1
|
Li Z, Hu F, Xiong L, Zhou X, Dong C, Zheng Y. Underlying mechanisms of traditional Chinese medicine in the prevention and treatment of diabetic retinopathy: Evidences from molecular and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118641. [PMID: 39084273 DOI: 10.1016/j.jep.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
As one of the most serious microvascular complications of diabetes mellitus (DM), diabetic retinopathy (DR) can cause visual impairment and even blindness. With the rapid increase in the prevalence of DM, the incidence of DR is also rising year by year. Preventing and effectively treating DR has become a major focus in the medical field. Traditional Chinese medicine (TCM) has a wealth of experience in treating DR and has achieved significant results with various herbs and TCM prescriptions. Traditional Chinese Medicine (TCM) provides a comprehensive therapeutic strategy for diabetic retinopathy (DR), encompassing anti-inflammatory and antioxidant actions, anti-neovascularization, neuroprotection, regulation of glucose metabolism, and inhibition of apoptosis. This review provides an overview of the current status of TCM treatment for DR in recent years, including experimental studies and clinical researches, to explore the clinical efficacy and the underlying modern mechanisms of herbs and TCM prescriptions. Besides, we also discussed the challenges TCM faces in treating DR, such as drug-drug interactions among TCM components and the lack of high-quality evidence-based medicine practice, which pose significant obstacles to TCM's application in DR.
Collapse
Affiliation(s)
- Zhengpin Li
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Faquan Hu
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Liyuan Xiong
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Xuemei Zhou
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
Huang KC, Chiang YF, Ali M, Hsia SM. Oleocanthal mitigates CoCl 2-induced oxidative damage and apoptosis via regulating MAPK pathway in human retinal pigment epithelial cells. Biomed Pharmacother 2024; 180:117582. [PMID: 39467472 DOI: 10.1016/j.biopha.2024.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Retinal hypoxia causes severe visual impairment and dysfunction in retinal pigment epithelial (RPE) cells, triggering a cascade of events leading to cellular apoptosis. Oxidative stress induced by hypoxia plays a significant role in the development of retinal diseases; however, the precise pathogenesis remains unclear. Oleocanthal, a phenolic compound in extra virgin olive oil, is known for its diverse biological properties. This study aims to investigate the potential anti-oxidative effects of oleocanthal against CoCl2-induced hypoxia in ARPE-19 cells. The cell culture model enabled the evaluation of apoptosis, DNA damage, and ROS levels using MTT assay, Western blot, Annexin V/PI staining, JC-1 staining, MitoSOX, H2DCFDA, immunocytochemistry, and comet assays. Our results showed that oleocanthal effectively protected RPE cells against CoCl2-induced damage by enhancing cell viability, reducing DNA damage, and decreasing ROS levels. Moreover, oleocanthal attenuated CoCl2-induced MMP loss by elevating the JC-1 aggregate/monomer ratio. Furthermore, CoCl2-induced cell apoptosis via up-regulating MAPK signaling, while oleocanthal mitigated this effect. These findings shed light on the molecular mechanisms underlying oleocanthal's protection against oxidative stress induced by hypoxia, offering potential insights for the development of novel therapeutic agents for retinal hypoxia.
