1
|
Tang M, Li H, Chang S, Li Y, Nie H, Li F. Dysregulated circular RNAs in rheumatoid arthritis: Cellular roles and clinical prospects. Autoimmun Rev 2025; 24:103774. [PMID: 39956349 DOI: 10.1016/j.autrev.2025.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Rheumatoid arthritis (RA) is still a healthcare challenge, although current therapeutic strategies have substantially improved its clinical outcomes. The development of novel biomarkers and treatments can increase the likelihood of identification and disease remission in RA patients, especially for patients with seronegative RA and difficult-to-treat RA (D2T RA). Circular RNAs (circRNAs), a novel non-coding RNA species, have been reported to play crucial roles in various biological process of RA. The mechanistic functions of the dysregulated circRNAs in RA are primarily associated with miRNA sponging and regulating transcription. CircRNAs acting as miRNA sponges are further summarized by cell types, including fibroblast-like synoviocytes (FLSs), lymphocytes, macrophages, chondrocytes, and mesenchymal stem cells (MSCs)-/plasma-secreted exosomes. Besides, a description of dysregulated circRNAs in blood, synovial tissue and cartilage tissue suggests their diagnostic potential for RA. In addition, some directions for future research are provided to open the possibility that dysregulated cell- and tissue- specific circRNAs constituting a fresh reservoir of therapeutic targets, and biomarkers for diagnosis, predicting response to therapy, drug selection or patient stratification for RA.
Collapse
Affiliation(s)
- Mengshi Tang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China
| | - Hongxing Li
- Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, the Central Hospital of Shaoyang, Shaoyang, Hunan 422099, China
| | - Siyuan Chang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China
| | - Yuanyuan Li
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China
| | - Huiyu Nie
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China
| | - Fen Li
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Kaurani L, Pradhan R, Schröder S, Burkhardt S, Schuetz AL, Krüger DM, Pena T, Heutink P, Sananbenesi F, Fischer A. A role for astrocytic miR-129-5p in frontotemporal dementia. Transl Psychiatry 2025; 15:142. [PMID: 40216778 PMCID: PMC11992244 DOI: 10.1038/s41398-025-03338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Frontotemporal dementia is a debilitating neurodegenerative disorder characterized by frontal and temporal lobe degeneration, resulting in behavioral changes, language difficulties, and cognitive decline. In this study, smallRNA sequencing was conducted on postmortem brain tissues obtained from the frontal and temporal of FTD patients with GRN, MAPT, or C9ORF72 mutations. Our analysis identified miR-129-5p as consistently deregulated across all analyzed mutation conditions and brain regions. Functional investigations in in-vitro models revealed a novel role of miR-129-5p in astrocytes, where its loss led to neuroinflammation and impaired neuronal support functions, including reduced glutamate uptake. Depletion of miR-129-5p in astrocytes also resulted in the loss of neuronal spines and altered neuronal network activity in a cell culture system. These findings highlight miR-129-5p as a potential therapeutic target in neurodegenerative diseases and also sheds light on the role of astrocytes in Frontotemporal dementia pathogenesis.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Ranjit Pradhan
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sophie Schröder
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna-Lena Schuetz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dennis M Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Andre Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Zhen Y, Li D, Meng Y, Xing Z, Zheng J. Unveiling the roles of HIPK2 in atherosclerosis: Insights into the β-catenin/STAT1 signaling cascade and the involvement of SENP1. Biochem Pharmacol 2025; 237:116911. [PMID: 40164339 DOI: 10.1016/j.bcp.2025.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Atherosclerosis is a disorder of lipid metabolism, but its pathogenesis has not yet been fully elucidated. This study aimed to clarify the roles of homeodomain interacting protein kinase 2 (HIPK2) in atherosclerosis. Atherosclerotic model was constructed by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Human THP-1 macrophages and mouse RAW 264.7 macrophages were stimulated with IFN-γ to establish an in vitro model. We showed an upregulation of HIPK2 in the aorta of atherosclerotic mice. HIPK2 knockdown reduced macrophage infiltration, M1 polarization, and attenuates atherosclerosis development. Downregulation of HIPK2 in macrophages led to a significant suppression in the expression of pro-inflammatory factors, which was accompanied by an enhancement in the phosphorylation and degradation of β-catenin, as well as the activation of the signal transducer and activator of transcription 1 (STAT1) signaling pathway. Silencing of HIPK2 alone in THP-1 macrophages resulted in anti-inflammatory effects and suppression of M1 macrophage polarization. However, simultaneous silencing of HIPK2 and β-catenin (CTNNB1) reversed these effects, counteracting the outcomes observed with HIPK2 silencing alone. We validated that small ubiquitin-like modifier (SUMO)-specific peptidase 1 (SENP1) regulated HIPK2 function by affecting the SUMOylation of HIPK2 at the K32 site. SENP1 knockdown promoted HIPK2 SUMOylation, impairing its protein stability. In the rescue experiments, IFN-γ-induced inflammation and M1 polarization were resumed upon restoration of HIPK2 expression in SENP1-silenced macrophages. Our work demonstrated that HIPK2 accelerated the progression of atherosclerosis by regulating β-catenin/STAT1 signaling cascade to promote macrophage infiltration and M1 polarization. HIPK2 was regulated by SENP1-mediated de-SUMOylation.
