1
|
Xie Z, Yu H, Peng S, Zhang B, Liu G, Wei C, Lai J, Cai C, Xu F. Comparative transcriptome analysis reveals key genes responsible for the differences in polyphyllin composition in two Paris polyphylla species. Gene 2025; 946:149325. [PMID: 39938760 DOI: 10.1016/j.gene.2025.149325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Paris polyphylla biosynthesizes significant quantities of polyphyllins, which exhibit numerous pharmacological activities and have become vital components in many patented drugs. However, only two species in this genus are officially recognized as medicinal sources due to their high levels of bioactive compounds. In this study, we measured and compared the total saponin content in Paris forrestii and Paris polyphylla var. yunnanensis The content in Paris forrestii was nearly double that in Paris polyphylla var. yunnanensis, and polyphyllin V and gracillin, hardly detectable in Paris polyphylla var. yunnanensis, were the primary saponins in Paris forrestii. To elucidate the genetic mechanisms underlying the differences in saponin content between the two species, transcriptome sequencing was conducted, and the correlation between saponin content and the expression of genes involved in polyphyllin biosynthesis was analyzed. Differential expression of functional genes associated with terpenoid backbone biosynthesis and steroid biosynthesis was identified as a potential cause of the variation in polyphyllin V and gracillin levels. Screening the transcriptomics data led to the identification of two rhamnolipid glycosyltransferases, PpUGT91T1 and PpUGT91T2, whose expression levels were found to be highly correlated with polyphyllin II content. Subsequent functional validation demonstrated that PpUGTs catalyze the conversion of polyphyllin V to polyphyllin III, acting as polyphyllin V C'-4-O-rhamnosyltransferases. Additionally, polyphyllin II was derived from the extension of the polyphyllin III sugar chain with rhamnose. Key amino acid residues involved in sugar donor and acceptor recognition were predicted using molecular docking, providing a theoretical framework for the biosynthesis of polyphyllins.
Collapse
Affiliation(s)
- Zhun Xie
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hongya Yu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shoujie Peng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Baode Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Guanghua Liu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chunmian Wei
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiahui Lai
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chui Cai
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Wu Y, Yang L, Li Z, Chen Q, Hu J. Polyphyllin VII Enhances the Antitumor Activity of Cisplatin in Non-Small Cell Lung Cancer Cells by Inducing Ferroptosis and Enhancing Apoptosis. J Biochem Mol Toxicol 2025; 39:e70186. [PMID: 40165507 DOI: 10.1002/jbt.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 02/08/2025] [Indexed: 04/02/2025]
Abstract
Cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC) is a common cause of treatment failure and a significant contributor to increased mortality. To tackle this issue, the integration of traditional Chinese medicine with chemotherapy has been proposed as a promising approach. The potential synergistic effect of combining polyphyllin VII (PPVII) and DDP in overcoming DDP resistance in NSCLC cells has not been thoroughly investigated yet. In this study, H1299 cells were exposed to gradient concentrations of PPVII and DDP to determine their 50% inhibitory concentration values, and the most effective concentration was applied in subsequent experiments. The combination of PPVII and DDP was evaluated for its effects on H1299 cell proliferation, apoptosis, viability, and the expression of proteins linked to apoptosis and ferroptosis. To further elucidate the underlying mechanisms, the impact of the combination on DNA damage in H1299 cells was also examined. Our results demonstrated that PPVII significantly potentiated the antitumor effects of DDP in H1299 cells in a dose-dependent manner (p < 0.05). Furthermore, PPVII was observed to work synergistically with DDP to suppress proliferation and promote apoptosis in H1299 cells (p < 0.05). Western blotting analysis proved that the combination treatment upregulated proapoptotic proteins (B-cell lymphoma 2-associated X protein, cleaved-caspase 3 and cleaved-PARP), downregulated antiapoptotic protein (Bcl-2), and promoted ferroptosis-associated proteins (long-chain acyl-coenzyme A synthase 4 and NADPH oxidase 4) as well as DNA damage-associated protein (γH2AX) (p < 0.05). Overall, the combination of PPVII and DDP significantly enhanced antitumor activity in H1299 cells through the modulation of DNA damage and ferroptosis, suggesting its potential as an effective therapeutic approach against DDP-resistant NSCLC.
