1
|
Sakai K, Yamada S, Higuchi Y, Nishino I. Preserved Forearm and Hand Muscles and Diaphragm with Mild Cardiac and Respiratory Involvement in a Patient with GNE Myopathy Harboring Homozygous Variants in GNE (c.1807G>C, p.V603L) over Four Decades after the Onset. Intern Med 2025; 64:1586-1590. [PMID: 39428522 DOI: 10.2169/internalmedicine.4538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
We encountered a 67-year-old Japanese man with GNE myopathy and homozygous variants (c.1807G>C, p.V603L) of the GNE gene. The patient developed weakness in the left foot at 24 years old and could only move his wrist joints and hands 43 years after the onset. This genotype is the most common variant and causes severe muscle involvement; however, the distal upper extremities are preserved until the end-stage of the disease. Although severe heart failure is rare in GNE myopathy, mild cardiac dysfunction (ejection fraction 46.1%) was observed. Furthermore, respiratory dysfunction was noted with a preserved diaphragm.
Collapse
Affiliation(s)
- Kenji Sakai
- Department of Neurology, Joetsu General Hospital, Japan
| | - Shota Yamada
- Department of Neurology, Joetsu General Hospital, Japan
| | - Yo Higuchi
- Department of Neurology, Joetsu General Hospital, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| |
Collapse
|
2
|
Suzuki N, Mori-Yoshimura M, Nishino I, Aoki M. Ultra-Orphan drug development for GNE Myopathy: A synthetic literature review and meta-analysis. J Neuromuscul Dis 2025; 12:183-194. [PMID: 39973407 DOI: 10.1177/22143602241296226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
GNE myopathy is an autosomal recessive hereditary muscle disorder that has the following clinical characteristics: develops in early adulthood, gradually progresses from the distal muscles, and is relatively sparing of quadriceps until the advanced stages of the disease. With further progression, patients become non-ambulatory and need a wheelchair. There is growing concern about extra-muscular presentations such as thrombocytopenia, respiratory dysfunction, and sleep apnea syndrome. Pathologically, rimmed vacuoles and tubulofilamentous inclusions are observed in affected muscles. The cause of the disease is thought to be a sialic acid deficiency due to mutations of the GNE gene required for in vivo sialic acid biosynthesis. Sialic acid supplementation to a presymptomatic GNE myopathy mouse model was effective in preventing the development of the disease. Several clinical studies have been conducted to evaluate the safety and efficacy of sialic acid supplementation in humans. Based on the favorable results of these studies, an extended-release aceneuramic acid formulation was approved for treatment of GNE myopathy in Japan in March 2024. It is anticipated that it will be a significant step in the development of an effective treatment for GNE myopathy and other ultra-orphan diseases.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Subbotin D, Ionova S, Marakhonov A, Saifullina E, Borovikov A, Akhmadeeva L, Chausova P, Ryzhkova O, Zinchenko R, Kutsev S, Murtazina A. The frequent variant A57F in the GNE gene in patients from Russia has Finno-Ugric Mari origin. Front Genet 2024; 15:1511304. [PMID: 39722797 PMCID: PMC11668746 DOI: 10.3389/fgene.2024.1511304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction GNE-myopathy is a distal myopathy with adult-onset and initial involvement of anterior leg compartment. A founder effect has been demonstrated for some patients from several large cohorts in different countries. Methods In this study, we investigated the allele frequency of the c.169_170delinsTT (p.(Ala57Phe)) variant in the GNE gene (NM_001128227.3) among different ethnic populations (Mari, Tatar, and Bashkir) and estimated the age of the mutation's spread event. Results The c.169_170delinsTT variant in the GNE gene was detected in the Mari population with an allele frequency of 0.003788 but was not found in the Tatar or Bashkir populations. The disease incidence is estimated to be 1.43 (95% CI: 0.00092-43.78) per 100,000 in the Mari population. According to our study, the estimated age of the mutation's spread is 160.46 years (95% CI: 45.55-244.14). Discussion By comparing the information gathered with historical data on migration patterns in the Middle Volga region and estimating the age of the variant's dissemination, we propose hypotheses regarding its origin and the pathways through which it spread. In the current context of increased rate of interethnic marriages, investigating the spread of common pathogenic variants from historically isolated populations is important for molecular genetic diagnosis. This approach aids in optimizing diagnostic processes and reducing the diagnostic odyssey for patients.
Collapse
Affiliation(s)
| | - Sofya Ionova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | - Elena Saifullina
- Department of Neurology, Bashkir State Medical University, Ufa, Russia
| | | | - Leila Akhmadeeva
- Department of Neurology, Bashkir State Medical University, Ufa, Russia
| | | | | | | | - Sergey Kutsev
- Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
4
|
Tsuda S, Sakamoto A, Kawaguchi H, Uchiyama T, Kaname T, Yanagi K, Kunishima S, Ishiguro A. Novel biallelic GNE variants identified in a patient with chronic thrombocytopenia without any symptoms of myopathy. Ann Hematol 2024; 103:5945-5950. [PMID: 39576359 DOI: 10.1007/s00277-024-06104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 04/04/2025]
Abstract
GNE encodes a rate-limiting enzyme that regulates the biosynthesis of a sialic acid precursor. As sialic acids are critical for the platelet membrane and muscle fibers, GNE variants cause GNE-related thrombocytopenia and GNE-related myopathy. Here, we report a neonate with thrombocytopenia that initially met the criteria for neonatal allo-immune thrombocytopenia (NAIT) but was resistant to treatments and then revealed novel biallelic heterozygous GNE variants without any symptoms of myopathy when diagnosed. NAIT was initially diagnosed due to alloantibodies against HPA5 and its mismatch between the patient and his mother. However, intravenous immunoglobulin therapy and platelet transfusions showed minimal improvement in the platelet count. Platelet counts remained around 60 × 109/L, suggesting congenital thrombocytopenia. Gene panel sequencing at the age of 13 identified biallelic pathogenic variants of GNE. The patient did not exhibit any symptoms of muscular weakness, suggesting GNE-related myopathy. We demonstrated a GNE-related thrombocytopenia patient with novel biallelic heterozygous GNE variants. Clinical trials have involved the use of sialic acids or their precursors, as well as gene therapy, to treat GNE-related myopathy, which may slow or halt the progression of the disease. Therefore, early diagnosis of this disease may significantly impact its clinical course.
Collapse
Affiliation(s)
- Shota Tsuda
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Atsushi Sakamoto
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Division of Hematology, NCCHD, Tokyo, Japan.
| | - Hiroyuki Kawaguchi
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | | | | | - Shinji Kunishima
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Gifu, Japan
| | - Akira Ishiguro
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Division of Hematology, NCCHD, Tokyo, Japan.
| |
Collapse
|
5
|
Sun H, Zheng F, Yu J, Meng L, Gang Q, Lv H, Zhang W, Yuan Y, Yu M, Wang Z. Disease Progression of GNE Myopathy and Its Relationship With Genotype: A Retrospective, Observational Study in Chinese Patients. Neurol Genet 2024; 10:e200203. [PMID: 39539755 PMCID: PMC11558541 DOI: 10.1212/nxg.0000000000200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Background and Objectives Studies on the natural disease progression of detailed motor dysfunction in patients with GNE myopathy are rare. This study aimed to investigate motor function involvement during disease progression and its relationship with the genotype among Chinese patients with GNE myopathy. Methods This retrospective observational cohort study included all patients with genetically confirmed GNE myopathy enrolled at Peking University First Hospital between 2000 and 2023. Patients with GNE myopathy were stratified into 2 subgroups based on with or without p.D207V mutation. Data on clinically significant muscular problems were collected from patients' medical history and follow-up assessments to evaluate motor function using the GNE Myopathy Functional Activity Scale and the modified Rankin Scale. Results Eighty-three patients with GNE myopathy were included, with a median age at examination of 36 years (range 25-57) and a median age at onset (AAO) of 26 years (range 16-46). The Kaplan-Meier curves revealed that patients with the p.D207V mutation experienced a significantly later AAO (27 years [95% CI 25-29]) and onset age of wheelchair dependency (50 years [95% CI 46-54]) compared with those without the mutation, who had an AAO of 24 years (95% CI 22-26) and an onset age of wheelchair dependency of 45 years (95% CI 36-54). Multivariate Cox regression analysis, adjusted for sex and disease duration, revealed that patients without the p.D207V mutation had a higher risk of wheelchair dependency, with an adjusted hazard ratio of 2.361 (95% CI 1.030-5.411). Barthel indexes (BIs) were negatively correlated with the disease duration and positively correlated with AAOs. Patients with GNE with earlier AAO exhibited a shorter disease duration of developing functional dependency (BIs <60) than did those with later AAOs. Discussion Our results provide insights into the motor function involvement observed during disease progression in Chinese patients with GNE myopathy, and relatively mild disease severity was observed in those with the p.D207V mutation.