Collapse
Affiliation(s)
- Yanhua Zhen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Dongdong Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yulu Meng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zeyu Xing
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| |
Collapse
|
4
|
Su W, Ye Z, Wang G, Huang H, Fang Y. Circ_0008410 contributes to fibroblast-like synoviocytes dysfunction by regulating miR-149-5p/HIPK2 axis. Microbiol Immunol 2024; 68:100-110. [PMID: 38129937 DOI: 10.1111/1348-0421.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Circular RNAs (circRNAs) play functional roles in rheumatoid arthritis (RA) progression. Fibroblast-like synoviocytes (RASFs) are the main effectors in RA development. In this study, we explored the function and mechanism of circ_0008410 in RASFs. qRT-PCR was used to detect the expression of circ_0008410, microRNA-149-5p (miR-149-5p), and homeodomain-interacting protein kinase 2 (HIPK2). Cell counting kit-8, EdU assay, flow cytometry, and transwell assay were performed to evaluate cell proliferation, apoptosis, migration, and invasion. Western blot measured the protein levels of related markers and HIPK2. The levels of IL-1β, TNF-α, and IL-6 were tested by corresponding ELISA kits and Western blot. The combination between miR-149-5p and circ_0008410 or HIPK2 was detected by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. Our data showed that circ_0008410 and HIPK2 were elevated, while miR-149-5p was downregulated in RA synovial tissues and RASFs. Circ_0008410 promoted RASF proliferation, migration, invasion, and inflammation while inhibiting apoptosis. MiR-149-5p was a target of circ_0008410, and its overexpression could reverse the promoting effects of circ_0008410 on RASF dysfunction. Moreover, miR-149-5p could target HIPK2 to suppress RASF proliferation, migration, invasion, and inflammation. Collectively, circ_0008410 promoted RASF dysfunction via miR-149-5p/HIPK2, which might provide a potential target for RA therapy.