Collapse
Affiliation(s)
- Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Mohamed Ali
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
3
|
Yang YF, Yuan L, Li XY, Liu Q, Jiang WJ, Jiao TQ, Li JQ, Ye MY, Niu Y, Nan Y. Molecular mechanisms of Buqing granule for the treatment of diabetic retinopathy: Network pharmacology analysis and experimental validation. World J Diabetes 2024; 15:1942-1961. [PMID: 39280184 PMCID: PMC11372640 DOI: 10.4239/wjd.v15.i9.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Its blindness rate is high; therefore, finding a reasonable and safe treatment plan to prevent and control DR is crucial. Currently, there are abundant and diverse research results on the treatment of DR by Chinese medicine Traditional Chinese medicine compounds are potentially advantageous for DR prevention and treatment because of its safe and effective therapeutic effects. AIM To investigate the effects of Buqing granule (BQKL) on DR and its mechanism from a systemic perspective and at the molecular level by combining network pharmacology and in vivo experiments. METHODS This study collected information on the drug targets of BQKL and the therapeutic targets of DR for intersecting target gene analysis and protein-protein interactions (PPI), identified various biological pathways related to DR treatment by BQKL through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, and preliminarily validated the screened core targets by molecular docking. Furthermore, we constructed a diabetic rat model with a high-fat and high-sugar diet and intraperitoneal streptozotocin injection, and administered the appropriate drugs for 12 weeks after the model was successfully induced. Body mass and fasting blood glucose and lipid levels were measured, and pathological changes in retinal tissue were detected by hematoxylin and eosin staining. ELISA was used to detect the oxidative stress index expression in serum and retinal tissue, and immunohistochemistry, real-time quantitative reverse transcription PCR, and western blotting were used to verify the changes in the expression of core targets. RESULTS Six potential therapeutic targets of BQKL for DR treatment, including Caspase-3, c-Jun, TP53, AKT1, MAPK1, and MAPK3, were screened using PPI. Enrichment analysis indicated that the MAPK signaling pathway might be the core target pathway of BQKL in DR treatment. Molecular docking prediction indicated that BQKL stably bound to these core targets. In vivo experiments have shown that compared with those in the Control group, rats in the Model group had statistically significant (P < 0.05) severe retinal histopathological damage; elevated blood glucose, lipid, and malondialdehyde (MDA) levels; increased Caspase-3, c-Jun, and TP53 protein expression; and reduced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, ganglion cell number, AKT1, MAPK1, and MAPK3 protein expression. Compared with the Model group, BQKL group had reduced histopathological retinal damage and the expression of blood glucose and lipids, MDA level, Caspase-3, c-Jun and TP53 proteins were reduced, while the expression of SOD, GSH-Px level, the number of ganglion cells, AKT1, MAPK1, and MAPK3 proteins were elevated. These differences were statistically significant (P < 0.05). CONCLUSION BQKL can delay DR onset and progression by attenuating oxidative stress and inflammatory responses and regulating Caspase-3, c-Jun, TP53, AKT1, MAPK1, and MAPK3 proteins in the MAPK signaling pathway mediates these alterations.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiang-Yang Li
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qian Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wen-Jie Jiang
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Tai-Qiang Jiao
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Qing Li
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Meng-Yi Ye
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yang Niu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
4
|
Khalatbary AR, Sarabandi S, Ahmadi F, Kasmaie FM, Sadeghi N, Soleimani S, Disfani RA, Raoofi A, Nasiry D. Transplantation of bioengineered dermal derived matrix-scaffold in combination with hyperbaric oxygen therapy improves wound healing in diabetic rats. Tissue Cell 2024; 89:102462. [PMID: 39002289 DOI: 10.1016/j.tice.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Successful treatment of diabetic wounds requires multifactorial approaches. Herein we investigated the effects of a bioengineered three-dimensional dermal derived matrix-scaffold (DMS) in combination with hyperbaric oxygen (HBO) in repairing of wound model in diabetic rats. Thirty days after induction of diabetes, a circular wound was created and treatments were performed for 21 days. Animals were randomly allocated into the untreated group, DMS group, HBO group, and DMS+HBO group. On days 7, 14, and 21, tissue samples were obtained for stereological, molecular, and tensiometrical assessments. Our results showed that the wound closure rate, volume of new dermis and epidermis, numerical density fibroblasts and blood vessels, collagen density, and biomechanical characterize were significantly higher in the treatment groups than in the untreated group, and these changes were more obvious in the DMS+HBO ones. Moreover, the expression of TGF-β, bFGF, miRNA-21, miRNA-146a, and VEGF genes were meaningfully upregulated in treatment groups compared to the untreated group and were greater in the DMS+HBO group. This is while expression of TNF-α and IL-1β, as well as the numerical density of neutrophil and macrophage decreased more considerably in the DMS+HBO group than in the other groups. Overall, using both DMS engraftment and HBO treatment has more effects on diabetic wound healing.