Collapse
Affiliation(s)
- Yuanzhou Wu
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Yang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zizhao Li
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qunqing Chen
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Hu
- Department Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Sang Q, Kang C, Liu D, Wang L, Liu X, Li J. Polyphyllin VII ameliorates neuroinflammation and brain injury via modulating Treg/Th17 balance in a mouse model of cerebral ischemia-reperfusion injury. Int Immunopharmacol 2024; 143:113423. [PMID: 39447415 DOI: 10.1016/j.intimp.2024.113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Dysregulation of Th17 and Treg cells contributes to the pathophysiology of cerebral ischemia. Metabolic changes of peripheral CD4+ T cells lead to the imbalance of Treg/Th17 polarization, which represents a promising strategy for post-stroke therapy. Polyphyllin VII (PVII), a steroidal saponin extracted from traditional Chinese herb Rhizoma Paridis, has multiple bioactivities, but the potential function of PVII in cerebral ischemia-reperfusion injury is not elucidated yet. In our study, a mouse transient middle cerebral artery occlusion (MCAO) model was constructed. TTC staining, H&E staining, TUNEL staining, ELISA assay, flow cytometry, western blot, RT-qPCR, Open-field test, Morris water maze test, hanging wire test, rotarod test and foot-fault test were performed to evaluate the potential function of PVII in MCAO mice. We found that PVII showed protective effects on cerebral ischemia-reperfusion injury by reducing infarct volume, ameliorating brain injury and neuroinflammation, and improving long-term functional recovery of MCAO mice. PVII promoted Treg infiltration and suppressed infiltration of Th1/Th17 cells in ischemic brain in vivo. Moreover, PVII impaired peripheral CD4+ T cell activation and modulated Treg/Th17 differentiation in vitro. Mechanistically, PVII suppressed mTORC1 activation to influence glycolytic metabolism and ROS generation of T cells, thus leads to the imbalance of Treg/Th17 polarization towards Treg skewed. Furthermore, reactivation of mTORC1 by MHY1485 abolished the influence of PVII on brain injury and neuroinflammation in MCAO mice. Our data provided a novel role of PVII in cerebral ischemia-reperfusion injury via manipulating Treg/Th17 imbalance.
Collapse
Affiliation(s)
- Qiuling Sang
- Department of Neuroelectrophysiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Dingxi Liu
- Department of Clinical Medicine, Zunyi Medical University, Zhuhai 519041, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
4
|
Jia JK, Yang J, Yang XZ, Luo JF, Duan XY, Yang YL, Wan JF, Wang YH. Polyhydroxylated Spirostanol Saponins from the Rhizomes of Paris dulongensis. Chem Biodivers 2024; 21:e202400980. [PMID: 38747266 DOI: 10.1002/cbdv.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Three new polyhydroxylated spirostanol steroidal saponins, dulongenosides B-D (2-4), along with 14 known compounds, dulongenoside A (1), padelaoside B (5), parisyunnanoside G (6), polyphyllin D (7), ophiopogonin C' (8), formosanin C (9), dioscin (10), paris saponin VII (11), paris H (12), parisyunnanoside I (13), protodioscin (14), proprotogracillin (15), crustecdysone (16), and stigmasterol-3-O-β-d-glucopyranoside (17), were isolated from the rhizomes of Paris dulongensis (Melanthiaceae). Their chemical structures were elucidated based on extensive analyses of NMR and MS data and acidic hydrolyses. The isolates were evaluated for their cytotoxicity to five human cancer cell lines (HL-60, SW480, MDA-MB-231, A549, and A549/Taxol) and the normal human bronchial epithelial cell line BEAS-2B by the MTS test. Compounds 7-12 and 14 showed cytotoxic activity, with IC50 values ranging from 0.20 to 4.35 μM. Proprotogracillin selectively inhibited A549 (IC50=0.58 μM) and A549/Taxol (IC50=0.74 μM) cells, with no significant cytotoxic activity against HL-60, SW480, MDA-MB-231, or BEAS-2B cells, with IC50 values greater than 40 μM.