Collapse
Affiliation(s)
- Wensi Su
- Department of Geriatric Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Zhifang Ye
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Yehan Fang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| |
Collapse
|
5
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Zhao RJ, Zhang WY, Fan XX. Circular RNAs: Potential biomarkers and therapeutic targets for autoimmune diseases. Heliyon 2024; 10:e23694. [PMID: 38205329 PMCID: PMC10776946 DOI: 10.1016/j.heliyon.2023.e23694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
The outcomes and prognosis of autoimmune diseases depend on early diagnosis and effective treatments. However, symptoms of early autoimmune diseases are often remarkably similar to many inflammatory diseases, leading to difficulty in precise diagnosis. Circular RNAs (circRNAs) belong to a novel class of endogenous RNAs, functioning as microRNA (miRNA) sponges or participating in protein coding. It has been shown in many studies that patients with autoimmune diseases have aberrant circRNA expression in liquid biopsy samples (such as plasma, saliva, and urine). Thus, circRNAs are potential biomarkers for the diagnosis and prognosis of autoimmune diseases. Moreover, overexpression and depletion of target circRNAs can be utilized as possible therapeutic approaches for treating autoimmune diseases. In this review, we summarized recent progress in the roles of circRNAs in the pathogenesis of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and type 1 diabetes. We also discussed their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau(SAR), China
| |
Collapse
|
7
|
Wen J, Liu J, Wan L, Wang F. Long noncoding RNA/circular RNA regulates competitive endogenous RNA networks in rheumatoid arthritis: molecular mechanisms and traditional Chinese medicine therapeutic significances. Ann Med 2023; 55:973-989. [PMID: 36905646 PMCID: PMC10795602 DOI: 10.1080/07853890.2023.2172605] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 03/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and autoimmune disease that is mainly featured abnormal fibroblast-like synoviocyte (FLS) proliferation and inflammatory cell infiltration. Abnormal expression or function of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are closely related to human diseases, including RA. There has been increasing evidence showing that in the competitive endogenous RNA (ceRNA) networks, both lncRNA and circRNA are vital in the biological functions of cells. Nevertheless, the exact mechanism of ceRNA in RA remains to be investigated. Herein, we summarized the molecular potencies of lncRNA/circRNA-mediated ceRNA networks in RA, with emphasis on the phenotypic regulation of ceRNA in the progression of RA, including regulation of proliferation, invasion, inflammation and apoptosis, as well as the role of ceRNA in traditional Chinese medicine (TCM) in the treatment of RA. In addition, we also discussed the future direction and potential clinical value of ceRNA in the treatment of RA, which may provide potential reference value for clinical trials of TCM therapy for the treatment of RA.Key messagesLong noncoding RNA/circular RNA can work as the competitive endogenous RNA sponge and participate in the pathogenesis of rheumatoid arthritis.Traditional Chinese medicine and its agents have shown potential roles in the prevention and treatment of rheumatoid arthritis via competitive endogenous RNA.
Collapse
Affiliation(s)
- Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Xin’an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Fanfan Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
8
|
Wang Y, Huang Y, Cheng C, Xue Q, Chang J, Wang X, Duan Q, Miao C. Dysregulation of circRNAs in rheumatoid arthritis, with special emphasis on circRNAs secreted by exosomes and the crosstalk between circRNAs and RNA methylations. Int Immunopharmacol 2023; 122:110549. [PMID: 37421778 DOI: 10.1016/j.intimp.2023.110549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease caused by a variety of unknown factors. It mainly occurs in the small joints of hands and feet, leading to cartilage destruction and bone erosion. Various pathologic mechanisms such as exosomes and RNA methylations are involved in the pathogenesis of RA. METHODS This work searches PubMed, Web of Science (SCIE) and Science Direct Online (SDOL) databases, it role of abnormally expressed circulating RNAs (circRNAs) in the pathogenesis of RA was summarized. And the relationship between circRNAs and exosomes and methylations. RESULTS Both the abnormal expression of circRNAs and the sponge effect of circRNAs on microRNAs (miRNAs) affect the pathogenesis of RA by regulating target genes. CircRNAs affect the proliferation, migration and inflammatory reaction of RA-fibroblast-like synovial cells (FLSs), circRNAs in peripheral blood mononuclear cells (PBMCs) and macrophages also participate in the pathological mechanism of RA (Fig. 1). CircRNAs in exosomes are closely related to the pathogenesis of RA. In addition, exosomal circRNAs and the relationship between circRNAs and RNA methylations are closely related to the pathogenesis of RA. CONCLUSION CircRNAs play an important role in the pathogenesis of RA and have the potential to be a new target for the diagnosis and treatment of RA. However, the development of mature circRNAs for clinical application is not a small challenge.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiangjun Duan
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
9
|
He X, He H, Zhang Y, Wu T, Chen Y, Tang C, Xia T, Zhang X, Xie C. Role of ceRNA network in inflammatory cells of rheumatoid arthritis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:750-759. [PMID: 37539578 PMCID: PMC10930406 DOI: 10.11817/j.issn.1672-7347.2023.220621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 08/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui 233004.
| | - Haohua He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui 233004
| | - Yan Zhang
- Department of Clinical Medicine, Bengbu Medical College, Bengbu Anhui 233030
| | - Tianyu Wu
- School of Public Health, Bengbu Medical College, Bengbu Anhui 233030
| | - Yongjie Chen
- School of Public Health, Bengbu Medical College, Bengbu Anhui 233030
| | - Chengzhi Tang
- School of Public Health, Bengbu Medical College, Bengbu Anhui 233030
| | - Tian Xia
- Department of Clinical Medicine, Bengbu Medical College, Bengbu Anhui 233030
| | - Xiaonan Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu Anhui 233030.
