1
|
Bai R, Ma L, Li F, Pan L, Bao Y, Li X, Wang S, Yue H, Zheng F. Total ginsenosides from wild ginseng improve immune regulation in a rat model of spleen qi deficiency by modulating fecal-bacteria-associated short-chain fatty acids and intestinal barrier integrity. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124554. [PMID: 40081219 DOI: 10.1016/j.jchromb.2025.124554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/17/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
For thousands of years, traditional Chinese medicine (TCM) has made extensive use of wild ginseng. It is thought to provide vital energy effects and to boost immunity. This study aimed to clarify the processes by which short-chain fatty acids (SCFAs) metabolites and the intestinal barrier are used by total ginsenosides wild ginseng (TWG) to modulate immunity. In this study, we analyzed and identified ginsenosides in the colon using UPLC-Q-TOF-MSE methods. In the meantime, a rat model of spleen qi deficiency (SQD) was created using reserpine, and the effects of TWG on intestinal barrier function and short-chain fatty acids in the feces of SQD-affected rats were examined. 28 ginsenosides were found in the colon during this experiment, and the main components were measured. TWG considerably increased fecal concentrations of acetic, propionic and 6 others, according to SCFAs analysis. According to serum immunological markers, TWG reduced IL-17 and IL-1β levels, increased IL-10, IL-22, and TGF-β concentrations, balanced Th17/Treg ratios, and reduced toxicants such DAO and LPS in rats with SQD. TWG improved barrier function, reduced permeability, increased tight junction protein expression, and lessened intestinal injury. A favorable correlation between intestinal barrier proteins and fatty acids was shown by correlation studies. The gut barrier and SCFAs perspectives helped to clarify the mechanism by which TWG controls immune activity. This study offers a fresh theoretical framework for TWG's future advancement and application.
Collapse
Affiliation(s)
- Ruobing Bai
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Liting Ma
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Fangtong Li
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Lijia Pan
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Yuwen Bao
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Xinze Li
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Shen Wang
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Hao Yue
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China.
| | - Fei Zheng
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China.
| |
Collapse
|
2
|
Fang Y, Huang Y, Li Q, Luo Y, Xu Q, Yang T, Lu X, Chen X, Zhao T, Huang A, Su T, Xia Q. Integrated metabolomics and network pharmacology to reveal the mechanisms of Processed Aurantii Fructus in the treatment of CUMS-induced functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118765. [PMID: 39216774 DOI: 10.1016/j.jep.2024.118765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Yangbing Fang
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yingying Huang
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 510006, China.
| | - Qinru Li
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuting Luo
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qijian Xu
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Ting Yang
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; School of Traditional Chinese Medicine Health, Nanfang College Guangzhou, Guangzhou, 510006, China.
| | - Xiaomei Lu
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xuemei Chen
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Tingxiu Zhao
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Aihua Huang
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Quan Xia
- School of Chinese Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Dong B, Peng Y, Wang M, Peng C, Li X. Multi-omics integrated analyses indicated that non-polysaccharides of Sijunzi decoction ameliorated spleen deficiency syndrome via regulating microbiota-gut-metabolites axis and exerted synergistic compatibility. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118276. [PMID: 38697408 DOI: 10.1016/j.jep.2024.118276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical traditional Chinese medicine formula to invigorating spleen and replenishing qi, Sijunzi decoction (SJZD) is composed of four herbs, which is applied to cure spleen deficiency syndrome (SDS) clinically. The non-polysaccharides (NPSs) of SJZD (SJZD_NPS) are important pharmacodynamic material basis. However, the amelioration mechanism of SJZD_NPS on SDS has not been fully elaborated. Additionally, the contribution of herbs compatibility to efficacy of this formula remains unclear. AIM OF THE STUDY The aim was to explore the underlying mechanisms of SJZD_NPS on improving SDS, and uncover the scientific connotation in SJZD compatibility. MATERIALS AND METHODS A strategy integrating incomplete formulae (called "Chai-fang" in Chinese) comparison, pharmacodynamics, gut microbiome, and metabolome was employed to reveal the role of each herb to SJZD compatibility against SDS. Additionally, the underlying mechanism harbored by SJZD_NPS was further explored through targeted metabolomics, network pharmacology, molecular docking, pseudo-sterile model, and metagenomics. RESULTS SJZD_NPS significantly alleviated diarrhea, disordered secretion of gastrointestinal hormones and neurotransmitters, damage of ileal morphology and intestinal barrier in SDS rats, which was superior to the NPSs of Chai-fang. 16S rRNA gene sequencing and metabolomics analyses revealed that SJZD_NPS effectively restored the disturbed gut microbiota community and abnormal metabolism caused by SDS, showing the most evident recovery. Moreover, SJZD_NPS recalled the levels of partial amino acids, short chain fatty acids and bile acids, which possessed strong binding affinity towards potential targets. The depletion of gut microbiota confirmed that the SDS-amelioration efficacy of SJZD_NPS is dependent on the intact gut microbiome, with the relative abundance of potential probiotics such as Lactobacillus_johnsonii and Lactobacillus_taiwanensis been enriched. CONCLUSION NPSs in SJZD can improve SDS-induced gastrointestinal-nervous system dysfunction through regulating microbiota-gut-metabolites axis, with four herbs exerting synergistic effects, which indicated the compatibility rationality of SJZD.