Collapse
Affiliation(s)
- Haozhe Sun
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Fuze Zheng
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Jiaxi Yu
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Lingchao Meng
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Qiang Gang
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - He Lv
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Wei Zhang
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Yun Yuan
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Meng Yu
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Zhaoxia Wang
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
6
|
Yoshioka W, Nakamura H, Oba M, Saito Y, Nishino I, Mori-Yoshimura M. Large phenotypic diversity by genotype in patients with GNE myopathy: 10 years after the establishment of a national registry in Japan. J Neurol 2024; 271:4453-4461. [PMID: 38691167 DOI: 10.1007/s00415-024-12396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND GNE myopathy is an ultra-rare autosomal recessive distal myopathy caused by pathogenic variants of the GNE gene, which encodes a key enzyme in sialic acid biosynthesis. The present study aimed to examine the long-term progression of GNE myopathy, genotype-phenotype correlations, and complications to provide useful information for predicting patient progression and designing clinical trials using a large collection of registry data over a 10-year period. METHODS We analyzed 220 Japanese patients with GNE myopathy from a national registry in Japan. Diagnoses were confirmed by genetic curators based on genetic analysis reports. We analyzed registration sheets and annually updated items completed by attending physicians. RESULTS In total, 197 of 220 participants (89.5%) carried p.D207V or p.V603L in at least one allele. The median disease duration to loss of ambulation was estimated to be 10 years in p.V603L homozygotes (n = 48), whereas more than 90% of p.D207V/p.V603L compound heterozygotes were estimated to be ambulatory even 20 years after disease onset according to Kaplan-Meier analysis (p < 0.001). Moreover, participants with a younger age of onset lost ambulation earlier regardless of genotype. A decline in respiratory function was observed as the disease progressed, particularly in p.V603L homozygotes, whereas none of the p.D207V/p.V603L compound heterozygotes showed a decline. CONCLUSIONS The present study demonstrated large differences in disease progression and respiratory function between genotypes. Moreover, age of onset was found to be an indicator of disease severity regardless of genotype in GNE myopathy patients. These results may help stratify patients in clinical trials and predict disease progression.
Collapse
Affiliation(s)
- Wakako Yoshioka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Harumasa Nakamura
- Department of Clinical Research Support, Clinical Research & Education Promotion Division, National Center Hospital, NCNP, Tokyo, Japan
| | - Mari Oba
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, NCNP, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
7
|
Baskar D, Reddy N, Preethish-Kumar V, Polavarapu K, Nishadham V, Vengalil S, Nashi S, Sanka SB, Bardhan M, Huddar A, Unnikrishnan G, Harikrishna GV, Gunasekaran S, Thomas PT, Keerthipriya MS, Girija MS, Arunachal G, Anjanappa RM, Nishino I, Pogoryelova O, Lochmuller H, Nalini A. GNE Myopathy: Genotype - Phenotype Correlation and Disease Progression in an Indian Cohort. J Neuromuscul Dis 2024; 11:959-968. [PMID: 39213088 PMCID: PMC11380251 DOI: 10.3233/jnd-230130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 09/04/2024]
Abstract
Introduction GNE myopathy is a rare slowly progressive adult-onset distal myopathy with autosomal recessive inheritance. It has distinctive features of quadriceps sparing with preferential anterior tibial involvement. Most patients eventually become wheelchair bound by 10-20 years after onset. This study analyzes the phenotype-genotype characteristics and disease progression in a large cohort of GNEM patients from India. Materials and methods Retrospective observational study on GNEM from a quaternary neurology referral hospital in southern India. Data was collected from clinical phenotyping, serum creatine kinase levels, muscle biopsy histopathology, genetic analysis and functional assessment scales - IBMFRS and MDFRS. Results 157 patients were included with mean age at onset and diagnosis: 26.5±6.2 years and 32.8±7.8 years, respectively. M:F ratio was 25 : 13. Most common presenting symptom: foot drop (46.5%) and limb girdle weakness (19.1%). Wasting and weakness of small muscles of hand and finger flexors seen in 66.2% and as an initial symptoms in 5.2%. Though tibialis anterior involvement was most common (89.2%), early quadriceps weakness was noted in 3.2% and Beevor's sign in 59.2%. Rimmed vacuoles were present in 75% of patients with muscle biopsy. Most common variant was the Indian Founder variant identified in 129 patients (c.2179 G>A, p.Val727Met - 82.2%) and most common zygosity being compound heterozygous state (n = 115, 87.5%). Biallelic kinase domain variations predisposed to a more severe phenotype. Wheelchair bound state noted in 8.9% with a mean age and duration of 32.0±7.1 and 6.3±4.9 years respectively, earlier than previous studies on other ethnic groups. Conclusion This is the largest GNEM cohort reported from South Asia. The p.Val727Met variant in compound heterozygous state is noted in majority (82.2%) of the cases. Observed relationships between genotype and clinical parameters shows that severity of the disease might be attributable to specific GNE genotype and thus could aid in predicting the disease progression.
Collapse
Affiliation(s)
- Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Nishanth Reddy
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Kiran Polavarapu
- Department of Medicine, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa and Division of Neurology, The Ottawa Hospital, Ottawa, Canada
| | - Vikas Nishadham
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sai Bhargava Sanka
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Mainak Bardhan
- National Institute of Cholera and Enteric Diseases (NICED), Kolkata, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Swetha Gunasekaran
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Priya Treesa Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Manu Santhappan Girija
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuoroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | | | - Hanns Lochmuller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
8
|
Pan Y, Liu M, Zhang S, Mei H, Wu J. Whole-exome sequencing revealed novel genetic alterations in patients with tetralogy of Fallot. Transl Pediatr 2023; 12:1835-1841. [PMID: 37969115 PMCID: PMC10644019 DOI: 10.21037/tp-23-449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023] Open
Abstract
Background The most prevalent cyanotic congenital heart disease (CHD) phenotype is tetralogy of Fallot (TOF). Rare genetic variations have been identified as significant risk factors for CHD. Thus, this research sought to identify the pathogenic variations and molecular etiologies of TOF. Methods This study employed whole-exome sequencing (WES) and Sanger sequencing to identify pathogenic variations in DNA samples from patients with TOF. The pathogenicity of the variations was predicted using an in-silico approach. Results We enrolled 17 patients with TOF in this study. Among these patients, 14 had mutations in TOF-related genes, including GJB2, TBX15, CTNS, SPINK1, GATA6, PRIMOL, GDF15, SLC17A9, AIFM1, FOXC2, KLF13, ABCA4, CPA6, FKBP10, ASPA, SBF1, HBA2, IGLL1, GNE, and KLHL10. We also gathered WES data from three participants without TOF, who comprised the control group, but no variations were found in the indicated genes. Further analysis showed that the patients with FKBP10 and GNE variants had more serious clinical symptoms. Sanger sequencing confirmed that the two variants were heterozygous in TOF patients. Conclusions We identified several genetic variants associated with TOF and confirmed that FKBP10 and GNE variants were associated with TOF severity. The findings of this study help researchers and clinicians on genetic counseling with the verification of the potential of WES in detecting TOF and help implement early interventions for patients with TOF.
Collapse
Affiliation(s)
- Yu Pan
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Manli Liu
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Songsong Zhang
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Huaxian Mei
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jing Wu
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
9
|
Mori-Yoshimura M, Suzuki N, Katsuno M, Takahashi MP, Yamashita S, Oya Y, Hashizume A, Yamada S, Nakamori M, Izumi R, Kato M, Warita H, Tateyama M, Kuroda H, Asada R, Yamaguchi T, Nishino I, Aoki M. Efficacy confirmation study of aceneuramic acid administration for GNE myopathy in Japan. Orphanet J Rare Dis 2023; 18:241. [PMID: 37568154 PMCID: PMC10416530 DOI: 10.1186/s13023-023-02850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND A rare muscle disease, GNE myopathy is caused by mutations in the GNE gene involved in sialic acid biosynthesis. Our recent phase II/III study has indicated that oral administration of aceneuramic acid to patients slows disease progression. METHODS We conducted a phase III, randomized, placebo-controlled, double-blind, parallel-group, multicenter study. Participants were assigned to receive an extended-release formulation of aceneuramic acid (SA-ER) or placebo. Changes in muscle strength and function over 48 weeks were compared between treatment groups using change in the upper extremity composite (UEC) score from baseline to Week 48 as the primary endpoint and the investigator-assessed efficacy rate as the key secondary endpoint. For safety, adverse events, vital signs, body weight, electrocardiogram, and clinical laboratory results were monitored. RESULTS A total of 14 patients were enrolled and given SA-ER (n = 10) or placebo (n = 4) tablets orally. Decrease in least square mean (LSM) change in UEC score at Week 48 with SA-ER (- 0.115 kg) was numerically smaller as compared with placebo (- 2.625 kg), with LSM difference (95% confidence interval) of 2.510 (- 1.720 to 6.740) kg. In addition, efficacy was higher with SA-ER as compared with placebo. No clinically significant adverse events or other safety concerns were observed. CONCLUSIONS The present study reproducibly showed a trend towards slowing of loss of muscle strength and function with orally administered SA-ER, indicating supplementation with sialic acid might be a promising replacement therapy for GNE myopathy. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT04671472).