Collapse
Affiliation(s)
- Ali Reza Khalatbary
- Cellular and Molecular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahel Sarabandi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Ahmadi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farshad Moharrami Kasmaie
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Sadeghi
- Department of Clinical, Amol Campus of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saman Soleimani
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Ataee Disfani
- Student Research Committee, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Nasiry
- Department of Preclinical, Amol Campus of Medicine, Mazandaran University of Medical Sciences, Sari, Iran..
| |
Collapse
|
5
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
6
|
Li W, Xing Q, Liu Z, Liu R, Hu Y, Yan Q, Liu X, Zhang J. The signaling pathways of traditional Chinese medicine in treating diabetic retinopathy. Front Pharmacol 2023; 14:1165649. [PMID: 37405050 PMCID: PMC10315578 DOI: 10.3389/fphar.2023.1165649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the common diabetic microvascular complications that occurs in the eyes and is closely associated with vision loss in working adults. However, the clinical treatment of DR is limited or accompanied by a large number of complications. Therefore, the development of new drugs for the treatment of DR is urgently needed. Traditional Chinese medicine (TCM) is widely used to treat DR in China, and its multi-pathway and multi-level characteristics can effectively address the complex pathogenesis of DR. Growing evidence suggests that inflammation, angiogenesis, and oxidative stress are the core pathological mechanisms in the development of DR. This study innovatively considers the aforementioned processes as the fundamental unit and sheds light on the molecular mechanisms and potential of TCM against DR in terms of signaling pathways. The results showed that NF-κB, MAPK/NF-κB, TLR4/NF-κB, VEGF/VEGFR2, HIF-1α/VEGF, STAT3, and Nrf2/HO-1 are the key signaling pathways for the treatment of DR by TCMs, which involved curcumolide, erianin, quercetin, blueberry anthocyanins, puerarin, arjunolic acid, ethanol extract of Scutellaria barbata D. Don, Celosia argentea L. extract, ethanol extract of Dendrobium chrysotoxum Lindl., Shengpuhuang-tang, and LuoTong formula. The purpose of this review is to update and summarize the signaling pathways of TCM in the treatment of DR and provide ideas for the development of new drugs against DR in the future.
Collapse
Affiliation(s)
- Wencan Li
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Renzhu Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Qingzi Yan
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Jiani Zhang
- Department of Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| |
Collapse
|
7
|
Liu K, Chen Y, Cai F, Wang X, Fan C, Ren P, Yusufu A, Liu Y. The Effect of Distraction Osteogenesis on Peripheral Nerve Regeneration in Rats: A Preliminary Study In Vivo. J Tissue Eng Regen Med 2023; 2023:8818561. [PMID: 40226419 PMCID: PMC11918878 DOI: 10.1155/2023/8818561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 04/15/2025]
Abstract
Distraction osteogenesis (DO) is a widely employed method for the treatment of limb discrepancies and deformity correction. This study aimed at observing the histomorphological and ultrastructural changes of peripheral nerves around the distraction area during DO and investigating the self-repair mechanism of peripheral nerves in a rat DO model. Sixty rats underwent right femoral DO surgery and were randomly separated into six groups: Control (latency, no distraction, n = 10), Group 0-week (after distraction, n = 10), Group 2-week (n = 10), Group 4-week (n = 10), Group 6-week (n = 10), and Group 8-week (n = 10) at consolidation phase. The right femur of rats in Group 0-week, Group 2-week, Group 4-week, Group 6-week, and Group 8-week was subjected to continuous osteogenesis distraction at a rate of 0.5 mm/day for 10 days. Motor nerve conduction velocity (MNCV) of the sciatic nerve, sciatic function index (SFI), histological analyses, and transmission electron microscopy were conducted to evaluate nerve function. The MNCV and SFI of Group 0-week, Group 2-week, Group 4-week, and Group 6-week were significantly lower than the Control (P < 0.05). No statistical differences were found between the Control and Group 8-week in terms of MNCV and SFI (P > 0.05). Injuries to nerve fibres and nodes of Ranvier were observed in the Group 0-week, whereas the nerve fibres returned to the normal arrangement in the Group 8-week and oedema of myelin disappeared, with the continuity of axons and lamellar structure of myelin being restored. Femoral DO in rats with a rate of 0.5 mm/day may cause sciatic neurapraxia, which can be self-repaired after 8 weeks of consolidation. The paraneurium around the sciatic nerve enables it to glide during the distraction phase to reduce the occurrence of injurious changes.