| | - Changhao Xie
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui 233004.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu Anhui 233030, China.
| |
Collapse
|
10
|
Zuo Y, Xu H, Li Y, Zhang Z, Tao R, Wang M. Hsa_circ_0007707 participates in PDE3B-mediated apoptosis inhibition and inflammation promotion in fibroblast-like synoviocytes. Int Immunopharmacol 2023; 119:110157. [PMID: 37086679 DOI: 10.1016/j.intimp.2023.110157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Synovial samples collected from 30 rheumatoid arthritis (RA) patients and 30 normal controls were used to isolate fibroblast-like synoviocytes (FLSs) and named FLS-RA and FLS-Normal, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to detect circ_0007707 expression. Effects of circ_0007707 silencing on cell proliferation and apoptosis were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (Edu), and flow cytometry assays. Levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Increased circ_0007707 expression was observed in synovial samples from RA patients and FLS-RA cells. Functional analysis showed circ_0007707 silencing restrained cell proliferation, induced cell apoptosis, and decreased cell inflammatory response in FLS-RA cells. Mechanistic analysis revealed the sponge function of circ_0007707 on miR-27b-3p, and miR-27b-3p inhibition weakened circ_0007707 knockdown-mediated effects on FLS-RA cell proliferation, apoptosis, and inflammatory response. Circ_0007707 could mediate PDE3B expression via sponging miR-27b-3p, and PDE3B overturned miR-27b-3p mimic-mediated effects on FLS-RA cell proliferation, apoptosis, and inflammatory response. Circ_0007707 mediated cell apoptosis and inflammatory response in FLS-RA cells through the miR-27b-3p/PDE3B axis, indicating the potential function of circ_0007707 as a target for RA treatment.
Collapse
Affiliation(s)
- Yanhua Zuo
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Huaheng Xu
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanxia Li
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zongfang Zhang
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ran Tao
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Manxiang Wang
- Department of Rheumatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
11
|
Xiang L, Yang W, Wang F, Liu G. Circ_0083964 knockdown impedes rheumatoid arthritis progression via the miR-204-5p-dependent regulation of YY1. J Orthop Surg Res 2022; 17:558. [PMID: 36550514 PMCID: PMC9773446 DOI: 10.1186/s13018-022-03353-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease. Abnormal proliferation and inflammation of fibroblast-like synoviocytes (FLSs) are the main pathological features of the disease. Accumulating studies have identified that circular RNAs (circRNAs) were involved in the progression of RA. Our study was to assess the function and mechanism of circ_0083964 in RA. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were utilized to test the level of circ_0083964, miR-204-5p and YY1. Counting Kit-8 (CCK-8) assay, EdU assay, flow cytometry, transwell assay and wound-healing assay were utilized to test cell viability, proliferation, apoptosis, invasion and migration. Cell inflammation was estimated with enzyme-linked immunosorbent assay (ELISA) kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to identify the target relationship between miR-204-5p and circ_0083964 or YY1. RESULTS Circ_0083964 was highly expressed in RA synovial tissues and RA-FLSs. Circ_0083964 downregulation constrained proliferation, metastasis and inflammation and facilitated apoptosis in RA-FLSs. Furthermore, circ_0083964 served as a sponge of miR-204-5p, and rescue experiments proved that miR-204-5p deficiency overturned the suppressive impacts of circ_0083964 silencing on RA-FLSs progression. Additionally, we also verified that YY1 could be targeted by miR-204-5p, and its overexpression rescued the repressive impact of miR-204-5p introduction on RA-FLSs development. Besides that, we revealed that circ_0083964 mediated YY1 expression by regulating miR-204-5p. CONCLUSION Circ_0083964 inhibition confined RA development by sponging miR-204-5p to hamper the YY1 level, which will provide a theoretical basis for the treatment of RA.