Collapse
Affiliation(s)
- Jian-Ke Jia
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun, Yunnan, 666303, People's Republic of China
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun, Yunnan, 666303, People's Republic of China
| | - Xing-Zhi Yang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Feng Luo
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Yan Duan
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ying-Li Yang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jin-Fu Wan
- Yunnan Institute of Materia Medica, Kunming, 650111, People's Republic of China
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun, Yunnan, 666303, People's Republic of China
| |
Collapse
|
5
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
6
|
Li L, Zhang J, Cheng W, Di F, Wang C, An Q. Saponins of Paris polyphylla for the Improvement of Acne: Anti-Inflammatory, Antibacterial, Antioxidant and Immunomodulatory Effects. Molecules 2024; 29:1793. [PMID: 38675613 PMCID: PMC11052371 DOI: 10.3390/molecules29081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.
Collapse
Affiliation(s)
- Luyao Li
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Jiachan Zhang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Wenjing Cheng
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Feiqian Di
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Changtao Wang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, China;
| |
Collapse
|
7
|
Nie W, Zhang HY, Ma YX, Wan JF, Feng LP, Cui T, Li Q. New steroidal saponins from the aerial parts of Paris polyphylla var. yunnanensis and their effects on blood coagulation. Fitoterapia 2024; 174:105833. [PMID: 38301935 DOI: 10.1016/j.fitote.2024.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Five new steroidal saponins, paripolins D-H (1-5), and 6 known compounds (6-11) were isolated from the aerial parts of Paris polyphylla var. yunnanensis. The structures of 1-5 were determined using spectroscopic analyses in conjunction with acid hydrolysis. It is for the first time to report the 12-hydroxysteroidal saponins from the genus Paris. The effect of all isolated compounds on blood coagulation was determined in vitro using the plasma recalcification time method. Compounds 1 and 2 showed potent procoagulant activity, and 5-11 exhibited significant anticoagulant activity.
Collapse
Affiliation(s)
- Wei Nie
- Yunnan Institute of Materia Medica, Kunming 650111, PR China; Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming 650111, PR China
| | - Hong-Yan Zhang
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan 650106, PR China
| | - Yan-Xia Ma
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Jin-Fu Wan
- Yunnan Institute of Materia Medica, Kunming 650111, PR China; Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming 650111, PR China
| | - Li-Ping Feng
- Yunnan Institute of Materia Medica, Kunming 650111, PR China; Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming 650111, PR China
| | - Tao Cui
- Yunnan Institute of Materia Medica, Kunming 650111, PR China; Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming 650111, PR China
| | - Qian Li
- Yunnan Institute of Materia Medica, Kunming 650111, PR China; Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming 650111, PR China.
| |
Collapse
|
8
|
Xiang Y, Wan F, Ren Y, Yang D, Xiang K, Zhu B, Ruan X, Li S, Zhang L, Liu X, Si Y, Liu Y. Polyphyllin VII induces autophagy-dependent ferroptosis in human gastric cancer through targeting T-lymphokine-activated killer cell-originated protein kinase. Phytother Res 2023; 37:5803-5820. [PMID: 37632389 DOI: 10.1002/ptr.7986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2023]
Abstract
T-lymphokine-activated killer cell-originated protein kinase (TOPK) is a serine-threonine kinase that is overexpressed in gastric cancer (GC) and promotes tumor progression. Polyphyllin VII (PPVII), a pennogenin isolated from the rhizomes of Paris polyphylla, shows anticancer effects. Here, we explored the antitumor activity and mechanism of PPVII in GC. Ferroptosis was detected by transmission electron microscope, malondialdehyde, and iron determination assays. Autophagy and its upstream signaling pathway were detected by Western blot, and gene alterations. The binding of PPVII and TOPK was examined through microscale thermophoresis and drug affinity responsive target stability assays. An in vivo mouse model was performed to evaluate the therapeutic of PPVII. PPVII inhibits GC by inducing autophagy-mediated ferroptosis. PPVII promotes the degradation of ferritin heavy chain 1, which is responsible for autophagy-mediated ferroptosis. PPVII activates the Unc-51-like autophagy-activating kinase 1 (ULK1) upstream of autophagy. PPVII inhibits the activity of TOPK, thereby weakening the inhibition of downstream ULK1. PPVII stabilizes the dimer of the inactive form of TOPK by direct binding. PPVII inhibits tumor growth without causing obvious toxicity in vivo. Collectively, this study suggests that PPVII is a potential agent for the treatment of GC by targeting TOPK to activate autophagy-mediated ferroptosis.