Collapse
Affiliation(s)
- Kai Liu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yuanxin Chen
- Uygur Medical College, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Feiyu Cai
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Xin Wang
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Chenchen Fan
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Peng Ren
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Aihemaitijiang Yusufu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yanshi Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
8
|
Di S, Yao C, Qiao L, Li X, Pang B, Lin J, Wang J, Li M, Tong X. Exploration of the mechanisms underlying the beneficial effect of Luo Tong formula on retinal function in diabetic rats via the "gut microbiota-inflammation-retina" axis. Chin Med 2022; 17:133. [PMID: 36461068 PMCID: PMC9717245 DOI: 10.1186/s13020-022-00688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Luo Tong formula (LTF), a classical traditional Chinese medicine (TCM) prescription, consists of four plants that have been widely and effectively used to treat DR. Previous work in our laboratory has confirmed that LTF can effectively ameliorate DR. However, the potential mechanism underlying the therapeutic effect of LTF on DR has not been fully elucidated. To explore the potential mechanism of action through which LTF prevents and alleviates DR from an inflammation and gut microbiota perspective. MATERIALS AND METHODS Metabolite profiling of LTF was performed using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Type 1 diabetes was induced in male Sprague Dawley (SD) rats via tail vein injection of 45 mg/kg streptozotocin. Next, 100 SD rats were randomly divided into four groups, normal control; diabetic control; diabetic + insulin + calcium dobesilate; and diabetic + insulin + LTF. After 12 weeks of treatment, glucose metabolism, fundus oculi, blood-retinal barrier permeability, retinal thickness, microvascular damage, as well as cell junction expression in retinas were measured and the changes observed in different groups were compared. Finally, the alteration in gut microbiota and inflammatory cytokine expression in serum and tissues were monitored, and their correlation was analyzed. RESULTS A total of 1024 valid peaks were obtained for LTF using GC-MS. The HbA1c and fasting blood glucose (FBG) levels in the LTF group were slightly decreased. LTF exerted protective effects on fundus oculi and the retina structure to different degrees. LTF attenuated systemic and local retinal inflammation by significantly decreasing the levels of seven pro-inflammatory cytokines, including ICAM-1, IL-6, IL-8, MCP-1, VCAM-1, VEGF, and IL-1β. LTF restored the intestinal microbiota of diabetic rats to levels that were similar to those of normal rats. Further analysis revealed that Enterobacteriales, Prevotellaceae, Enterobacteriaceae, Bacteroides, and Klebsiella were significantly and positively correlated with the inflammatory factors in DR after LTF treatment. CONCLUSIONS Our results revealed the mechanisms underlying the preventive effects of LTF on DR development and progression. LTF inhibited pathological changes in retinal histopathology, cell composition, and cell junction proteins while effectively ameliorating systemic and local retinal inflammation via regulating pivotal gut microbiota.
Collapse
Affiliation(s)
- Sha Di
- grid.410318.f0000 0004 0632 3409Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Chensi Yao
- grid.410318.f0000 0004 0632 3409Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Liping Qiao
- grid.410318.f0000 0004 0632 3409Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xiuyang Li
- grid.410318.f0000 0004 0632 3409Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Bing Pang
- grid.410318.f0000 0004 0632 3409Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jiaran Lin
- grid.24695.3c0000 0001 1431 9176Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jia Wang
- grid.410318.f0000 0004 0632 3409General Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Min Li
- grid.410318.f0000 0004 0632 3409Molecular Biology Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xiaolin Tong
- grid.410318.f0000 0004 0632 3409Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| |
Collapse
|
9
|
Combining Network Pharmacology with Experimental Validation to Elucidate the Mechanism of Salvianolic Acid B in Treating Diabetic Peripheral Neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4997327. [PMID: 36065266 PMCID: PMC9440779 DOI: 10.1155/2022/4997327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Background. Salvianolic acid B (Sal B) is a bioactive component of Radix Salviae, which has antiinflammation and antiapoptotic activity in diabetic complications. However, the molecular mechanism of action of Sal B on diabetic peripheral neuropathy (DPN) is unknown. This study was designed to identify a mechanism for Sal B in the treatment of DPN by using a pharmacology network, molecular docking, and in vitro experiments. Methods. Sal B and DPN-related targets from Gene Cards and OMIM platforms were retrieved and screened. Then, an analysis of possible targets with STRING and Cytoscape software was conducted. KEGG signaling pathways were determined using the R software. Subsequently, the binding capacity of Sal B to target proteins was analyzed by molecular docking and in vitro experiments. Results. A total of 501 targets related to Sal B and 4662 targets related to DPN were identified. Among these targets, 108 intersection targets were shared by Sal B and DPN. After topological and cluster analysis, 11 critical targets were identified, including p38MAPK. KEGG analysis revealed that the AGE-RAGE signaling pathway likely plays an important role in Sal B action on DPN. The p38MAPK protein is a key target in the AGE-RAGE signaling pathway. Molecular docking results suggested that Sal B and p38MAPK have excellent binding affinity (<−5 kcal/mol). The in vitro experiments revealed that Sal B downregulates the expressions of p-P38MAPK, inflammatory cytokines, and apoptosis targets, which are upregulated by hyperglycemia. Conclusion. Sal B may alter DPN by inhibiting inflammation and apoptosis activated by p38MAPK.
