of Connective Tissue Growth Factor on the Cell Viability, Proliferation, Osteogenic Capacity and mRNA Expression of Stem Cell Spheroids. APPLIED SCIENCES 2021; 11:6572. [DOI: 10.3390/app11146572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Background: Connective tissue growth factor (CTGF) is a cellular communication network factor family protein involved in many cellular functions. The purpose of this study was to determine the effects of CTGF on the proliferation, osteogenic capacity, and mRNA expression of spheroids composed of gingiva-derived mesenchymal stem cells (GMSCs). Methods: CTGF was applied at final concentrations of 0, 25, 50, 100, and 200 ng/mL. Qualitative cell viability was determined using Live/Dead kit assay. Metabolic viability was determined with a colorimetric assay kit. Osteogenic activity was analyzed with alkaline phosphatase activity and Alizarin Red S staining. Quantitative polymerase chain reaction (qPCR) was used to assess the expression levels of RUNX2, BSP, OCN, and COL1A1. Results: In general, there was no significant difference in cell viability between the groups on Days 1, 4, and 7. Addition of CTGF produced an increase in Alizarin Red S staining. qPCR results demonstrated that the mRNA expression levels of RUNX2, BSP, OCN, and COL1A1 were significantly increased with the addition of CTGF. Conclusions: Based on these findings, we conclude that CTGF can be applied for increased osteogenic differentiation of stem cell spheroids.
Collapse
Affiliation(s)
- Abdullah Zaki Alnahash
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- First Health Cluster, Dammam 31311, Eastern Province, Saudi Arabia
| | - Young-Min Song
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sae-Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Min-Ji Kim
- College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Yoon-Hee Park
- Ebiogen, #405, Sungsu A1 Center 48 Ttukseom-ro 17-ga-gil, Seoul 04785, Korea
| | - Je-Uk Park
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|