1
|
Fathi M, Khalilian S, Miryounesi M, Ghafouri-Fard S. Spectrum of ARSA mutations in Iranian patients with metachromatic leukodystrophy. Biochem Genet 2025:10.1007/s10528-025-11025-2. [PMID: 39806039 DOI: 10.1007/s10528-025-11025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Metachromatic leukodystrophy (MLD) is an autosomal recessive disorder caused by mutations in the arylsulfatase A (ARSA) gene. Few studies have assessed the spectrum of ARSA mutations among Iranian patients. Here, we report eight Iranian patients with clinical features of MLD. Whole exome sequencing led to identification of the underlying mutation in ARSA gene in these patients. Among identified mutations was the recurrent c.938G > C (p.R313P) mutation in exon 5 of this gene, showing its relatively high frequency among Iranians. The results of this study helps in design of population-specific panels for screening purposes in order to decrease the burden of MLD.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhou L, Wang Y, Xu Y, Zhang Y, Zhu C. Advances in AAV-mediated gene replacement therapy for pediatric monogenic neurological disorders. Mol Ther Methods Clin Dev 2024; 32:101357. [PMID: 39559557 PMCID: PMC11570947 DOI: 10.1016/j.omtm.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Pediatric monogenetic diseases encompass a spectrum of debilitating neurological disorders that affect infants and children, often resulting in profound cognitive and motor impairments. Gene replacement therapy holds immense promise in addressing the underlying genetic defects responsible for these conditions. Adeno-associated virus (AAV) vectors have emerged as a leading platform for delivering therapeutic genes due to their safety profile and ability to transduce various cell types, including neurons. This review highlights recent advancements in AAV-mediated gene replacement therapy for pediatric monogenetic diseases, focusing on key preclinical and clinical studies. We discuss various strategies to enhance transduction efficiency, target specificity, and safety. Furthermore, we explore challenges such as immune responses, along with innovative approaches to overcome these obstacles. Moreover, we examine the clinical outcomes and safety profiles of AAV-based gene therapies in pediatric patients, providing insights into the feasibility and efficacy of these interventions. Finally, we discuss future directions and potential avenues for further research to optimize the therapeutic potential of AAV-delivered gene replacement therapy for pediatric encephalopathies, ultimately aiming to improve the quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Livia Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Qureshi AA, Shaikh B, Aswad AS, Saeed AH, Tabassum H, Tahir MF, Jaber MH. 'Lenmeldy (OTL-200) in MLD: FDA's validation of advanced therapy'. Ann Med Surg (Lond) 2024; 86:6376-6380. [PMID: 39525772 PMCID: PMC11543177 DOI: 10.1097/ms9.0000000000002580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
|
4
|
Acharya S, Upadhaya Regmi B, Adhikari Y, Thapa P, Basnet D, Paudel B. Metachromatic leukodystrophy in infant presenting as acute febrile illness: a case report. Ann Med Surg (Lond) 2024; 86:4170-4174. [PMID: 38989219 PMCID: PMC11230799 DOI: 10.1097/ms9.0000000000002144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction and Importance Metachromatic leukodystrophy (MLD) is a rare genetic disorder affecting the central and peripheral nervous systems. It results from ARSA enzyme deficiency, causing sulfatide accumulation and myelin damage. Early diagnosis is crucial, and this case highlights the diagnostic challenges and rapid health deterioration associated with MLD. Case Presentation A 14-month-old male, initially presenting with fever and crying during micturition, experienced a devastating health decline. Previously, he had achieved developmental milestones but rapidly lost motor and cognitive skills. Extensive investigations led to an MLD diagnosis, complicated by severe malnutrition. Despite medical interventions, his condition worsened, leading to cardiopulmonary arrest and a tragic end. Clinical Discussion MLD is an exceedingly rare genetic disease with systemic effects, as illustrated by severe metabolic acidosis in this case. Early diagnosis, through comprehensive investigations like MRI, is critical, but MLD's rapid progression poses challenges in management. Therapeutic options remain limited, emphasizing the importance of a multidisciplinary approach. Conclusion This case emphasizes the insidious nature of MLD, highlighting the need for considering rare genetic conditions in unexplained neurological regression. It underscores the urgency of improved awareness, early diagnosis, and comprehensive care for individuals affected by such devastating disorders. Despite the challenges, the medical community's dedication to providing care and support remains unwavering.