Collapse
Affiliation(s)
- Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Lan Q, Li X, Fang J, Yu X, Wu ZE, Yang C, Jian H, Li F. Comprehensive biomarker analysis of metabolomics in different syndromes in traditional Chinese medical for prediabetes mellitus. Chin Med 2024; 19:114. [PMID: 39183283 PMCID: PMC11346218 DOI: 10.1186/s13020-024-00983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Prediabetes mellitus (PreDM) is a high-risk state for developing type 2 diabetes mellitus (T2DM) and often goes undiagnosed, which is closely associated with obesity and characterized by insulin resistance that urgently needs to be treated. PURPOSE To obtain a better understanding of the biological processes associated with both "spleen-dampness" syndrome individuals and those with dysglycaemic control at its earliest stages, we performed a detailed metabolomic analysis of individuals with various early impairments in glycaemic control, the results can facilitate clinicians' decision making and benefit individuals at risk. METHODS According to the diagnostic criteria of TCM patterns and PreDM, patients were divided into 4 groups with 20 cases, patients with syndrome of spleen deficiency with dampness encumbrance and PreDM (PDMPXSK group), patients with syndrome of dampness-heat in the spleen and PreDM (PDMSRYP group), patients with syndrome of spleen deficiency with dampness encumbrance and normal blood glucose (NDMPXSK group), and patients with syndrome of dampness-heat in the spleen and normal blood glucose (NDMSRYP group). Plasma samples from patients were collected for clinical index assessment and untargeted metabolomics using liquid chromatography-mass spectrometry. RESULTS Among patients with the syndrome of spleen deficiency with dampness encumbrance (PXSK), those with PreDM (PDMPXSK group) had elevated levels of 2-hour post-load blood glucose (2-h PG), glycosylated hemoglobin (HbA1c), high-density lipoprotein cholesterol (HDL-C), and systolic blood pressure (SBP) than those in the normal blood glucose group (NDMPXSK group, P < 0.01). Among patients with the syndrome of dampness-heat in the spleen (SRYP), the levels of body mass index (BMI), fasting blood glucose (FBG), 2-h PG, HbA1c, and fasting insulin (FINS) were higher in the PreDM group (PDMSRYP group) than those in the normal blood glucose group (NDMSRYP group, P < 0.05). In both TCM syndromes, the plasma metabolomic profiles of PreDM patients were mainly discriminatory from the normal blood glucose controls of the same syndrome in the levels of lipid species, with the PXSK syndrome showing a more pronounced and broader spectrum of alterations than the SRYP syndrome. Changes associated with PreDM common to both syndromes included elevations in the levels of 27 metabolites which were mainly lipid species encompassing glycerophospholipids (GPs), diglycerides (DGs) and triglycerides (TGs), cholesterol and derivatives, and decreases in 5 metabolites consisting 1 DG, 1 TG, 2 N,N-dimethyl phosphatidylethanolamine (PE-NMe2) and iminoacetic acid. Correlation analysis identified significant positive correlations of 3α,7α,12α,25-Tetrahydroxy-5β-cholestane-24-one with more than one glycaemia-related indicators, whereas DG (20:4/20:5) and PC (20:3/14:0) were positively and PC (18:1/14:0) was inversely correlated with more than one lipid profile-related indicators. Based on the value of correlation coefficient, the top three correlative pairs were TG with PC (18:1/14:0) (r = - 0.528), TG with TG (14:0/22:4/22:5) (r = 0.521) and FINS with PE-NMe (15:0/22:4) (r = 0.52). CONCLUSION Our results revealed PreDM patients with different TCM syndromes were characterized by different clinical profiles. Common metabolite markers associated with PreDM shared by the two TCM syndromes were mainly lipid species encompassing GP, GL, cholesterol and derivatives. Our findings were in line with the current view that altered lipid metabolism is a conserved and early event of dysglycaemia. Our study also implied the possible involvement of perturbed bile acid homeostasis and dysregulated PE methylation during development of dysglycaemia.