Collapse
Affiliation(s)
- Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Satoshi Yamashita
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Hiroshi Kuroda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Ryuta Asada
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience and Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan.
| |
Collapse
|
10
|
Suzuki N, Mori-Yoshimura M, Katsuno M, Takahashi MP, Yamashita S, Oya Y, Hashizume A, Yamada S, Nakamori M, Izumi R, Kato M, Warita H, Tateyama M, Kuroda H, Asada R, Yamaguchi T, Nishino I, Aoki M. Phase II/III Study of Aceneuramic Acid Administration for GNE Myopathy in Japan. J Neuromuscul Dis 2023:JND230029. [PMID: 37125562 DOI: 10.3233/jnd-230029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND GNE myopathy is an ultra-rare muscle disease characterized by a reduction in the synthesis of sialic acid derived from pathogenic variants in the GNE gene. No treatment has been established so far. OBJECTIVE We evaluated the safety and efficacy of oral supplementation of aceneuramic acid in patients with GNE myopathy. METHODS This multicenter, placebo-controlled, double-blind study comprised genetically confirmed GNE myopathy patients in Japan who were randomly assigned into treatment groups of sialic acid-extended release (SA-ER) tablets (6 g/day for 48 weeks) or placebo groups (4:1). The primary endpoint of effectiveness was set as the change in total upper limb muscle strength (upper extremity composite [UEC] score) from the start of administration to the final evaluation time point. RESULTS Among the 20 enrolled patients (SA-ER group, 16; placebo group, 4), 19 completed this 48-week study. The mean value of change in UEC score (95% confidence interval [CI]) at 48 weeks was -0.1 kg (-2.1 to 2.0) in the SA-ER group and -5.1 kg (-10.4 to 0.3) in the placebo group. The least squares mean difference (95% CI) between the groups in the covariance analysis was 4.8 kg (-0.3 to 9.9; P = 0.0635). The change in UEC score at 48 weeks was significantly higher in the SA-ER group compared with the placebo group (P = 0.0013) in the generalized estimating equation test repeated measurement analysis. In one patient in the SA-ER group, who was found to be pregnant 2 weeks after drug administration fetal death with tangled umbilical cord occurred at 13 weeks after the discontinuation of treatment. No other serious adverse effects were observed. CONCLUSIONS The present study indicates that oral administration of SA-ER tablets is effective and safe in patients with GNE myopathy in Japan.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Hospital, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Satoshi Yamashita
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Hospital, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kuroda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuta Asada
- Clinical Research Center, Gifu University Hospital, Gifu, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience and Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Hagenhaus V, Gorenflos López JL, Rosenstengel R, Neu C, Hackenberger CPR, Celik A, Weinert K, Nguyen MB, Bork K, Horstkorte R, Gesper A. Glycation Interferes with the Activity of the Bi-Functional UDP- N-Acetylglucosamine 2-Epimerase/ N-Acetyl-mannosamine Kinase (GNE). Biomolecules 2023; 13:biom13030422. [PMID: 36979358 PMCID: PMC10046061 DOI: 10.3390/biom13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Mutations in the gene coding for the bi-functional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of the sialic acid biosynthesis, are responsible for autosomal-recessive GNE myopathy (GNEM). GNEM is an adult-onset disease with a yet unknown exact pathophysiology. Since the protein appears to work adequately for a certain period of time even though the mutation is already present, other effects appear to influence the onset and progression of the disease. In this study, we want to investigate whether the late onset of GNEM is based on an age-related effect, e.g., the accumulation of post-translational modifications (PTMs). Furthermore, we also want to investigate what effect on the enzyme activity such an accumulation would have. We will particularly focus on glycation, which is a PTM through non-enzymatic reactions between the carbonyl groups (e.g., of methylglyoxal (MGO) or glyoxal (GO)) with amino groups of proteins or other biomolecules. It is already known that the levels of both MGO and GO increase with age. For our investigations, we express each domain of the GNE separately, treat them with one of the glycation agents, and determine their activity. We demonstrate that the enzymatic activity of the N-acetylmannosamine kinase (GNE-kinase domain) decreases dramatically after glycation with MGO or GO-with a remaining activity of 13% ± 5% (5 mM MGO) and 22% ± 4% (5 mM GO). Whereas the activity of the UDP-N-acetylglucosamine 2-epimerase (GNE-epimerase domain) is only slightly reduced after glycation-with a remaining activity of 60% ± 8% (5 mM MGO) and 63% ± 5% (5 mM GO).
Collapse
Affiliation(s)
- Vanessa Hagenhaus
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Jacob L Gorenflos López
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Rebecca Rosenstengel
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Carolin Neu
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Arif Celik
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Klara Weinert
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Mai-Binh Nguyen
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Kaya Bork
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Astrid Gesper
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| |
Collapse
|
12
|
Yoshioka W, Iida A, Sonehara K, Yamamoto K, Oya Y, Mori-Yoshimura M, Kurashige T, Okubo M, Ogawa M, Matsuda F, Higasa K, Hayashi S, Nakamura H, Sekijima M, Okada Y, Noguchi S, Nishino I. Multidimensional analyses of the pathomechanism caused by the non-catalytic GNE variant, c.620A>T, in patients with GNE myopathy. Sci Rep 2022; 12:21806. [PMID: 36526893 PMCID: PMC9758176 DOI: 10.1038/s41598-022-26419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
GNE myopathy is a distal myopathy caused by biallelic variants in GNE, which encodes a protein involved in sialic acid biosynthesis. Compound heterozygosity of the second most frequent variant among Japanese GNE myopathy patients, GNE c.620A>T encoding p.D207V, occurs in the expected number of patients; however, homozygotes for this variant are rare; three patients identified while 238 homozygotes are estimated to exist in Japan. The aim of this study was to elucidate the pathomechanism caused by c.620A>T. Identity-by-descent mapping indicated two distinct c.620A>T haplotypes, which were not correlated with age onset or development of myopathy. Patients homozygous for c.620A>T had mildly decreased sialylation, and no additional pathogenic variants in GNE or abnormalities in transcript structure or expression of other genes related to sialic acid biosynthesis in skeletal muscle. Structural modeling of full-length GNE dimers revealed that the variant amino acid localized close to the monomer interface, but far from catalytic sites, suggesting functions in enzymatic product transfer between the epimerase and kinase domains on GNE oligomerization. In conclusion, homozygotes for c.620A>T rarely develop myopathy, while symptoms occur in compound heterozygotes, probably because of mildly decreased sialylation, due to partial defects in oligomerization and product trafficking by the mutated GNE protein.
Collapse
Affiliation(s)
- Wakako Yoshioka
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, NCNP, Kodaira, Japan
| | - Aritoshi Iida
- grid.419280.60000 0004 1763 8916Medical Genome Center, NCNP, Kodaira, Japan
| | - Kyuto Sonehara
- grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan ,grid.136593.b0000 0004 0373 3971Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Kazuki Yamamoto
- grid.32197.3e0000 0001 2179 2105Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushi Oya
- grid.419280.60000 0004 1763 8916Department of Neurology, National Center Hospital, NCNP, Kodaira, Japan
| | - Madoka Mori-Yoshimura
- grid.419280.60000 0004 1763 8916Department of Neurology, National Center Hospital, NCNP, Kodaira, Japan
| | - Takashi Kurashige
- grid.440118.80000 0004 0569 3483Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Mariko Okubo
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, NCNP, Kodaira, Japan
| | - Megumu Ogawa
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Fumihiko Matsuda
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Higasa
- grid.410783.90000 0001 2172 5041Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Shinichiro Hayashi
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Harumasa Nakamura
- grid.419280.60000 0004 1763 8916Department of Clinical Research Support, Clinical Research & Education Promotion Division, National Center Hospital, NCNP, Kodaira, Japan
| | - Masakazu Sekijima
- grid.32197.3e0000 0001 2179 2105Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Yukinori Okada
- grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Noguchi
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Ichizo Nishino
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, NCNP, Kodaira, Japan
| |
Collapse
|
13
|
Genetic and Clinical Spectrum of GNE Myopathy in Russia. Genes (Basel) 2022; 13:genes13111991. [PMID: 36360228 PMCID: PMC9690815 DOI: 10.3390/genes13111991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/04/2022] Open
Abstract
GNE myopathy (GNEM) is a rare hereditary disease, but at the same time, it is the most common distal myopathy in several countries due to a founder effect of some pathogenic variants in the GNE gene. We collected the largest cohort of patients with GNEM from Russia and analyzed their mutational spectrum and clinical data. In our cohort, 10 novel variants were found, including 2 frameshift variants and 2 large deletions. One novel missense variant c.169_170delGCinsTT (p.(Ala57Phe)) was detected in 4 families in a homozygous state and in 3 unrelated patients in a compound heterozygous state. It was the second most frequent variant in our cohort. All families with this novel frequent variant were non-consanguineous and originated from the 3 neighboring areas in the European part of Russia. The clinical picture of the patients carrying this novel variant was typical, but the severity of clinical manifestation differed significantly. In our study, we reported two atypical cases expanding the phenotypic spectrum of GNEM. One female patient had severe quadriceps atrophy, hand joint contractures, keloid scars, and non-classical pattern on leg muscle magnetic resonance imaging, which was more similar to atypical collagenopathy rather than GNEM. Another patient initially had been observed with spinal muscular atrophy due to asymmetric atrophy of hand muscles and results of electromyography. The peculiar pattern of muscle involvement on magnetic resonance imaging consisted of pronounced changes in the posterior thigh muscle group with relatively spared muscles of the lower legs, apart from the soleus muscles. Different variants in the GNE gene were found in both atypical cases. Thus, our data expand the mutational and clinical spectrum of GNEM.