Collapse
|
10
|
Li W, Li W, Xing Q, Liu Z, Hu Y, Liu X, Zhang J. Progress in Traditional Chinese Medicine on Treatment of Diabetic Retinopathy. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221118547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
Diabetic retinopathy (DR), a common and blinding diabetic microvascular complication, is a harmful metabolic effect caused by persistent hyperglycemia. Owing to the complex pathogenesis of DR, various clinical treatment methods cannot completely prevent its development and are accompanied by various complications. Therefore, there is an urgent need to identify new therapeutic drugs or complementary and alternative therapies. Traditional Chinese medicine (TCM) has the unique advantages of multi-level, multi-target, and minimal side effects. Accumulating evidence has proven that TCM may help delay or prevent the progression of DR. This paper reviews the effect and mechanism of representative TCMs (including extracts, identified compounds, and compound formulas) on DR in recent years and provides evidence for new drug development and clinical efficacy.
Collapse
Affiliation(s)
- Wencan Li
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Wei Li
- Department of Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Jiani Zhang
- Department of Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| |
Collapse
|
11
|
Sun W, Zhang Y, Jia L. Polysaccharides from Agrocybe cylindracea residue alleviate type 2-diabetes-induced liver and colon injuries by p38 MAPK signaling pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Di S, An X, Pang B, Wang T, Wu H, Wang J, Li M. Yiqi Tongluo Fang could preventive and delayed development and formation of diabetic retinopathy through antioxidant and anti-inflammatory effects. Biomed Pharmacother 2022; 148:112254. [PMID: 35183405 DOI: 10.1016/j.biopha.2021.112254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Yiqi Tongluo Fang (YQTLF) is an effective prescription for the treatment of diabetic retinopathy (DR), but its mechanism of action remains unclear. METHOD The content of YQTLF was determined using liquid and gas chromatography-mass spectrometry (LC-MS and GC-MS, respectively). Twenty-five Sprague Dawley (SD) rats were randomly selected as the normal control group. One hundred SD streptozotocin-induced diabetes (type 1) rats were randomly divided into diabetic control, diabetic+insulin+ calcium dobesilate (CaD), and diabetic+insulin+ YQTLF groups, with 25 rats in each group. Bodyweight level was measured every 2 weeks. After 12 weeks of gavage, the glucose levels, lipids, oxidative stress, inflammation, retinal histopathology, and the blood-retinal barrier were assessed in each group. The p38 MAPK pathway was changed to explore its internal mechanism. The measurement data were expressed as mean ± standard deviation, and different statistical methods were used according to a normal distribution, square error, or not. RESULTS A total of 1024 valid peaks were identified in YQTLF using GC-MS. YQTLF significantly lowered the fasting blood glucose levels in diabetic rats. YQTLF early inhibited changes in retinal histology, capillaries, cells, and tight junction proteins (such as ZO-1, occludin, claudin-5, and VE-cadherin) before the formation and development of DR. These findings correlated with the alleviation of glucolipid metabolism, inflammation, and oxidative stress. The lncRNA MALAT1 and the PRC 2/p38 MAPK-related pathway, such as the expression of EZH2, SUZ12, EED, p38 MAPK, MMP-9, and VEGFR, were also correlated. CONCLUSION We have demonstrated the molecular and cellular mechanisms underlying the preventive and delayed development and formation of DR. YQTLF prevents changes in dyslipidemia, retinal histology, capillaries, cells, and tight junction proteins. These protective effects appear to be linked to its antioxidant and anti-inflammatory effects, which prevent the activation of intracellular signaling pathways, such as the lncRNA MALAT1 and PRC 2/p38 MAPK-related pathway.