Collapse
Affiliation(s)
- Qin Lan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- Outpatient Department, Hongdu Traditional Chinese Medicine Hospital Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Xue Li
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianhe Fang
- Medical Ancient Literature Teaching and Research Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinyu Yu
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhanxuan E Wu
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Caiyun Yang
- Endocrinology Department II, Hongdu Traditional Chinese Medicine Hospital Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Hui Jian
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Fei Li
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Wen T, Liu X, Pang T, Li M, Jiao G, Fan X, Tang J, Zhang C, Wang Z, Yue X, Chen W, Zhang F. The Efficacy of Chaihu-Guizhi-Ganjiang Decoction on Chronic Non-Atrophic Gastritis with Gallbladder Heat and Spleen Cold Syndrome and Its Metabolomic Analysis: An Observational Controlled Before-After Clinical Trial. Drug Des Devel Ther 2024; 18:881-897. [PMID: 38529263 PMCID: PMC10962469 DOI: 10.2147/dddt.s446336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose The aim of this study was to verify the effectiveness and explore the mechanism of Chaihu-Guizhi-Ganjiang decoction (CGGD) in the treatment of chronic non-atrophic gastritis (CNAG) with gallbladder heat and spleen cold syndrome (GHSC) by metabolomics based on UHPLC-Q-TOF/MS. Patients and Methods An observational controlled before-after study was conducted to verify the effectiveness of CGGD in the treatment of CNAG with GHSC from January to June 2023, enrolling 27 patients, who took CGGD for 28 days. 30 healthy volunteers were enrolled as the controls. The efficacy was evaluated by comparing the traditional Chinese medicine (TCM) syndrome and CNAG scores, and clinical parameters before and after treatment. The plasma levels of hormones related to gastrointestinal function were collected by ELISA. The mechanisms of CGGD in the treatment of CNAG with GHSC were explored using a metabolomic approach based on UHPLC-Q-TOF/MS. Results Patients treated with CGGD experienced a statistically significant improvement in TCM syndrome and CNAG scores (p < 0.01). CGGD treatment evoked the concentration alteration of 15 biomarkers, which were enriched in the glycerophospholipid metabolism, and branched-chain amino acids biosynthesis pathways. Moreover, CGGD treatment attenuated the abnormalities of the gastrointestinal hormone levels and significantly increased the pepsinogen level. Conclusion It was the first time that this clinical trial presented detailed data on the clinical parameters that demonstrated the effectiveness of CGGD in the treatment of CNAG with GHSC patients. This study also provided supportive evidence that CNAG with GHSC patients were associated with disturbed branched-chain amino acid metabolism and glycerophospholipid levels, suggesting that CNAG treatment based on TCM syndrome scores was reasonable and also provided a potential pharmacological mechanism of action of CGGD.