Collapse
Affiliation(s)
- Lei Xiang
- grid.412979.00000 0004 1759 225XDepartment of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng, Xiangyang City, 411000 Hubei Province China
| | - Wendi Yang
- grid.412979.00000 0004 1759 225XDepartment of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng, Xiangyang City, 411000 Hubei Province China
| | - Feng Wang
- grid.412979.00000 0004 1759 225XDepartment of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng, Xiangyang City, 411000 Hubei Province China
| | - Gaozhan Liu
- grid.412979.00000 0004 1759 225XDepartment of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng, Xiangyang City, 411000 Hubei Province China
| |
Collapse
|
12
|
Abstract
Bone is a connective tissue that has important functions in the human body. Cells and the extracellular matrix (ECM) are key components of bone and are closely related to bone-related diseases. However, the outcomes of conventional treatments for bone-related diseases are not promising, and hence it is necessary to elucidate the exact regulatory mechanisms of bone-related diseases and identify novel biomarkers for diagnosis and therapy. Circular RNAs (circRNAs) are single-stranded RNAs that form closed circular structures without a 5' cap or 3' tail and polycyclic adenylate tails. Due to their high stability, circRNAs have the potential to be typical biomarkers. Accumulating evidence suggests that circRNAs are involved in bone-related diseases, including osteoarthritis, osteoporosis, osteosarcoma, multiple myeloma, intervertebral disc degeneration, and rheumatoid arthritis. Herein, we summarize the recent research progress on the characteristics and functions of circRNAs, and highlight the regulatory mechanism of circRNAs in bone-related diseases.
Collapse
Affiliation(s)
- Linghui HU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Wei WU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Jun ZOU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China,Jun ZOU,
| |
Collapse
|
13
|
Wen JT, Liu J, Wan L, Xin L, Guo JC, Sun YQ, Wang X, Wang J. Triptolide inhibits cell growth and inflammatory response of fibroblast-like synoviocytes by modulating hsa-circ-0003353/microRNA-31-5p/CDK1 axis in rheumatoid arthritis. Int Immunopharmacol 2022; 106:108616. [PMID: 35203042 DOI: 10.1016/j.intimp.2022.108616] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 11/15/2022]
Abstract
Triptolide (TPL) is an active component derived from Tripterygium wilfordii Hook F (TwHF) with therapeutic potential for rheumatoid arthritis (RA). However, the underlying mechanism of TPL is remains under-studied. Competing endogenous RNA (ceRNA) networks may participate in the response to TPL in RA. Herein, we sought to identify a TPL response-related ceRNA axis. A circular RNA (circRNA)-microRNA (miRNA)-mRNA ceRNA axis associated with the TPL response was constructed according to our previous study. Modulatory mechanisms of the ceRNA axis were ascertained through a series of experimentations. The clinical relevance of the ceRNA axis was also determined using computational models. Here, we found that TPL had excellent clinical effect on RA and promising therapeutic efficacy in experimental animals. The ceRNA axis of hsa-circ-0003353 (circ0003353), miR-31-5p, and CDK1 was identified as a candidate biomarker for the response of RA patients to TPL. TPL inhibited the viability, proliferation, and cell cycle entry of RA-fibroblast-like synoviocytes (FLSs), as well as the production of cytokines. Overexpression of circ0003353 abolished the inhibitory effects of TPL on RA-FLSs. Mechanistically, circ0003353 sponged miR-31-5p that inversely targeted CDK1 and manipulated the p21/Cyclin B axis. Additionally, consecutive rescue experiments indicated that the inhibitory impacts of TPL on RA-FLSs were dependent on the circ0003353/miR-31-5p/CDK1 axis. Molecular docking was also applied to predict the specific binding sites and binding capacity of TPL to related targets. In conclusion, the present study demonstrated that TPL repressed the cell growth and inflammatory response of RA-FLSs by mediating the expression of the circ0003353/miR-31-5p/CDK1 axis. This novel ceRNA axis may serve as a biomarker for screening RA patients who respond to TPL treatment, which holds potential applications in the diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Jian-Ting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230031, China.
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230031, China.
| | - Ling Xin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230031, China.
| | - Jin-Chen Guo
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Yan-Qiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230031, China.
| | - Xin Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230031, China.
| | - Jie Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230031, China.
| |
Collapse
|
14
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|