Collapse
Affiliation(s)
- Sha Di
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuedong An
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bing Pang
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tiange Wang
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haohan Wu
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia Wang
- General Department, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
13
|
Zhao S, Jin D, Wang S, Xu Y, Li H, Chang Y, Ma Y, Xu Y, Guo C, Peng F, Huang R, Lai M, Xia Z, Che M, Zuo J, Jiang D, Zheng C, Mao G. Serum ω-6/ω-3 polyunsaturated fatty acids ratio and diabetic retinopathy: A propensity score matching based case-control study in China. EClinicalMedicine 2021; 39:101089. [PMID: 34611616 PMCID: PMC8478674 DOI: 10.1016/j.eclinm.2021.101089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Optimal ω-6/ω-3 polyunsaturated fatty acids ratio (PUFAR) is reported to exert protective effects against chronic diseases. However, data on PUFAR and diabetic retinopathy (DR) remains scarce. We aimed to thoroughly quantify whether and how PUFAR was related to DR as well as its role in DR detection. METHODS This two-centre case-control study was conducted from August 2017 to June 2018 in China, participants were matched using a propensity score matching algorithm. We adopted multivariable logistic regression models and restricted cubic spline analyses to estimate the independent association of PUFAR with DR, adjusting for confounders identified using a directed acyclic graph. The value of PUFAR as a biomarker for DR identification was further evaluated by receiver operating characteristic analyses and Hosmer-Lemeshow tests. FINDINGS An apparent negative relationship between PUFAR and DR was observed. Adjusted odds of DR decreased by 79% (OR: 0·21, 95% CI: 0·10-0·40) with an interquartile range increase in PUFAR. Similar results were also obtained in tertile analysis. As compared to those in the 1st tertile of PUFAR, the adjusted odds of DR decreased by 76% (OR: 0·24, 95% CI: 0·08-0·66) and 93% (OR: 0·07, 95% CI: 0·03-0·22) for subjects in the 2nd and 3rd tertiles, respectively. Good calibration and discrimination of the PUFAR associated predictive model were detected and PUFAR = 35 would be an ideal cut-off value for DR identification. INTERPRETATION Our results suggest that serum PUAFR is inversely associated with DR. Although PUFAR-alteration is not observed amongst different stages of DR, it can serve as an ideal biomarker in distinguishing patients with DR from those without DR. FUNDING This study was funded by Natural Science Foundation of Zhejiang Province, Zhejiang Basic Public Welfare Research Project, the Major Project of the Eye Hospital of Wenzhou Medical University, and the Academician's Science and Technology Innovation Program in Zhejiang province. Part of this work was also funded by the National Nature Science Foundation of China, and Research Project for College Students in Wenzhou Medical University.
Collapse
Affiliation(s)
- Shuzhen Zhao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongzhen Jin
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengyao Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanping Xu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huihui Li
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yujie Chang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yange Ma
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixi Xu
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengnan Guo
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Peng
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruogu Huang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengyuan Lai
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhezheng Xia
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingzhu Che
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Zuo
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Depeng Jiang
- Department of Community Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Chao Zheng
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Corresponding author.
| | - Guangyun Mao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
- Corresponding author at: Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
14
|