Collapse
Affiliation(s)
- Yuchen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fang Wan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuliang Ren
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dan Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ke Xiang
- Gucheng People's Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Bingxin Zhu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuzhi Ruan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuzhen Li
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
9
|
Bai Y, Li M, Geng D, Liu S, Chen Y, Li S, Zhang S, Wang H. Polyphyllins in cancer therapy: A systematic review and meta-analysis of animal studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155096. [PMID: 37769554 DOI: 10.1016/j.phymed.2023.155096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Polyphyllins are secondary metabolites that inhibit the growth of various tumours; however, clinical trials on their use are lacking. HYPOTHESIS/PURPOSE In this study, we aimed to evaluate the antitumour efficacy of polyphyllins in animal models. STUDY DESIGN Systematic review and meta-analysis. METHODS Electronic bibliographic databases including PubMed, Web of Science, China Science and Technology Journal Database, Wanfang Data, and China National Knowledge Infrastructure were searched for relevant articles. The Systematic Review Centre for Laboratory Animal Experimentation's Risk of Bias tool was used to assess methodological quality. RevMan V.5.4 (Cochrane) and Stata MP 17 software were used to perform a meta-analysis. RESULTS Thirty articles were analysed including 33 independent experiments and 452 animals in this paper. Overall, tumour volume (standardised mean difference [SMD]: -3.35; 95 % confidence interval [CI]: -4.27 to -2.43; p < 0.00001) and tumour weight (SMD: -3.79; 95% CI: -4.75 to -2.82; p < 0.00001) were reduced by polyphyllins, which showed a good cancer therapeutic effect; mouse weight (SMD: -0.22; 95% CI: -0.61 to -0.18; p = 0.28) was insignificantly different, which indicated that polyphyllins did not affect the growth of the mice within the test range. Moreover, the molecular mechanisms of the antitumour activity of polyphyllins were explained, including the P53, NF-kB, AMPK, and ERK signalling pathways. CONCLUSION Polyphyllins inhibit the growth of cancers within the experimental dose. However, due to heterogeneity of the results of the included studies, more studies are needed to support this conclusion.
Collapse
Affiliation(s)
- Yan Bai
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Mengmeng Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Dongjie Geng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shouzan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Botanical Garden, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Ye Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shan Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shaobo Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311300, China
| | - Hongzhen Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Zhao F, Pan C, Zhang Y, Yang J, Xing X. Polyphyllin VII alleviates pulmonary hypertension by inducing miR-205-5p to target the β-catenin pathway. Biomed Pharmacother 2023; 167:115516. [PMID: 37717533 DOI: 10.1016/j.biopha.2023.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVE This study aims to investigate the impact of Polyphyllin VII (PP7) on pulmonary hypertension (PH) and elucidate the underlying mechanism involving microRNA (miR)-205-5p/β-catenin. METHODS The PH rat model was induced through hypoxia exposure. The effects of intraperitoneal injection of PP7 on pulmonary artery tissue pathology, hemodynamics, miR-205-5p expression and β-catenin protein levels were assessed. In vitro, pulmonary arterial smooth muscle cells (PASMCs) were subjected to hypoxic conditions. Moreover, miR-205-5p and/or β-catenin were overexpressed through transfection. PASMCs were pre-cultured in 20 μM PP7, and subsequent measurements included proliferation, apoptosis and vascular remodeling protein expression. RESULTS PP7 ameliorated PH symptoms in rats, upregulated miR-205-5p expression and inhibited β-catenin protein expression. Furthermore, miR-205-5p upregulation inhibited β-catenin expression in PASMCs. The overexpression of β-catenin aggravated hypoxia-induced proliferation, inhibited apoptosis and further augmented VEGF and α-SMA protein expression. Additionally, miR-205-5p overexpression alleviated the hypoxia-induced PASMC proliferation and apoptosis by inhibiting β-catenin protein expression. Under hypoxic conditions, PP7 significantly elevated miR-205-5p while downregulating β-catenin protein expression. Furthermore, inhibiting miR-205-5p counteracted the inhibitory effect of PP7 on β-catenin, consequently blocking the regulatory role of PP7 in PASMC proliferation and apoptosis. CONCLUSION PP7 likely modulates β-catenin protein levels by promoting miR-205-5p expression, thereby alleviating PH, vascular remodeling and airway smooth muscle remodeling.