Collapse
|
14
|
Zieger B, Boeckelmann D, Anani W, Falet H, Zhu J, Glonnegger H, Full H, Andresen F, Erlacher M, Lausch E, Fels S, Strahm B, Lang P, Hoffmeister KM. Novel GNE Gene Variants Associated with Severe Congenital Thrombocytopenia and Platelet Sialylation Defect. Thromb Haemost 2022; 122:1139-1146. [PMID: 35052006 DOI: 10.1055/s-0041-1742207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The GNE gene encodes an enzyme that initiates and regulates the biosynthesis of N-acetylneuraminic acid, a precursor of sialic acids. GNE mutations are classically associated with Nonaka myopathy and sialuria, following an autosomal recessive and autosomal dominant inheritance pattern. Reports show that single GNE variants cause severe thrombocytopenia without muscle weakness. Using panel sequencing, we identified two novel compound heterozygous variants in GNE in a young girl with life-threatening bleedings, severe congenital thrombocytopenia, and a platelet secretion defect. Both variants are located in the nucleotide-binding site of the N-acetylmannosamin kinase domain of GNE. Lectin array showed decreased α-2,3-sialylation on platelets, consistent with loss of sialic acid synthesis and indicative of rapid platelet clearance. Hematopoietic stem cell transplantation (HSCT) normalized platelet counts. This is the first report of an HSCT in a patient with an inherited GNE defect leading to normal platelet counts.
Collapse
Affiliation(s)
- Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Doris Boeckelmann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Waseem Anani
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Hervé Falet
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Wisconsin, United States
| | - Jieqing Zhu
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States.,Department of Biochemistry, Medical College of Wisconsin, Wisconsin, United States
| | - Hannah Glonnegger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermann Full
- Clinic for Pediatric and Adolescent Medicine, SLK-Kliniken Heilbronn, Heilbronn, Germany
| | - Felicia Andresen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ekkehart Lausch
- Pediatric Genetics Section, Department of Pediatrics, University of Freiburg, Freiburg, Germany
| | - Salome Fels
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Lang
- Department of Pediatrics, Children's University Hospital, University of Tübingen, Tübingen, Germany
| | - Karin M Hoffmeister
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States.,Department of Biochemistry and Medicine, Medical College of Wisconsin, Wisconsin, United States
| |
Collapse
|
15
|
Xu Z, Xiang J, Luan X, Geng Z, Cao L. Novel compound heterozygous mutations in a GNE myopathy with congenital thrombocytopenia: A case report and literature review. Clin Case Rep 2022; 10:e05659. [PMID: 35414913 PMCID: PMC8978988 DOI: 10.1002/ccr3.5659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
We reported a GNE myopathy with congenital thrombocytopenia on a young male patient. He presented with a 3-year history of lower distal extremity weakness initially affecting his legs. The weakness slowly progressed to lower proximal legs and upper arms last 6 months. Whole-exome sequencing revealed that the patient harbored two heterozygous gene mutations, including a novel insertion mutation c.*1037_*1038CACACACACACACACACACACA and c.C478T in exome 12 and 3 of the GNE gene (NM_001128227), respectively. The levels of serum sialic acid in this patient were considerably decreased. Muscle MRI imaging showed the anterior and medial parts of his quadriceps were heavily affected by this disease. Hematoxylin and eosin staining showed prominent rimmed vacuoles with a lack of inflammatory response in the atrophied muscle. We also undertook a review of the current literature, searching for reports in which the GNE gene mutation caused the thrombocytopenia with or without muscle weakness. This new gene mutation finding broadens the GNE disease genotype spectrum, and further investigation of the relationship between GNE gene mutations and the heterogeneity of its clinical manifestations is needed.
Collapse
Affiliation(s)
- Zhouwei Xu
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jingyan Xiang
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xinghua Luan
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhi Geng
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Li Cao
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
16
|
Functional characterization of GNE mutations prevalent in Asian subjects with GNE myopathy, an ultra-rare neuromuscular disorder. Biochimie 2022; 199:36-45. [DOI: 10.1016/j.biochi.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
17
|
Park JC, Kim J, Jang HK, Lee SY, Kim KT, Kwon EJ, Park S, Lee HS, Choi H, Park SY, Choi HJ, Park SJ, Moon SH, Bae S, Cha HJ. Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials 2022; 282:121419. [DOI: 10.1016/j.biomaterials.2022.121419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022]
|
18
|
Characteristics of myotonic dystrophy patients in the national registry of Japan. J Neurol Sci 2022; 432:120080. [PMID: 34923335 DOI: 10.1016/j.jns.2021.120080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022]
Abstract
Myotonic dystrophies (DM) are inherited autosomal dominant disorders affecting multiple organs. Currently available therapeutics for DM are limited; therefore, a patient registry is essential for therapeutic development and success of clinical trials targeting the diseases. We have developed a nationwide DM registry in Japan under the Registry of Muscular Dystrophy (Remudy). The registration process was patient-initiated; however, physicians certified the clinical information. The dataset includes all Naarden and TREAT-NMD core datasets and additional items covering major DM clinical features. As of March 2020, we enrolled 976 patients with genetically confirmed DM. The majority (99.9%) of these patients had DM1, with 11.4% having the congenital form. However, 1 patient had DM2. Upon classifying 969 symptomatic DM1 patients based on their age at onset, an earlier onset was associated with a longer CTG repeat length. Myotonia was the most frequent symptom, followed by hand disability, fatigue, and daytime sleepiness. The frequency of hand disabilities, constipation, and visual disturbances was higher for patients with congenital DM. According to a multiple regression analysis of objective clinical measurements related to prognosis and activities of daily living, CTG repeat length strongly influenced the grip strength, forced vital capacity, and QRS time in an electrocardiogram. However, the grip strength was only modestly related to disease duration. This report will shed light on the Japanese national DM registry, which has recruited a significant number of patients. The registry will provide invaluable data for planning clinical trials and improving the standard of care for patients.
Collapse
|
19
|
Beecher G, Fleming MD, Liewluck T. Hereditary myopathies associated with hematological abnormalities. Muscle Nerve 2022; 65:374-390. [PMID: 34985130 DOI: 10.1002/mus.27474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023]
Abstract
The diagnostic evaluation of a patient with suspected hereditary muscle disease can be challenging. Clinicians rely largely on clinical history and examination features, with additional serological, electrodiagnostic, radiologic, histopathologic, and genetic investigations assisting in definitive diagnosis. Hematological testing is inexpensive and widely available, but frequently overlooked in the hereditary myopathy evaluation. Hematological abnormalities are infrequently encountered in this setting; however, their presence provides a valuable clue, helps refine the differential diagnosis, tailors further investigation, and assists interpretation of variants of uncertain significance. A diverse spectrum of hematological abnormalities is associated with hereditary myopathies, including anemias, leukocyte abnormalities, and thrombocytopenia. Recurrent rhabdomyolysis in certain glycolytic enzymopathies co-occurs with hemolytic anemia, often chronic and mild in phosphofructokinase and phosphoglycerate kinase deficiencies, or acute and fever-associated in aldolase-A and triosephosphate isomerase deficiency. Sideroblastic anemia, commonly severe, accompanies congenital-to-childhood onset mitochondrial myopathies including Pearson marrow-pancreas syndrome and mitochondrial myopathy, lactic acidosis, and sideroblastic anemia phenotypes. Congenital megaloblastic macrocytic anemia and mitochondrial dysfunction characterize SFXN4-related myopathy. Neutropenia, chronic or cyclical, with recurrent infections, infantile-to-childhood onset skeletal myopathy and cardiomyopathy are typical of Barth syndrome, while chronic neutropenia without infection occurs rarely in DNM2-centronuclear myopathy. Peripheral eosinophilia may accompany eosinophilic inflammation in recessive calpainopathy. Lipid accumulation in leukocytes on peripheral blood smear (Jordans' anomaly) is pathognomonic for neutral lipid storage diseases. Mild thrombocytopenia occurs in autosomal dominant, childhood-onset STIM1 tubular aggregate myopathy, STIM1 and ORAI1 deficiency syndromes, and GNE myopathy. Herein, we review these hereditary myopathies in which hematological features play a prominent role.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Beecher G, Liewluck T. GNE myopathy: Don't sleep on the platelets. Muscle Nerve 2021; 65:263-265. [PMID: 34931325 DOI: 10.1002/mus.27477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, US
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, US
| |
Collapse
|
21
|
Yoshioka W, Shimizu R, Takahashi Y, Oda Y, Yoshida S, Ishihara N, Nishino I, Nakamura H, Mori-Yoshimura M. Extra-muscular manifestations in GNE myopathy patients: A nationwide repository questionnaire survey in Japan. Clin Neurol Neurosurg 2021; 212:107057. [PMID: 34871992 DOI: 10.1016/j.clineuro.2021.107057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE GNE myopathy is a rare autosomal recessive adult-onset distal myopathy caused by biallelic pathogenic variants in GNE. Although some extra-muscular manifestations associated with GNE myopathy have been reported, little is known about whether they are disease-specific and how often they present. This study aimed to characterize extra-muscular manifestations of GNE myopathy. METHODS We conducted a questionnaire survey of GNE myopathy patients registered in a national registry in Japan. The questionnaire requested information regarding idiopathic thrombocytopenia, cardiac involvement, respiratory involvement, sleep apnea syndrome (SAS), and psychiatric diseases. RESULTS The response rate was 62.4% (126/198), yielding a total of 51 male and 75 female participants. Of the participants, 4.1% (5/123) had a diagnosis of idiopathic thrombocytopenia, and 16.3% (8/49) of males and 6.6% of females (5/76) had a diagnosis of SAS. In total, 0.8% (1/126) of participants had pervasive developmental disabilities and 14.7% (16/109) had a psychiatric disease. CONCLUSION The frequencies of idiopathic thrombocytopenia and SAS among Japanese GNE myopathy patients were higher than those observed in the general Japanese population. Routine blood tests and evaluation of sleep-disordered breathing should be considered in order to better manage GNE myopathy patients.