Collapse
Affiliation(s)
- Tao Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xuan Liu
- Oncology-Department, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, People’s Republic of China
| | - Tao Pang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Mingming Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Guangyang Jiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jigui Tang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Ci’an Zhang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, People’s Republic of China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Hu L, Chen J, Duan H, Zou Z, Qiu Y, Du J, Chen J, Yao X, Kiyohara H, Nagai T, Yao Z. A screening strategy for bioactive components of Bu-Zhong-Yi-Qi-Tang regulating spleen-qi deficiency based on "endobiotics-targets-xenobiotics" association network. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116605. [PMID: 37178982 DOI: 10.1016/j.jep.2023.116605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Zhong-Yi-Qi-Tang is a famous traditional Chinese medicine formula that has been prevalent in China for over 700 years to treat spleen-qi deficiency related diseases, such as gastrointestinal and respiratory disorders. However, the bioactive components responsible for regulating spleen-qi deficiency remain unclear and have puzzled many researchers. AIM OF THE STUDY The current study focuses on efficacy evaluation of regulating spleen-qi deficiency and screening the bioactive components of Bu-Zhong-Yi-Qi-Tang. MATERIALS AND METHODS The effects of Bu-Zhong-Yi-Qi-Tang were evaluated through blood routine examination, immune organ index, and biochemical analysis. Metabolomics was utilized to analyze the potential endogenous biomarkers (endobiotics) in the plasma, and the prototypes (xenobiotics) of Bu-Zhong-Yi-Qi-Tang in the bio-samples were characterized using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Then, these endobiotics were used as "bait" to predict targets based on network pharmacology and to screen potential bioactive components from the absorbed prototypes in the plasma by constructing an "endobiotics-targets-xenobiotics" association network. Further, the anti-inflammatory activities of representative compounds (calycosin and nobiletin) were validated through poly(I:C)-induced pulmonary inflammation mice model. RESULTS Bu-Zhong-Yi-Qi-Tang exhibited immunomodulatory and anti-inflammatory activities in spleen-qi deficiency rat, as supported by the observation of increased levels of D-xylose and gastrin in serum, an increase in the thymus index and number of lymphocytes in blood, as well as a reduction in the level of IL-6 in bronchoalveolar lavage fluid. Furthermore, plasma metabolomic analysis revealed a total of 36 Bu-Zhong-Yi-Qi-Tang related endobiotics, which were mainly enriched in primary bile acids biosynthesis, the metabolism of linoleic acid, and the metabolism of phenylalanine pathways. Meanwhile, 95 xenobiotics were characterized in plasma, urine, small intestinal contents, and tissues of spleen-qi deficiency rat after Bu-Zhong-Yi-Qi-Tang treatment. Using an integrated association network, six potential bioactive components of Bu-Zhong-Yi-Qi-Tang were screened. Among them, calycosin was found to significantly reduce the levels of IL-6 and TNF-α in the bronchoalveolar lavage fluid, increase the number of lymphocytes, while nobiletin dramatically decreased the levels of CXCL10, TNF-α, GM-CSF, and IL-6. CONCLUSION Our study proposed an available strategy for screening bioactive components of BYZQT regulating spleen-qi deficiency based on "endobiotics-targets-xenobiotics" association network.