Collapse
Affiliation(s)
- Fangyun Zhao
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Chunhong Pan
- Department of Pharmacy, The First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue Zhang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Que Z, Luo B, Yu P, Qi D, Shangguan W, Wang P, Liu J, Li Y, Li H, Ke R, Wu E, Tian J. Polyphyllin VII induces CTC anoikis to inhibit lung cancer metastasis through EGFR pathway regulation. Int J Biol Sci 2023; 19:5204-5217. [PMID: 37928267 PMCID: PMC10620814 DOI: 10.7150/ijbs.83682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are cells that detach from the primary tumor and enter the bloodstream, playing a crucial role in the metastasis of lung cancer. Unfortunately, there is currently a lack of drugs specifically designed to target CTCs and prevent tumor metastasis. In this study, we present evidence that polyphyllin VII, a potent anticancer compound, effectively inhibits the metastasis of lung cancer by inducing a process called anoikis in CTCs. We observed that polyphyllin VII had significant cytotoxicity and inhibited colony formation, migration, and invasion in both our newly established cell line CTC-TJH-01 and a commercial lung cancer cell line H1975. Furthermore, we found that polyphyllin VII induced anoikis and downregulated the TrkB and EGFR-MEK/ERK signaling pathways. Moreover, activation of TrkB protein did not reverse the inhibitory effect of polyphyllin VII on CTCs, while upregulation of EGFR protein effectively reversed it. Furthermore, our immunodeficient mouse models recapitulated that polyphyllin VII inhibited lung metastasis, which was associated with downregulation of the EGFR protein, and reduced the number of CTCs disseminated into the lungs by inducing anoikis. Together, these results suggest that polyphyllin VII may be a promising compound for the treatment of lung cancer metastasis by targeting CTCs.
Collapse
Affiliation(s)
- Zujun Que
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China
- Institute of TCM Oncology, Longhua Hospital, Shanghai University of TCM, Shanghai, 200032, China
| | - Bin Luo
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China
| | - Pan Yu
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76508, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, Texas 76508, USA
| | - Wenji Shangguan
- Institute of TCM Oncology, Longhua Hospital, Shanghai University of TCM, Shanghai, 200032, China
- Department of TCM, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Panpan Wang
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China
| | - Jiajun Liu
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China
| | - Yan Li
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China
| | - He Li
- Department of TCM, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ronghu Ke
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76508, USA
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76508, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, Texas 76508, USA
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China
- Institute of TCM Oncology, Longhua Hospital, Shanghai University of TCM, Shanghai, 200032, China
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China
| |
Collapse
|
12
|
Wu Z, Yuan C, Zhang Z, Wang M, Xu M, Chen Z, Tian J, Cao W, Wang Z. Paris saponins Ⅶ inhibits glycolysis of ovarian cancer via the RORC/ACK1 signaling pathway. Biochem Pharmacol 2023; 213:115597. [PMID: 37196681 DOI: 10.1016/j.bcp.2023.115597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Rhizoma Paridis is a traditional Chinese medicine commonly used for treatment of malignant tumors. Paris saponins Ⅶ (PSⅦ) is one of the components of Rhizoma Paridis, but the role of PSⅦ in glucose metabolism in ovarian cancer remains elucidated. A series of experiments in the current study demonstrated that PSⅦ inhibites glycolysis and promotes cell apoptosis in ovarian cancer cells. Expression levels of glycolysis-related proteins and apoptosis-related proteins were significantly altered by upon treatment with PSⅦ, as determined from western blot analyses. Mechanistically, PSⅦ exerted its anti-tumor effects by targeting the RORC/ACK1 signaling pathway. These findings indicate that PSⅦ inhibits glycolysis-induced cell proliferation and apoptosis through the RORC/ACK1 pathway, supporting its potential development as a candidate chemotherapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Zong Wu
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Chenyue Yuan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Zihao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Qingdao Institute, Fudan University, Shanghai, China
| | - Mengfei Wang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Meng Xu
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Ziqi Chen
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Jianhui Tian
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China.