Collapse
Affiliation(s)
- Wakako Yoshioka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan; Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Reiko Shimizu
- Department of Clinical Research Promotion, Translational Medical Center, NCNP, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, NCNP, Tokyo, Japan
| | - Yuriko Oda
- Patient Association for Distal Myopathies, Tokyo, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center Hospital, NCNP, Tokyo, Japan
| | - Nahoko Ishihara
- Department of Laboratory Medicine, National Center Hospital, NCNP, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Harumasa Nakamura
- Department of Clinical Research Promotion, Translational Medical Center, NCNP, Tokyo, Japan
| | | |
Collapse
|
22
|
A point-mutation in the C-domain of CMP-sialic acid synthetase leads to lethality of medaka due to protein insolubility. Sci Rep 2021; 11:23211. [PMID: 34853329 PMCID: PMC8636478 DOI: 10.1038/s41598-021-01715-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023] Open
Abstract
Vertebrate CMP-sialic acid synthetase (CSS), which catalyzes the synthesis of CMP-sialic acid (CMP-Sia), consists of a 28 kDa-N-domain and a 20 kDa-C-domain. The N-domain is known to be a catalytic domain; however, the significance of the C-domain still remains unknown. To elucidate the function of the C-domain at the organism level, we screened the medaka TILLING library and obtained medaka with non-synonymous mutations (t911a), or single amino acid substitutions of CSS, L304Q, in the C-domain. Prominently, most L304Q medaka was lethal within 19 days post-fertilization (dpf). L304Q young fry displayed free Sia accumulation, and impairment of sialylation, up to 8 dpf. At 8 dpf, a marked abnormality in ventricular contraction and skeletal myogenesis was observed. To gain insight into the mechanism of L304Q-induced abnormalities, L304Q was biochemically characterized. Although bacterially expressed soluble L304Q and WT showed the similar Vmax/Km values, very few soluble L304Q was detected when expressed in CHO cells in sharp contrast to the WT. Additionally, the thermostability of various mutations of L304 greatly decreased, except for WT and L304I. These results suggest that L304 is important for the stability of CSS, and that an appropriate level of expression of soluble CSS is significant for animal survival.
Collapse
|
23
|
Mori-Yoshimura M, Kimura A, Tsuru A, Yajima H, Segawa K, Mizuno K, Oya Y, Noguchi S, Nishino I, Takahashi Y. Assessment of thrombocytopenia, sleep apnea, and cardiac involvement in GNE myopathy patients. Muscle Nerve 2021; 65:284-290. [PMID: 34716939 DOI: 10.1002/mus.27451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION We previously identified UDP-N-acetylglucosamine 2-epimerase (GNE) myopathy patients with sleep apnea and a past history of thrombocytopenia, but without disease-specific cardiac involvement. This study aimed to clarify the occurrence, severity, and serial changes of these complications. METHODS Thirty-three genetically confirmed GNE myopathy patients who participated in a 5-y longitudinal observational history study underwent platelet count and platelet-associated immunoglobulin G (PA-IgG) measurements, a sleep study, and electrocardiography (ECG), Holter ECG, and echocardiogram examinations. RESULTS Among the 33 patients, three had low platelet counts and 17 out of 26 were PA-IgG positive. No patient exhibited bleeding tendencies, and 3 out of 28 had low platelet counts. Muscle weakness was more pronounced, and summed MMT and grip power significantly lower, in PA-IgG-positive patients than in PA-IgG-negative patients. Of 19 patients, 7, 4, and 3 who underwent a sleep study had mild, moderate, and severe sleep apnea, respectively, and three started continuous positive airway pressure (CPAP). The respiratory disturbance index was not significantly correlated with physical evaluation items or forced vital capacity. All patients underwent ECG, 32 underwent cardiac ultrasound, and 25 underwent Holter ECG. No disease-specific cardiac involvement was noted, no serial changes during the follow-up period were observed for ECG and echocardiography, and none of the patients required therapy for cardiac abnormalities. DISCUSSION PA-IgG is a potential disease biomarker in GNE myopathy patients, although its significance needs to be clarified. While none of the patients in this study experienced cardiomyopathy or arrythmia due to myopathy, sleep apnea was identified as a frequent complication.
Collapse
Affiliation(s)
- Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ayano Kimura
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ayumi Tsuru
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroyuki Yajima
- Department of Physical Rehabilitation, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiko Segawa
- Department of Cardiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Katsuhiro Mizuno
- Department of Physical Rehabilitation, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
24
|
Zhang KY, Duan HQ, Li QX, Luo YB, Bi FF, Huang K, Yang H. Expanding the clinicopathological-genetic spectrum of GNE myopathy by a Chinese neuromuscular centre. J Cell Mol Med 2021; 25:10494-10503. [PMID: 34676965 PMCID: PMC8581342 DOI: 10.1111/jcmm.16978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
GNE myopathy is a heterogeneous group of ultrarare neuromuscular disorders caused by mutations in the GNE gene. An estimated prevalence of 1~21/1,000,000 leads to a deficiency of data and a lack of availability of samples to conduct clinical research on this neuromuscular disorder. Although GNE, which is the mutated gene responsible for the disease, is well known as the key enzyme in the biosynthesis pathway of sialic acid, the clinicopathological-genetic spectrum of GNE mutant patients is still unclear and expanding. This study presents ten unrelated patients with GNE myopathy, discovering five novel missense mutations. Clinical, electrophysiological, imaging, pathological and genetic data are presented in a retrospective manner. Interestingly, several patients in the cohort were found to have peripheral neuropathy and inflammatory cell infiltration in muscle biopsies, which have seldom been reported. This study, conducted by a neuromuscular centre in China, is the first attempt to highlight these abnormal clinicopathological features and associate them with genetic mutations in GNE myopathy.
Collapse
Affiliation(s)
- Kai-Yue Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui-Qian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Xiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Lochmüller H, Behin A, Tournev I, Tarnopolsky M, Horváth R, Pogoryelova O, Shah J, Koutsoukos T, Skrinar A, Kakkis E, Bedrosian CL, Mozaffar T. Results from a 3-year Non-interventional, Observational Disease Monitoring Program in Adults with GNE Myopathy. J Neuromuscul Dis 2021; 8:225-234. [PMID: 33459658 PMCID: PMC8075380 DOI: 10.3233/jnd-200565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND: GNE myopathy is a rare, autosomal recessive, muscle disease caused by mutations in GNE and is characterized by rimmed vacuoles on muscle biopsy and progressive distal to proximal muscle weakness. OBJECTIVE: Investigate the clinical presentation and progression of GNE myopathy. METHODS: The GNE Myopathy Disease Monitoring Program was an international, prospective, observational study in subjects with GNE myopathy. Muscle strength was assessed with hand-held dynamometry (HHD), with upper extremity (UE) and lower extremity (LE) composite scores reflecting upper and lower extremity muscle groups, respectively. The GNE myopathy–Functional Activity Scale (GNEM-FAS) was used to further assess impairment in mobility, upper extremity function, and self-care. RESULTS: Eighty-seven of 101 enrolled subjects completed the trial until study closure by the sponsor; 60 completed 36 months. Mean (SD) HHD UE composite score decreased from 34.3 kg (32.0) at baseline to 29.4 kg (32.6) kg at month 36 (LS mean change [95%CI]: –3.8 kg [–5.9, –1.7]; P = 0.0005). Mean (SD) HHD LE composite score decreased from 32.0 kg (34.1) at baseline to 25.5 kg (31.2) at month 36 (LS mean change [95%CI]: –4.9 [–7.7, –2.2]; P = 0.0005). GNEM-FAS scores were more severe at baseline in subjects who walked <200 meters versus ≥200 meters in 6 minutes; in both groups, GNEM-FAS total, mobility, UE, and self-care scores decreased from baseline through month 36. CONCLUSIONS: These findings demonstrate progressive decline in muscle strength in GNE myopathy and provide insight into the appropriate tools to detect clinically meaningful changes in future GNE myopathy interventional trials.