Collapse
Affiliation(s)
- Liufang Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiali Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Huifang Duan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyu Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuan Qiu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jing Du
- Tong Ren Tang Technologies Co. Ltd, Beijing, 100079, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hiroaki Kiyohara
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 1088641, Japan
| | - Takayuki Nagai
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 1088641, Japan.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Intervention effects of ginseng on spleen-qi deficiency in rats revealed by GC–MS-based metabonomic approach. J Pharm Biomed Anal 2022; 217:114834. [DOI: 10.1016/j.jpba.2022.114834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
|
8
|
Tu J, Xie Y, Xu K, Qu L, Lin X, Ke C, Yang D, Cao G, Zhou Z, Liu Y. Treatment of Spleen-Deficiency Syndrome With Atractyloside A From Bran-Processed Atractylodes lancea by Protection of the Intestinal Mucosal Barrier. Front Pharmacol 2020; 11:583160. [PMID: 33658928 PMCID: PMC7919195 DOI: 10.3389/fphar.2020.583160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC. (AL) is used in traditional Chinese medicine for the treatment of spleen-deficiency syndrome (SDS). Bran-processed Atractylodes lancea (BAL) has been found to be more effective than unprocessed AL. However, the compound in BAL active against SDS remains unclear. The pharmacological efficacy of BAL and its mechanism of action against SDS were investigated by HPLC-ELSD. Candidate compound AA (atractyloside A) in AL and BAL extracts was identified by HPLC-MS analysis. AA was tested in a rat model of SDS in which body weight, gastric residual rate, and intestinal propulsion were measured, and motilin (MTL), gastrin (GAS), and c-Kit were quantified by enzyme-linked immunosorbent assay. Potential targets and associated pathways were identified based on network pharmacology analysis. mRNA expression levels were measured by qRT-PCR and protein expression levels were measured by Western blot analysis and immunohistochemistry. AA increased body weight, intestinal propulsion, MTL, GAS, and c-Kit levels, while decreasing gastric residual volume and intestinal tissue damage, as same as Epidermal Growth Factor Receptor and Proliferating Cell Nuclear Antigen levels. Seventy-one potential pharmacologic targets were identified. Analysis of protein interaction, Gene Ontology (GO) functional analysis, pathway enrichment analysis, and docking and molecular interactions highlighted MAPK signaling as the potential signal transduction pathway. Validation experiments indicated that treatment with AA increased MTL, GAS, ZO-1, and OCLN levels, while reducing AQP1, AQP3, and FGF2 levels. In addition, phosphorylation of p38 and myosin light-chain kinase (MLCK) expression were inhibited. AA improved gastrointestinal function by protecting the intestinal mucosal barrier via inhibition of the p38 MAPK pathway. The results have clinical implications for the therapy of SDS.
Collapse
Affiliation(s)
- Jiyuan Tu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, China
| | - Ying Xie
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiong Lin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chang Ke
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Desen Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guosheng Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
9
|
Li X, Qiu W, Da X, Hou Y, Ma Q, Wang T, Zhou X, Song M, Bian Q, Chen J. A combination of depression and liver Qi stagnation and spleen deficiency syndrome using a rat model. Anat Rec (Hoboken) 2020; 303:2154-2167. [DOI: 10.1002/ar.24388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/05/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Juan Li
- Formula‐Pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou China
| | - Wen‐Qi Qiu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Xiao‐Li Da
- Formula‐Pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou China
| | - Ya‐Jing Hou
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Qing‐Yu Ma
- Formula‐Pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou China
| | - Ting‐Ye Wang
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Xue‐Ming Zhou
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Ming Song
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Qing‐Lai Bian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Jia‐Xu Chen
- Formula‐Pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou China
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
10
|
Liu J, Guo Y, Zhang J, Qi Y, Jia X, Gao G, Shuai J, Liu H, Zhang B, Xiao P. Systematic chemical analysis of flavonoids in the Nelumbinis stamen. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1753-1758. [PMID: 25444443 DOI: 10.1016/j.phymed.2014.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/17/2014] [Accepted: 09/13/2014] [Indexed: 06/04/2023]
Abstract
The stamen of lotus, known as Nelumbinis stamen, has been used as the folk medicine and functional food for a long time, which showed good activities of anti-ulcer, anti-thrombosis, analgesic, anti-diarrhea, strengthen uterine contraction. The bioactivities of Nelumbinis stamen were attributed to the existence of flavonoids, its characteristic chemical constituents. A reliable method for comprehensive chemical analysis of flavonoids in Nelumbinis stamen by HPLC-DAD-MS was developed for the first time. The extraction protocol of flavonoids from Nelumbinis stamen was optimized by an orthogonal design. The chromatographic conditions were optimized, which exhibited similar level than that of the UHPLC platform allowing target compound identification in a shorter time with little solvent consumption. Moreover, similarity analysis, hierarchical clustering analysis and principal components analysis were successfully applied to demonstrate the variability of these Nelumbinis stamen samples.
Collapse
Affiliation(s)
- Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yaojie Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jin Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaoguang Jia
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, Xinjiang, China
| | - Gangfeng Gao
- Bio-Medicine and Bio-Industry Office in Sanning City, Sanning 365000, Fujian Province, China
| | - Jingao Shuai
- Fujian Wenxin Lianye Food Co. Ltd., Jianning 354500, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, Xinjiang, China.
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|