Li R, Ai X, Hou Y, Lai X, Meng X, Wang X. Amelioration of diabetic retinopathy in db/db mice by treatment with different proportional three active ingredients from Tibetan medicine Berberis dictyophylla F. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114190. [PMID: 33964362 DOI: 10.1016/j.jep.2021.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/09/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis dictyophylla F., a famous Tibetan medicine, has been used to prevent and treat diabetic retinopathy (DR) for thousands of years in clinic. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The present study was designed to probe the synergistic protection and involved mechanisms of berberine, magnoflorine and berbamine from Berberis dictyophylla F. on the spontaneous retinal damage of db/db mice. MATERIALS AND METHODS The 14-week spontaneous model of DR in db/db mice were randomly divided into eight groups: model group, calcium dobesilate (CaDob, 0.23 g/kg) group and groups 1-6 (different proportional three active ingredients from Berberis dictyophylla F.). All mice were intragastrically administrated for a continuous 12 weeks. Body weight and fasting blood glucose (FBG) were recorded and measured. Hematoxylin-eosin and periodic acid-Schiff (PAS) stainings were employed to evaluate the pathological changes and abnormal angiogenesis of the retina. ELISA was performed to assess the levels of IL-6, HIF-1α and VEGF in the serum. Immunofluorescent staining was applied to detect the protein levels of CD31, VEGF, p-p38, p-JNK, p-ERK and NF-κB in retina. In addition, mRNA expression levels of VEGF, Bax and Bcl-2 in the retina were monitored by qRT-PCR analysis. RESULTS Treatment with different proportional three active ingredients exerted no significant effect on the weight, but decreased the FBG, increased the number of retinal ganglionic cells and restored internal limiting membrane. The results of PAS staining demonstrated that the drug treatment decreased the ratio of endothelial cells to pericytes while thinned the basal membrane of retinal vessels. Moreover, these different proportional active ingredients can markedly downregulate the protein levels of retinal CD31 and VEGF, and serum HIF-1α and VEGF. The gene expression of retinal VEGF was also suppressed. The levels of retinal p-p38, p-JNK and p-ERK proteins were decreased by drug treatment. Finally, drug treatment reversed the proinflammatory factors of retinal NF-κB and serum IL-6, and proapoptotic Bax gene expression, while increased antiapoptotic Bcl-2 gene expression. CONCLUSIONS These results indicated that DR in db/db mice can be ameliorated by treatment with different proportional three active ingredients from Berberis dictyophylla F. The potential vascular protection mechanisms may be involved in inhibiting the phosphorylation of the MAPK signaling pathway, thus decreasing inflammatory and apoptotic events.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Wu C, Xu K, Liu W, Liu A, Liang H, Li Q, Feng Z, Yang Y, Ding J, Zhang T, Liu Y, Liu X, Zuo Z. Protective Effect of Raf-1 Kinase Inhibitory Protein on Diabetic Retinal Neurodegeneration through P38-MAPK Pathway. Curr Eye Res 2021; 47:135-142. [PMID: 34133251 DOI: 10.1080/02713683.2021.1944644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aimed to investigate the effect of Raf-1 kinase inhibitory protein (RKIP) on diabetic retinal neurodegeneration in streptozotocin-treated rat model and high glucose-treated rat Müller cells. METHODS Control and streptozotocin-treated rats were intravitreally injected with saline, RKIP gene overexpression lentivirus (oeRKIP) or negative control lentivirus (RKIP-vector). Normal or high glucose-treated Müller cells were transfected with saline, RKIP gene overexpression lentivirus or negative control lentivirus. Western blotting and immunofluorescence assay were utilized to evaluate the function of RKIP on the expression of RKIP, p38 mitogen-activated protein kinase (p38-MAPK), glutamate/aspartate transporter (GLAST), glutamine synthetase (GS), glial fibrillar acidic protein (GFAP) and cysteine-aspartic acid protease-3 (caspase-3). A glutamate assay kit was adopted to detect glutamate level in retina samples. Apoptosis of Müller cells was determined by Annexin-V/PI staining and flow cytometry. RESULTS High glucose-treated Müller cells exhibited promoted apoptosis, while RKIP overexpression in high glucose-treated Müller cells down-regulated the enhanced apoptosis. Compared with rats injected with saline, streptozotocin-treated hyperglycemic rats displayed enhancement in the immunoreactivities of p38-MAPK and GFAP as well as in the protein expression of p38-MAPK and caspase-3. Strikingly, intravitreal injection of RKIP gene overexpression lentivirus in the hyperglycemic rats reversed the augmented immunoreactivities and protein expression mentioned above. Meanwhile, RKIP overexpression in the hyperglycemic rats improved the immunoreactivities and protein expression of RKIP, GS and GLAST. Besides, RKIP down-regulated the increased level of retinal glutamate in the hyperglycemic rats. CONCLUSIONS Intravitreal injection of RKIP gene overexpression lentivirus functioned in preventing diabetic retinal neurodegeneration in a rat model of diabetes presumably by inhibiting p38-MAPK pathway.