| | - Wenjiao Cao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Ziliang Wang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China; Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
13
|
Xia L, Liu X, Mao W, Guo Y, Huang J, Hu Y, Jin L, Liu X, Fu H, Du Y, Shou Q. Panax notoginseng saponins normalises tumour blood vessels by inhibiting EphA2 gene expression to modulate the tumour microenvironment of breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154787. [PMID: 37060724 DOI: 10.1016/j.phymed.2023.154787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Panax notoginseng saponins (PNS), the main active component of Panax notoginseng, can promote vascular microcirculation. PNS exhibits antitumor effects in various cancers. However, the molecular basis of the relationship between PNS and tumor blood vessels remains unclear. PURPOSE To study the relationship between PNS inhibiting the growth and metastasis of breast cancer and promoting the normalization of blood vessels. METHODS We performed laser speckle imaging of tumor microvessels and observed the effects of PNS on tumor growth and metastasis of MMTV-PyMT (FVB) spontaneous breast cancer in a transgenic mouse model. Immunohistochemical staining of Ki67 and CD31 was performed for tumors, scanning electron microscopy was used to observe tumor vascular morphology, and flow cytometry was used to detect tumor tissue immune microenvironment (TME). RNA-seq analysis was performed using the main vessels of the tumor tissues of the mice. HUVECs were cultured in tumor supernatant in vitro to simulate tumor microenvironment and verify the sequencing differential key genes. RESULTS After treatment with PNS, we observed that tumor growth was suppressed, the blood perfusion of the systemic tumor microvessels in the mice increased, and the number of lung metastases decreased. Moreover, the vascular density of the primary tumor increased, and the vascular epidermis was smoother and flatter. Moreover, the number of tumor-associated macrophages in the tumor microenvironment was reduced, and the expression levels of IL-6, IL-10, and TNF-α were reduced in the tumor tissues. PNS downregulated the expression of multiple genes associated with tumor angiogenesis, migration, and adhesion. In vitro tubule formation experiments revealed that PNS promoted the formation and connection of tumor blood vessels and normalized the vessel morphology primarily by inhibiting EphA2 expression. In addition, PNS inhibited the expression of tumor vascular marker proteins and vascular migration adhesion-related proteins in vivo. CONCLUSION In this study, we found that PNS promoted the generation and connection of tumor vascular endothelial cells, revealing the key role of EphA2 in endothelial cell adhesion and tumor blood vessel morphology. PNS can inhibit the proliferation and metastasis of breast cancer by inhibiting EphA2, improving the immune microenvironment of breast cancer and promoting the normalization of tumor blood vessels.
Collapse
Affiliation(s)
- Linying Xia
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - XianLi Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - Weiye Mao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - Yingxue Guo
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Huang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Lu Jin
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Xia Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Huiying Fu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China.
| | - Yueguang Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Qiyang Shou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China.
| |
Collapse
|
14
|
Liu Y, Liu MY, Bi LL, Tian YY, Qiu PC, Qian XY, Wang MC, Tang HF, Lu YY, Zhang BL. Cytotoxic steroidal glycosides from the rhizomes of Paris polyphylla var. yunnanensis. PHYTOCHEMISTRY 2023; 207:113577. [PMID: 36587887 DOI: 10.1016/j.phytochem.2022.113577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. (Melanthiaceae), an important specie of the genus Paris, has long been in a traditional Chinese medicine (TCM) for a long time. This study aimed to isolate and identify the structures of bioactive saponins from the rhizomes of P. polyphylla var. yunnanensis and evaluate their cytotoxicity against BxPC-3, HepG2, U373 and SGC-7901 carcinoma cell lines. Seven previously undescribed and seven known saponins were identified, and Paris saponins VII (PSVII) showed significant cytotoxicity against the BxPC-3 cell line with IC50 values of 3.59 μM. Furthermore, flow cytometry, transmission electron microscopy and western-bolt analysis revealed that PSVII inhibited the proliferation of BxPC-3 cells and might be involved in inducing apoptosis and pyroptosis by activating caspase-3, -7 and caspase-1, respectively.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Mei-You Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Lin Bi
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Yun-Yuan Tian
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Peng-Cheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Xiao-Ying Qian
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Hai-Feng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China.
| | - Yun-Yang Lu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China.