Collapse
Affiliation(s)
| | | | | | | | - Deep Basnet
- Chitwan Medical College and Teaching Hospital, Chitwan
| | - Bikram Paudel
- Chitwan Medical College and Teaching Hospital, Chitwan
| |
Collapse
|
5
|
Li T, Huang Y, Tao C, Yin X, Su X, Shao Y, Liang C, Jiang M, Cai Y, Lin Y, Zeng C, Zhao X, Liu L, Zhang W. Biochemical and molecular analysis of pediatric patients with metachromatic leukodystrophy in South China: functional characterization of five novel ARSA variants. Metab Brain Dis 2024; 39:753-762. [PMID: 38775997 DOI: 10.1007/s11011-024-01348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a rare hereditary neurodegenerative disease caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA). This study described the clinical and molecular characteristics of 24 Chinese children with MLD and investigated functional characterization of five novel ARSA variants. A retrospective analysis was performed in 24 patients diagnosed with MLD at Guangzhou Women and Children's Medical Center in South China. Five novel mutations were further characterized by transient expression studies. We recruited 17 late-infantile, 3 early-juvenile, 4 late-juvenile MLD patients. In late-infantile patients, motor developmental delay and gait disturbance were the most frequent symptoms at onset. In juvenile patients, cognitive regression and gait disturbance were the most frequent chief complaints. Overall, 25 different ARSA mutations were identified with 5 novel mutations.The most frequent alleles were p.W320* and p.G449Rfs. The mutation p.W320*, p.Q155=, p.P91L, p.G156D, p.H208Mfs*46 and p.G449Rfs may link to late-infantile type. The novel missense mutations were predicted damaging in silico. The bioinformatic structural analysis of the novel missense mutations showed that these amino acid replacements would cause severe impairment of protein structure and function. In vitro functional analysis of the six mutants, showing a low ARSA enzyme activity, clearly demonstrated their pathogenic nature. The mutation p.D413N linked to R alleles. In western blotting analysis of the ARSA protein, the examined mutations retained reduced amounts of ARSA protein compared to the wild type. This study expands the spectrum of genotype of MLD. It helps to the future studies of genotype-phenotype correlations to estimate prognosis and develop new therapeutic approach.
Collapse
Affiliation(s)
- Taolin Li
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunyan Tao
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Xi Yin
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Xueying Su
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Minyan Jiang
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Yanna Cai
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Xiaoyuan Zhao
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China.
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Chang SC, Eichinger CS, Field P. The natural history and burden of illness of metachromatic leukodystrophy: a systematic literature review. Eur J Med Res 2024; 29:181. [PMID: 38494502 PMCID: PMC10946116 DOI: 10.1186/s40001-024-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Metachromatic leukodystrophy (MLD; OMIM 250100 and 249900) is a rare lysosomal storage disease caused by deficient arylsulfatase A activity, leading to accumulation of sulfatides in the nervous system. This systematic literature review aimed to explore the effect of MLD on the lives of patients. METHODS The Ovid platform was used to search Embase, MEDLINE, and the Cochrane Library for articles related to the natural history, clinical outcomes, and burden of illness of MLD; congress and hand searches were performed using 'metachromatic leukodystrophy' as a keyword. Of the 531 publications identified, 120 were included for data extraction following screening. A subset of findings from studies relating to MLD natural history and burden of illness (n = 108) are presented here. RESULTS The mean age at symptom onset was generally 16-18 months for late-infantile MLD and 6-10 years for juvenile MLD. Age at diagnosis and time to diagnosis varied widely. Typically, patients with late-infantile MLD presented predominantly with motor symptoms and developmental delay; patients with juvenile MLD presented with motor, cognitive, and behavioral symptoms; and patients with adult MLD presented with cognitive symptoms and psychiatric and mood disorders. Patients with late-infantile MLD had more rapid decline of motor function over time and lower survival than patients with juvenile MLD. Commonly reported comorbidities/complications included ataxia, epilepsy, gallbladder abnormalities, incontinence, neuropathy, and seizures. CONCLUSIONS Epidemiology of MLD by geographic regions, quantitative cognitive data, data on the differences between early- and late-juvenile MLD, and humanistic or economic outcomes were limited. Further studies on clinical, humanistic (i.e., quality of life), and economic outcomes are needed to help inform healthcare decisions for patients with MLD.