Collapse
Affiliation(s)
- Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony Behin
- APHP, Centre de référence de pathologie neuromusculaire, Institut de Myologie, Groupe Hospitalier Pitié-Salpetrière, Paris, France
| | - Ivailo Tournev
- Expert Center of Genetic Neurologic and Metabolic Disorders, University Hospital Aleksandrovska; Department of Neurology, Medical University - Sofia, Sofia, Bulgaria, Department of Cognitive Science and Psychology, New Bulgarian University, Sofia
| | - Mark Tarnopolsky
- McMaster University Medical Center, Department of Pediatrics, Neuromuscular and Neurometabolic Clinic, Hamilton, ON, Canada
| | - Rita Horváth
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Oksana Pogoryelova
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jinay Shah
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | | | | | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | | | | |
Collapse
|
26
|
Khadilkar SV, Chaudhari AD, Singla MB, Dastur RS, Gaitonde PS, Bhutada AG, Hegde MR. Early and consistent pattern of proximal weakness in GNE myopathy. Muscle Nerve 2020; 63:199-203. [PMID: 33197058 DOI: 10.1002/mus.27117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND GNE myopathy is widely regarded as a distal myopathy. Involvement of proximal musculature in this condition has not been systematically studied. METHODS The phenotype of genetically confirmed patients with GNE myopathy was analyzed. Fourteen groups of muscles were evaluated with Medical Research Council (MRC) grading and the average muscle scores (AMS:1-10) were calculated. RESULTS Fully documented AMS data was available in 31 of 65 patients. It showed a consistent pattern of severe weakness of hip adductors, hip flexors, knee flexors, and foot dorsiflexors, with milder weakness of the hip extensors and abductors. The knee extensors were largely unaffected. The proximal weakness appeared early in the course of the disease. Proximal muscle weakness was also present in the remaining 34 patients in whom the data were limited. A variant in exon 13 (c.2179G > A) was very common (81.5%). CONCLUSIONS The GNE phenotype in this Indian cohort exhibited mixed proximal and distal involvement. Weakness of adductors and flexors of the hip formed an integral part of the phenotype.
Collapse
Affiliation(s)
- Satish V Khadilkar
- Department of Neurology, Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | - Amit D Chaudhari
- Department of Neurology, Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | - Madhu B Singla
- Department of Neurology, Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | - Rashna S Dastur
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders, Mumbai, India
| | - Pradnya S Gaitonde
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders, Mumbai, India
| | | | - Madhuri R Hegde
- PerkinElmer Genomics, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Yoshioka W, Miyasaka N, Okubo R, Shimizu R, Takahashi Y, Oda Y, Nishino I, Nakamura H, Mori-Yoshimura M. Pregnancy in GNE myopathy patients: a nationwide repository survey in Japan. Orphanet J Rare Dis 2020; 15:245. [PMID: 32917266 PMCID: PMC7488253 DOI: 10.1186/s13023-020-01487-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/02/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND GNE myopathy is an autosomal recessive adult-onset distal myopathy. While a few case reports have described the progression of GNE myopathy during pregnancy, to our knowledge, none have examined disease progression after delivery or obstetric complications. OBJECTIVE This study aimed to reveal maternal complications, newborn complications, and the impact of pregnancy on disease progression in GNE myopathy patients. METHODS We conducted a questionnaire survey on pregnancy, delivery, and newborns involving female GNE myopathy patients who are currently registered in a national registry in Japan. RESULTS The response rate for the questionnaire survey was 60.0% (72/120). Of the 72 respondents, 44 (61.1%) had pregnancy experience (average, 1.8 pregnancies; 53 pregnancies before onset and 28 after onset). The incidence of threatened abortion was 26.9% among post-onset pregnancies, which was higher compared to those of the general Japanese population (p = 0.03). No other maternal or infant complications were commonly observed. Over 80% were unaware of changes in disease progression during pregnancy (mean age, 32.8 ± 3.5 years) or after delivery (32.9 ± 3.8 years), while 19.0% experienced disease exacerbation within a year after delivery (30.0 ± 1.0 years). Six patients developed myopathy within a year after delivery (29.7 ± 4.6 years), while none developed myopathy during pregnancy. CONCLUSIONS There were no serious maternal or newborn complications, and subjective progression did not differ during or after delivery in the majority of GNE myopathy patients. However, our findings suggest the importance of considering the possibility of threatened abortion and disease progression after delivery.
Collapse
Affiliation(s)
- Wakako Yoshioka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi-cho, Kodaira, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Naoyuki Miyasaka
- Comprehensive Reproductive Medicine, Graduate School of Medical and Dental Sciences (Medicine), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Ryo Okubo
- Department of Clinical Epidemiology, Translational Medical Center, NCNP, Tokyo, Japan
| | - Reiko Shimizu
- Department of Clinical Research Promotion, Translational Medical Center, NCNP, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yuriko Oda
- Patient Association for Distal Myopathies, 2-2-15 Hamamatsucho, Minato-ku, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi-cho, Kodaira, Tokyo, Japan
| | - Harumasa Nakamura
- Department of Clinical Research Promotion, Translational Medical Center, NCNP, Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
28
|
Paul P, Liewluck T. Distal myopathy and thrombocytopenia due to a novel GNE mutation. J Neurol Sci 2020; 415:116954. [PMID: 32505938 DOI: 10.1016/j.jns.2020.116954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Pritikanta Paul
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
29
|
Pogoryelova O, Urtizberea JA, Argov Z, Nishino I, Lochmüller H. 237th ENMC International Workshop: GNE myopathy - current and future research Hoofddorp, The Netherlands, 14-16 September 2018. Neuromuscul Disord 2019; 29:401-410. [PMID: 30956020 DOI: 10.1016/j.nmd.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Oksana Pogoryelova
- Institute of Medical Genetics, Newcastle University, Newcastle upon Tyne, Central Parkway, NE1 3BZ, UK.
| | | | - Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Baldri I reixac 4, 08028 Barcelona, Spain; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, K1Y 4E9, Canada
| | | |
Collapse
|
30
|
Pogoryelova O, Wilson IJ, Mansbach H, Argov Z, Nishino I, Lochmüller H. GNE genotype explains 20% of phenotypic variability in GNE myopathy. Neurol Genet 2019; 5:e308. [PMID: 30842975 PMCID: PMC6384023 DOI: 10.1212/nxg.0000000000000308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To test the hypothesis that common GNE mutations influence disease severity; using statistical analysis of patient cohorts from different countries. METHODS Systematic literature review identified 11 articles reporting 759 patients. GNE registry data were used as a second data set. The relative contributions of the GNE mutations, homozygosity, and country to the age at onset were explored using linear modeling, and relative importance measures were calculated. The rate of ambulation loss for GNE mutations, homozygosity, country, and age at onset was analyzed using Cox proportional hazards models. RESULTS A spectrum of symptoms and large variability of age at onset and nonambulatory status was observed within families and cohorts. We estimated that 20% of variability is explained by GNE mutations. Individuals harboring p.Asp207Val have an expected age at onset 8.0 (s.e1.0) years later than those without and probability of continued ambulation at age 40 of 0.98 (95% confidence interval [CI] 0.96-1). In contrast, p.Leu539Ser results in onset on average 7.2 (s.e.2.7) years earlier than those without this mutation, and p.Val603Leu has a probability of continued ambulance of 0.61 (95% CI 0.50-0.74) at age 40, but has a nonsignificant effect on age at onset. CONCLUSIONS GNE myopathy severity significantly varies in all cohorts, with 20% of variability explained by the GNE mutation. Atypical symptoms and clinical presentation suggest that physical and instrumental examination should include additional clinical tests. Proven and measurable effect of GNE mutations on the disease severity should be factored in patient management and clinical research study for a better data interpretation.