Collapse
Affiliation(s)
- Chuanling Wu
- Teaching and Research Section of Basic Medicine, Jianhu College, Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Kai Xu
- Department of Hepatopancreatobiliary Surgery, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Wenqiang Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China
| | - Anqi Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China
| | - Huimin Liang
- Department of Fundus Disease, Shandong Lunan Eye Hospital, Linyi, Shangdong, China
| | - Qunwang Li
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China
| | - Zhen Feng
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China
| | - Yang Yang
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China
| | - Jiayuan Ding
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China
| | - Tianyi Zhang
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China
| | - Yingxue Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China
| | - Xuezheng Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, Liaoning, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhongfu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, China.,Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Pang B, Ni Q, Di S, Du LJ, Qin YL, Li QW, Li M, Tong XL. Luo Tong Formula Alleviates Diabetic Retinopathy in Rats Through Micro-200b Target. Front Pharmacol 2020; 11:551766. [PMID: 33324202 PMCID: PMC7723456 DOI: 10.3389/fphar.2020.551766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Aim: Diabetic retinopathy (DR) is a serious complication of diabetes (DM). Luo Tong formula (LTF) exerts protective effects against DR in rats, but its underlying mechanism remains unknown. Methods: Sprague-Dawley rats injected with streptozotocin (STZ) were used as an experimental diabetes model. LTF or calcium dobesilate (CaD) was administered to diabetic rats via gastric gavage. After the 12 weeks of treatment, blood and tissue samples were collected to determine serum glucose and retinal structure. Blood samples were collected for blood glucose and hemorheology analysis. Gene or protein expression levels were evaluated by immunohistochemistry, western blotting and/or quantitative real-time polymerase chain reaction (PCR). Results: DM rats exhibits significantly increased blood retinal-barrier (BRB) breakdown and VEGF/VEGFR expression in the retina, and decreased miR-200b and tight junction ZO-1/Occludin/ Claudin-5 genes expression, as well as Ang-1/Tie-2 expressions in the retina compared to normal control group. LTF treatment significantly moderated histological abnormalities in diabetic rats, independent of blood glucose level; improved some hemorrheological parameters; decreased the expressions of VEGF/VEGFR and BRB breakdown, significantly increased PEDF and tight junction proteins ZO-1/Occludin, as well as increased retinal miR-200b expression compared to non-treatment diabetic rats. Moreover, LTF prevented the reduction in Ang-1/Tie-2 expression. Conclusions: LTF treatment ameliorated DR through its repair vascular and attenuate vascular leakage. A mechanism involving miR-200b may contribute to benefit effects.
Collapse
Affiliation(s)
- Bing Pang
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Sha Di
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Juan Du
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya-Li Qin
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qing-Wei Li
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
de Campos VS, Calaza KC, Adesse D. Implications of TORCH Diseases in Retinal Development-Special Focus on Congenital Toxoplasmosis. Front Cell Infect Microbiol 2020; 10:585727. [PMID: 33194824 PMCID: PMC7649341 DOI: 10.3389/fcimb.2020.585727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
There are certain critical periods during pregnancy when the fetus is at high risk for exposure to teratogens. Some microorganisms, including Toxoplasma gondii, are known to exhibit teratogenic effects, interfering with fetal development and causing irreversible disturbances. T. gondii is an obligate intracellular parasite and the etiological agent of Toxoplasmosis, a zoonosis that affects one third of the world's population. Although congenital infection can cause severe fetal damage, the injury extension depends on the gestational period of infection, among other factors, like parasite genotype and host immunity. This parasite invades the Central Nervous System (CNS), forming tissue cysts, and can interfere with neurodevelopment, leading to frequent neurological abnormalities associated with T. gondii infection. Therefore, T. gondii is included in the TORCH complex of infectious diseases that may lead to neurological malformations (Toxoplasmosis, Others, Rubella, Cytomegalovirus, and Herpes). The retina is part of CNS, as it is derived from the diencephalon. Except for astrocytes and microglia, retinal cells originate from multipotent neural progenitors. After cell cycle exit, cells migrate to specific layers, undergo morphological and neurochemical differentiation, form synapses and establish their circuits. The retina is organized in nuclear layers intercalated by plexus, responsible for translating and preprocessing light stimuli and for sending this information to the brain visual nuclei for image perception. Ocular toxoplasmosis (OT) is a very debilitating condition and may present high severity in areas in which virulent strains are found. However, little is known about the effect of congenital infection on the biology of retinal progenitors/ immature cells and how this infection may affect the development of this tissue. In this context, this study reviews the effects that congenital infections may cause to the developing retina and the cellular and molecular aspects of these diseases, with special focus on congenital OT.
Collapse
Affiliation(s)
- Viviane Souza de Campos
- Laboratório de Neurobiologia da Retina, Instituto de Biologia, Universidade Federal Fluminense, Niteroi, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Karin C. Calaza
- Laboratório de Neurobiologia da Retina, Instituto de Biologia, Universidade Federal Fluminense, Niteroi, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080761. [PMID: 32824523 PMCID: PMC7465265 DOI: 10.3390/antiox9080761] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
Collapse
|