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, China.
| |
Collapse
|
15
|
Xu L, Chen Z, Wang Y, Li Y, Wang Z, Li F, Xi X. Polyphyllin VII as a Potential Drug for Targeting Stemness in Hepatocellular Cancer via STAT3 Signaling. Curr Cancer Drug Targets 2023; 23:325-331. [PMID: 36284387 DOI: 10.2174/1568009623666221024103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND At present, the treatment of hepatocellular carcinoma (HCC) is disturbed by the treatment failure and recurrence caused by the residual liver cancer stem cells (CSCs). Therefore, drugs targeting HCC CSCs should be able to effectively eliminate HCC and prevent its recurrence. In this study, we demonstrated the effect of Polyphyllin VII (PP7) on HCC CSCs and explored their potential mechanism. METHODS HepG2 and Huh7 cells were used to analyze the antitumor activity of PP7 by quantifying cell growth and metastasis as well as to study the effect on stemness. RESULTS Our results demonstrated that PP7 promoted apoptosis and significantly inhibited proliferation and migration of both HepG2 and Huh7 cells. PP7 also inhibited tumor spheroid formation and induced significant changes in the expression of stemness markers (CD133 and OCT-4). These effects of PP7 were mediated by STAT3 signaling. CONCLUSION PP7 can effectively suppress tumor initiation, growth, and metastasis and inhibit stemness through regulation of STAT3 signaling pathway in liver cancer cells. Our data would add more evidence to further clarify the therapeutic effect of PP7 against HCC.
Collapse
Affiliation(s)
- Liuhang Xu
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Ziqi Chen
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Yangbin Wang
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Yulin Li
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Zhongyu Wang
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Fangzhou Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Xueyan Xi
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China.,Renmin Hospital, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| |
Collapse
|
16
|
Yu S, Guo L, Yan B, Yuan Q, Shan L, Zhou L, Efferth T. Tanshinol suppresses osteosarcoma by specifically inducing apoptosis of U2-OS cells through p53-mediated mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115214. [PMID: 35331874 DOI: 10.1016/j.jep.2022.115214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Salviae miltiorrhizae (also called Danshen in traditional Chinese medicine) is a famous herbal medicine, which has been frequently used to treat blood stasis syndrome including osteosarcoma (OS) in traditional Chinese medicine. Main components of Danshen have been assumed to exhibit anti-OS capacity. Nevertheless, tanshinol (TS, main component of Danshen)'s efficacy and mechanism in OS hasn't been clearly described ever since. This drew our attention, since OS is the most frequent primary bone carcinomas in children and adolescents, with a high incidence and fatality rate. Unfortunately, chemotherapy for OS has faced many clinical challenges due to the increasing chemoresistance and recurrence. This study was then designed to deeply explore TS's role in OS therapy. AIM OF THE STUDY To explore the anti-OS efficacy and mechanism of TS, we conducted in vivo and in vitro experiments by using a zebrafish xenograft model and U2-OS cells. MATERIALS AND METHODS CCK-8 assay, DAPI and γ-H2A.X immunofluorescence staining, and flow cytometry (apoptosis verification) were employed to determine the anti-proliferative and pro-apoptotic effects of TS. qPCR and Western blot were used to examine TS's molecular actions and mechanism on apoptosis of U2-OS cells. RESULTS The in vivo data showed that TS significantly inhibited U2-OS tumor growth in larval zebrafish from 2 to 20 ng/mL. In vitro data indicated that TS exerted significant anti-proliferative and pro-apoptotic effects on U2-OS cells in a dose-dependent manner. Moreover, TS has no inhibitory effect on bMSCs, suggesting its safety on normal bone-forming cells. Molecular data illustrated that TS obviously activated the p53 signaling-related proteins (p-p53, Bax, CASP3, CASP9) and its upstream JNK (p-JNK, p-c-JUN) and ATM (p-ATM) signaling molecules through phosphorylation and cleavage, followed by up-regulation of the pro-apoptotic genes, NOXA, PUMA, TP53, BAX, and BIM, and down-regulation of Bcl-2 protein. CONCLUSION In sum, TS specifically induced apoptosis of U2-OS cells by activating p53 signaling pathways, indicating TS as a promising candidate for OS treatment.