Collapse
Affiliation(s)
- Oksana Pogoryelova
- Institute of Genetic Medicine (O.P., I.J.W.), Newcastle University, Newcastle upon Tyne, United Kingdom; Ultragenyx Pharmaceutical (H.M.), CA; Department of Neurology (Z.A.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Neuromuscular Research (I.N.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain; and Children's Hospital of Eastern Ontario Research Institute (H.L.), University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Ian J Wilson
- Institute of Genetic Medicine (O.P., I.J.W.), Newcastle University, Newcastle upon Tyne, United Kingdom; Ultragenyx Pharmaceutical (H.M.), CA; Department of Neurology (Z.A.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Neuromuscular Research (I.N.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain; and Children's Hospital of Eastern Ontario Research Institute (H.L.), University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Hank Mansbach
- Institute of Genetic Medicine (O.P., I.J.W.), Newcastle University, Newcastle upon Tyne, United Kingdom; Ultragenyx Pharmaceutical (H.M.), CA; Department of Neurology (Z.A.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Neuromuscular Research (I.N.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain; and Children's Hospital of Eastern Ontario Research Institute (H.L.), University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Zohar Argov
- Institute of Genetic Medicine (O.P., I.J.W.), Newcastle University, Newcastle upon Tyne, United Kingdom; Ultragenyx Pharmaceutical (H.M.), CA; Department of Neurology (Z.A.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Neuromuscular Research (I.N.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain; and Children's Hospital of Eastern Ontario Research Institute (H.L.), University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Ichizo Nishino
- Institute of Genetic Medicine (O.P., I.J.W.), Newcastle University, Newcastle upon Tyne, United Kingdom; Ultragenyx Pharmaceutical (H.M.), CA; Department of Neurology (Z.A.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Neuromuscular Research (I.N.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain; and Children's Hospital of Eastern Ontario Research Institute (H.L.), University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Hanns Lochmüller
- Institute of Genetic Medicine (O.P., I.J.W.), Newcastle University, Newcastle upon Tyne, United Kingdom; Ultragenyx Pharmaceutical (H.M.), CA; Department of Neurology (Z.A.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Neuromuscular Research (I.N.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain; and Children's Hospital of Eastern Ontario Research Institute (H.L.), University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
31
|
Park YE, Kim DS, Choi YC, Shin JH. Progression of GNE Myopathy Based on the Patient-Reported Outcome. J Clin Neurol 2019; 15:275-284. [PMID: 31286697 PMCID: PMC6620453 DOI: 10.3988/jcn.2019.15.3.275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/20/2022] Open
Abstract
Background and Purpose GNE myopathy is a rare progressive myopathy caused by biallelic mutations in the GNE gene, and frequently accompanied by rimmed vacuoles in muscle pathology. The initial symptom of foot drop or hip-girdle weakness eventually spreads to all limbs over a period of decades. Recent advances in pathophysiologic research have facilitated therapeutic trials aimed at resolving the core biochemical defect. However, there remains unsettled heterogeneity in its natural course, which confounds the analysis of therapeutic outcomes. We performed the first large-scale study of Korean patients with GNE myopathy. Methods We gathered the genetic and clinical profiles of 44 Korean patients with genetically confirmed GNE myopathy. The clinical progression was estimated retrospectively based on a patient-reported questionnaire on the status of the functional joint sets and daily activities. Results The wrist and neck were the last joints to lose antigravity functionality irrespective of whether the weakness started from the ankle or hip. Two-thirds of the patients could walk either independently or with an aid. The order of losing daily activities could be sorted from standing to eating. Patients with limb-girdle phenotype showed an earlier age at onset than those with foot-drop onset. Patients with biallelic kinase domain mutations tended to progress more rapidly than those with epimerase and kinase domain mutations. Conclusions The reported data can guide the clinical management of GNE myopathy, as well as provide perspective to help the development of clinical trials.
Collapse
Affiliation(s)
- Young Eun Park
- Department of Neurology, Pusan National University Hospital, Busan, Korea
| | - Dae Seong Kim
- Department of Neurology, Pusan National University College of Medicine, Yangsan, Korea
| | - Young Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Korea.
| |
Collapse
|
32
|
Revel-Vilk S, Shai E, Turro E, Jahshan N, Hi-Am E, Spectre G, Daum H, Kalish Y, Althaus K, Greinacher A, Kaplinsky C, Izraeli S, Mapeta R, Deevi SVV, Jarocha D, Ouwehand WH, Downes K, Poncz M, Varon D, Lambert MP. GNE variants causing autosomal recessive macrothrombocytopenia without associated muscle wasting. Blood 2018; 132:1851-1854. [PMID: 30171045 PMCID: PMC6202914 DOI: 10.1182/blood-2018-04-845545] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Shoshana Revel-Vilk
- Pediatric Hematology/Oncology Unit, Department of Pediatrics, Shaare-Zedek Medical Center, and
| | - Ela Shai
- Coagulation Unit, Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Nivin Jahshan
- Coagulation Unit, Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Esti Hi-Am
- Coagulation Unit, Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Galia Spectre
- Department of Hematology, Belinson Hospital, Tel Aviv University, Tel Aviv, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Daum
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yossef Kalish
- Coagulation Unit, Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karina Althaus
- Department of Immunology and Transfusion Medicine University Medicine Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Department of Immunology and Transfusion Medicine University Medicine Greifswald, Greifswald, Germany
| | - Chaim Kaplinsky
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatric Hematology/Oncology and
| | - Shai Izraeli
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Genes, Development and Environment Research Institute, Tel Aviv University and Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Rutendo Mapeta
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sri V V Deevi
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Danuta Jarocha
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; and
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Mortimer Poncz
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David Varon
- Coagulation Unit, Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
33
|
Carrillo N, Malicdan MC, Huizing M. GNE Myopathy: Etiology, Diagnosis, and Therapeutic Challenges. Neurotherapeutics 2018; 15:900-914. [PMID: 30338442 PMCID: PMC6277305 DOI: 10.1007/s13311-018-0671-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GNE myopathy, previously known as hereditary inclusion body myopathy (HIBM), or Nonaka myopathy, is a rare autosomal recessive muscle disease characterized by progressive skeletal muscle atrophy. It has an estimated prevalence of 1 to 9:1,000,000. GNE myopathy is caused by mutations in the GNE gene which encodes the rate-limiting enzyme of sialic acid biosynthesis. The pathophysiology of the disease is not entirely understood, but hyposialylation of muscle glycans is thought to play an essential role. The typical presentation is bilateral foot drop caused by weakness of the anterior tibialis muscles with onset in early adulthood. The disease slowly progresses over the next decades to involve skeletal muscles throughout the body, with relative sparing of the quadriceps until late stages of the disease. The diagnosis of GNE myopathy should be considered in young adults presenting with bilateral foot drop. Histopathologic findings on muscle biopsies include fiber size variation, atrophic fibers, lack of inflammation, and the characteristic "rimmed" vacuoles on modified Gomori trichome staining. The diagnosis is confirmed by the presence of pathogenic (mostly missense) mutations in both alleles of the GNE gene. Although there is no approved therapy for this disease, preclinical and clinical studies of several potential therapies are underway, including substrate replacement and gene therapy-based strategies. However, developing therapies for GNE myopathy is complicated by several factors, including the rare incidence of disease, limited preclinical models, lack of reliable biomarkers, and slow disease progression.
Collapse
Affiliation(s)
- Nuria Carrillo
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, 20892, USA.
| | - May C Malicdan
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Wu Y, Yuan L, Guo Y, Lu A, Zheng W, Xu H, Yang Y, Hu P, Gu S, Wang B, Deng H. Identification of a GNE homozygous mutation in a Han-Chinese family with GNE myopathy. J Cell Mol Med 2018; 22:5533-5538. [PMID: 30160005 PMCID: PMC6201217 DOI: 10.1111/jcmm.13827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
GNE myopathy is a rare, recessively inherited, early adult‐onset myopathy, characterized by distal and proximal muscle degeneration which often spares the quadriceps. It is caused by mutations in the UDP‐N‐acetylglucosamine 2‐epimerase/N‐acetylmannosamine kinase gene (GNE). This study aimed to identify the disease‐causing mutation in a three‐generation Han‐Chinese family with members who have been diagnosed with myopathy. A homozygous missense mutation, c.1627G>A (p.V543M) in the GNE gene co‐segregates with the myopathy present in this family. A GNE myopathy diagnosis is evidenced by characteristic clinical manifestations, rimmed vacuoles in muscle biopsies and the presence of biallelic GNE mutations. This finding broadens the GNE gene mutation spectrum and extends the GNE myopathy phenotype spectrum.
Collapse
Affiliation(s)
- Yuan Wu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Information, Information Security and Big Data Research Institute, Central South University, Changsha, China
| | - Anjie Lu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengzhi Hu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shaojuan Gu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bingqi Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Bhattacharya S, Khadilkar SV, Nalini A, Ganapathy A, Mannan AU, Majumder PP, Bhattacharya A. Mutation Spectrum of GNE Myopathy in the Indian Sub-Continent. J Neuromuscul Dis 2018; 5:85-92. [PMID: 29480215 DOI: 10.3233/jnd-170270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND GNE myopathy is an adult onset recessive genetic disorder that affects distal muscles sparing the quadriceps. GNE gene mutations have been identified in GNE myopathy patients all over the world. Homozygosity is a common feature in GNE myopathy patients worldwide. OBJECTIVES The major objective of this study was to investigate the mutation spectrum of GNE myopathy in India in relation to the population diversity in the country. MATERIALS AND METHODS We have collated GNE mutation data of Indian GNE myopathy patients from published literature and from recently identified patients. We also used data of people of Indian subcontinent from 1000 genomes database, South Asian Genome database and Strand Life Science database to determine frequency of GNE mutations in the general population. RESULTS A total of 67 GNE myopathy patients were studied, of whom 21% were homozygous for GNE variants, while the rest were compound heterozygous. Thirty-five different mutations in the GNE gene were recorded, of which 5 have not been reported earlier. The most frequent mutation was p.Val727Met (65%) found mainly in the heterozygous form. Another mutation, p.Ile618Thr was also common (16%) but was found mainly in patients from Rajasthan, while p.Val727Met was more widely distributed. The latter was also seen at a high frequency in general population of Indian subcontinent in all the databases. It was also present in Thailand but was absent in general population elsewhere in the world. CONCLUSION p.Val727Met is likely to be a founder mutation of Indian subcontinent.
Collapse
Affiliation(s)
- Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.,World Without GNE Myopathy (India), New Delhi, India
| | - Satish V Khadilkar
- Department of Neurology, Grant Government Medical College and J.J. Hospital, Byculla, Mumbai, Maharashtra, India
| | - Atchayaram Nalini
- Departments of Neurology and Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | | | | | - Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,World Without GNE Myopathy (India), New Delhi, India
| |
Collapse
|
36
|
Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, Morava E, Jaeken J, Dos Reis Ferreira V. CDG Therapies: From Bench to Bedside. Int J Mol Sci 2018; 19:ijms19051304. [PMID: 29702557 PMCID: PMC5983582 DOI: 10.3390/ijms19051304] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic disorders that affect protein and lipid glycosylation and glycosylphosphatidylinositol synthesis. More than 100 different disorders have been reported and the number is rapidly increasing. Since glycosylation is an essential post-translational process, patients present a large range of symptoms and variable phenotypes, from very mild to extremely severe. Only for few CDG, potentially curative therapies are being used, including dietary supplementation (e.g., galactose for PGM1-CDG, fucose for SLC35C1-CDG, Mn2+ for TMEM165-CDG or mannose for MPI-CDG) and organ transplantation (e.g., liver for MPI-CDG and heart for DOLK-CDG). However, for the majority of patients, only symptomatic and preventive treatments are in use. This constitutes a burden for patients, care-givers and ultimately the healthcare system. Innovative diagnostic approaches, in vitro and in vivo models and novel biomarkers have been developed that can lead to novel therapeutic avenues aiming to ameliorate the patients’ symptoms and lives. This review summarizes the advances in therapeutic approaches for CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Dorinda Marques-da-Silva
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare-Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy.
| | - Paula A Videira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Eva Morava
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaak Jaeken
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Center for Metabolic Diseases, Universitaire Ziekenhuizen (UZ) and Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
37
|
Pogoryelova O, Cammish P, Mansbach H, Argov Z, Nishino I, Skrinar A, Chan Y, Nafissi S, Shamshiri H, Kakkis E, Lochmüller H. Phenotypic stratification and genotype-phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: First report from the GNE myopathy Disease Monitoring Program, registry portion. Neuromuscul Disord 2017; 28:158-168. [PMID: 29305133 PMCID: PMC5857291 DOI: 10.1016/j.nmd.2017.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023]
Abstract
Patient registry is a valuable tool in international GNE myopathy research. The registry expands the knowledge of GNE myopathy genetics and epidemiology. The registry allows monitoring of the disease progression and discovering diversity. The data suggest possible genotype–phenotype correlation in GNE myopathy.
GNE myopathy is a rare distal myopathy, caused by mutations in the GNE gene, affecting sialic acid synthesis. Clinical presentation varies from asymptomatic early stage patients to severely debilitating forms. This first report describes clinical presentations and severity of the disease, using data of 150 patients collected via the on-line, patient-reported registry component of the GNE Myopathy Disease Monitoring Program (GNEM-DMP). Disease progression was prospectively analysed, over a 2-year period, using the GNE myopathy functional activity scale (GNEM-FAS). The average annual rates of decline in function were estimated at −9.6% and −3.2% in ambulant and non-ambulant patients respectively. 4.3% of participants became non-ambulant within one year. The mean time from onset to required use of a wheelchair was 11.9 years. Mean delay of genetic diagnosis from symptom onset was 5.2 years. Mutation specific analysis demonstrated genotype–phenotype relationships; i.e. p.Ala662Val may be associated with a more severe phenotype, compared to p.Val727Met. Patients with compound heterozygous mutation in epimerase and kinase domain appeared to have a more severe phenotype compared to patients with both mutations located within one domain. Acknowledging the limitations of the study, these findings suggest that the severity of the GNE mutations affects disease severity. The GNEM-DMP is a useful data collection tool, prospectively measuring the progression of GNE myopathy, which could play an important role in translational and clinical research and further understanding of genotype–phenotype correlations.
Collapse
Affiliation(s)
- Oksana Pogoryelova
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, UK.
| | - Phillip Cammish
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, UK
| | | | - Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Yiumo Chan
- Ultragenyx Pharmaceutical Inc. Novato, CA, USA
| | - Shahriar Nafissi
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Shamshiri
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc. Novato, CA, USA
| | - Hanns Lochmüller
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, UK
| |
Collapse
|
38
|
Slota C, Bevans M, Yang L, Shrader J, Joe G, Carrillo N. Patient reported outcomes in GNE myopathy: incorporating a valid assessment of physical function in a rare disease. Disabil Rehabil 2017. [PMID: 28637129 DOI: 10.1080/09638288.2017.1283712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The aim of this analysis was to evaluate the psychometric properties of three patient reported outcome (PRO) measures characterizing physical function in GNE myopathy: the Human Activity Profile, the Inclusion Body Myositis Functional Rating Scale, and the Activities-specific Balance Confidence scale. METHODS This analysis used data from 35 GNE myopathy subjects participating in a natural history study. For construct validity, correlational and known-group analyses were between the PROs and physical assessments. Reliability of the PROs between baseline and 6 months was evaluated using the intra-class correlation coefficient model; internal consistency was tested with Cronbach's alpha. RESULTS The hypothesized moderate positive correlations for construct validity were supported; the strongest correlation was between the human activity profile adjusted activity score and the adult myopathy assessment endurance subscale score (r = 0.81; p < 0.0001). The PROs were able to discriminate between known high and low functioning groups for the adult myopathy assessment tool. Internal consistency of the PROs was high (α > 0.8) and there was strong reliability (ICC >0.62). CONCLUSION The PROs are valid and reliable measures of physical function in GNE myopathy and should be incorporated in investigations to better understand the impact of progressive muscle weakness on physical function in this rare disease population. Implications for Rehabilitation GNE myopathy is a rare muscle disease that results in slow progressive muscle atrophy and weakness, ultimately leading to wheelchair use and dependence on a caregiver. There is limited knowledge on the impact of this disease on the health-related quality of life, specifically physical function, of this rare disease population. Three patient reported outcomes have been shown to be valid and reliable in GNE myopathy subjects and should be incorporated in future investigations to better understand how progressive muscle weakness impacts physical functions in this rare disease population. The patient reported outcome scores of GNE myopathy patients indicate a high risk for falls and impaired physical functioning, so it is important clinicians assess and provide interventions for these subjects to maintain their functional capacity.
Collapse
Affiliation(s)
- Christina Slota
- a Therapeutics for Rare and Neglected Diseases , National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda , MD , USA.,b RTI Health Solutions , NC , USA
| | - Margaret Bevans
- c National Institutes of Health Clinical Center , Bethesda , MD , USA
| | - Li Yang
- c National Institutes of Health Clinical Center , Bethesda , MD , USA
| | - Joseph Shrader
- d Rehabilitation Medicine Department , National Institutes of Health , Bethesda , MD , USA
| | - Galen Joe
- d Rehabilitation Medicine Department , National Institutes of Health , Bethesda , MD , USA
| | - Nuria Carrillo
- a Therapeutics for Rare and Neglected Diseases , National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda , MD , USA.,e National Human Genome Research Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
39
|
Evangelista T, Weihl CC, Kimonis V, Lochmüller H. 215th ENMC International Workshop VCP-related multi-system proteinopathy (IBMPFD) 13-15 November 2015, Heemskerk, The Netherlands. Neuromuscul Disord 2016; 26:535-47. [PMID: 27312024 DOI: 10.1016/j.nmd.2016.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, University of California - Irvine Medical Centre, Irvine, USA
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK.
| | | |
Collapse
|
40
|
Favier R, Raslova H. Progress in understanding the diagnosis and molecular genetics of macrothrombocytopenias. Br J Haematol 2015; 170:626-39. [DOI: 10.1111/bjh.13478] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Remi Favier
- Institut National de la Santé et de la Recherche Médicale; U1170; Equipe Labellisée Ligue Contre le Cancer; Villejuif France
- Assistance Publique-Hôpitaux de Paris; Armand Trousseau Children Hospital; French Reference Center for Platelet Disorders; Haematological Laboratory; Paris France
| | - Hana Raslova
- Institut National de la Santé et de la Recherche Médicale; U1170; Equipe Labellisée Ligue Contre le Cancer; Villejuif France
- Faculté de Médecine; University Paris Saclay and University Paris-Sud 11; Le Kremlin-Bicêtre France
- Gustave Roussy; Villejuif France
| |
Collapse
|