Collapse
Affiliation(s)
- Shihui Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Le Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
17
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
18
|
Wang R. Current perspectives on naturally occurring saponins as anticancer agents. Arch Pharm (Weinheim) 2022; 355:e2100469. [PMID: 35119132 DOI: 10.1002/ardp.202100469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
Saponins, a heterogeneous group of sterol and triterpene glycosides, are distributed widely in nature. Naturally occurring saponins could act on diverse targets in cancer cells and consequently exert potential antiproliferative effects in various cancers, including drug-resistant forms. Therefore, naturally occurring saponins are useful templates for the discovery of novel anticancer candidates. Covering articles published between January 2020 and October 2021, this review aims to outline the recent development of naturally occurring steroidal and triterpenoidal saponins with anticancer potential to provide novel anticancer lead hits/candidates.
Collapse
Affiliation(s)
- Ruo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Zou Y. Naturally occurring steroidal saponins as potential anticancer agents: Current developments and mechanisms of action. Curr Top Med Chem 2022; 22:1442-1456. [PMID: 35352659 DOI: 10.2174/1568026622666220330011047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Cancer is claimed as a prevalent cause of mortality throughout the world. Conventional chemotherapy plays a pivotal role in the treatment of cancers, but the multidrug resistance has already become one of the major impediments for efficacious cancer therapy, creating a great demand for the development of novel anticancer drugs. Steroidal saponins, abundantly found in nature, possess extensive structural variability, and some naturally occurring steroidal saponins exhibited profound anticancer properties through a variety of pathways. Hence, naturally occurring steroidal saponins are powerful lead compounds/candidates in the development of novel therapeutic agents. This review article described the recent progress in naturally occurring steroidal saponins as potential anticancer agents, and the mechanisms of action were also discussed, covering articles published between 2017 and 2021.
Collapse
Affiliation(s)
- Yulin Zou
- The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, 443002, Hubei, China
| |
Collapse
|
20
|
Chen C, Tang Y, Huang H, Jia L, Feng L, Zhao J, Zhang H, He J, Ding L, Xia D. Relieving immunosuppression by Endo@PLT targeting anti-angiogenesis to improve the efficacy of immunotherapies. Chem Commun (Camb) 2022; 58:3202-3205. [PMID: 35174839 DOI: 10.1039/d2cc00205a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Low levels of immune infiltrates in the tumor milieu hinder the effectiveness of immunotherapy against immune-cold tumors. In the current work, a tumor-targeting drug delivery system composed of Endo-loaded platelets (Endo@PLT) was developed to relieve immunosuppression by achieving tumor vascular normalization. Endo@PLT reprogrammed the immunostimulatory phenotype, achieving excellent PD-1 immunotherapy in vivo.
Collapse
Affiliation(s)
- Chao Chen
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yijie Tang
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Hao Huang
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Li Jia
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Lingzi Feng
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jianya Zhao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Lingchi Ding
- Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
21
|
Targen S, Konu O. Zebrafish Xenotransplantation Models for Studying Gene Function and Drug Treatment in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1248-1265. [PMID: 35031971 DOI: 10.1007/s12029-021-00782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Zebrafish is a promising model organism for human disease including hepatocellular cancer (HCC). Recently, zebrafish has emerged also as a host for xenograft studies of liver cancer cell lines and patient derived tumors of HCC. Zebrafish embryos enable drug screening and gene function studies of xenografted cells via ease of microinjection and visualization of tumor growth and metastasis. OBJECTIVES In this review, we aimed to overview zebrafish HCC and liver cancer xenotransplantation studies focusing on 'gene functional analysis' and 'drug/chemical screening'. METHODS Herein, a comprehensive literature search was performed for liver and HCC xenografts in zebrafish on PubMed using different key words and filters for molecular modifications or drug exposure. RESULTS Our literature search revealed around 250 studies which were filtered and summarized in a table (Table 1) revealing comprehensive collection of experimental and technical details on microinjection, injected cell lines, molecular modifications of injected cells, types and doses of drug treatments as well as biological assessments. CONCLUSION This review provides a platform for HCC and liver xenografts and highlights studies performed to understand gene functionality and drug efficacy in vivo in zebrafish.
Collapse
Affiliation(s)
- Seniye Targen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|