Collapse
Affiliation(s)
- Shun-Chiao Chang
- Takeda Development Center Americas, Inc., 125 Binney Street, Cambridge, MA, USA.
| | | | | |
Collapse
|
7
|
Thakkar RN, Patel D, Kioutchoukova IP, Al-Bahou R, Reddy P, Foster DT, Lucke-Wold B. Leukodystrophy Imaging: Insights for Diagnostic Dilemmas. Med Sci (Basel) 2024; 12:7. [PMID: 38390857 PMCID: PMC10885080 DOI: 10.3390/medsci12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024] Open
Abstract
Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Krabbe's disease, Pelizaeus-Merzbacher disease, Alexander's disease, Canavan disease, and Aicardi-Goutières Syndrome.
Collapse
Affiliation(s)
- Rajvi N. Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Drashti Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Raja Al-Bahou
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pranith Reddy
- College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Devon T. Foster
- College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Trinidad M, Hong X, Froelich S, Daiker J, Sacco J, Nguyen HP, Campagna M, Suhr D, Suhr T, LeBowitz JH, Gelb MH, Clark WT. Predicting disease severity in metachromatic leukodystrophy using protein activity and a patient phenotype matrix. Genome Biol 2023; 24:172. [PMID: 37480112 PMCID: PMC10360315 DOI: 10.1186/s13059-023-03001-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 06/29/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by mutations in the arylsulfatase A gene (ARSA) and categorized into three subtypes according to age of onset. The functional effect of most ARSA mutants remains unknown; better understanding of the genotype-phenotype relationship is required to support newborn screening (NBS) and guide treatment. RESULTS We collected a patient data set from the literature that relates disease severity to ARSA genotype in 489 individuals with MLD. Patient-based data were used to develop a phenotype matrix that predicts MLD phenotype given ARSA alleles in a patient's genotype with 76% accuracy. We then employed a high-throughput enzyme activity assay using mass spectrometry to explore the function of ARSA variants from the curated patient data set and the Genome Aggregation Database (gnomAD). We observed evidence that 36% of variants of unknown significance (VUS) in ARSA may be pathogenic. By classifying functional effects for 251 VUS from gnomAD, we reduced the incidence of genotypes of unknown significance (GUS) by over 98.5% in the overall population. CONCLUSIONS These results provide an additional tool for clinicians to anticipate the disease course in MLD patients, identifying individuals at high risk of severe disease to support treatment access. Our results suggest that more than 1 in 3 VUS in ARSA may be pathogenic. We show that combining genetic and biochemical information increases diagnostic yield. Our strategy may apply to other recessive diseases, providing a tool to address the challenge of interpreting VUS within genotype-phenotype relationships and NBS.
Collapse
Affiliation(s)
- Marena Trinidad
- Translational Genomics Group, BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - Xinying Hong
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Froelich
- Translational Genomics Group, BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - Jessica Daiker
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - James Sacco
- Translational Genomics Group, BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - Hong Phuc Nguyen
- Translational Genomics Group, BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - Madelynn Campagna
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | | | | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Wyatt T Clark
- Translational Genomics Group, BioMarin Pharmaceutical Inc., Novato, CA, USA.
| |
Collapse
|
9
|
Mullagulova A, Shaimardanova A, Solovyeva V, Mukhamedshina Y, Chulpanova D, Kostennikov A, Issa S, Rizvanov A. Safety and Efficacy of Intravenous and Intrathecal Delivery of AAV9-Mediated ARSA in Minipigs. Int J Mol Sci 2023; 24:ijms24119204. [PMID: 37298156 DOI: 10.3390/ijms24119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a hereditary neurodegenerative disease characterized by demyelination and motor and cognitive impairments due to deficiencies of the lysosomal enzyme arylsulfatase A (ARSA) or the saposin B activator protein (SapB). Current treatments are limited; however, gene therapy using adeno-associated virus (AAV) vectors for ARSA delivery has shown promising results. The main challenges for MLD gene therapy include optimizing the AAV dosage, selecting the most effective serotype, and determining the best route of administration for ARSA delivery into the central nervous system. This study aims to evaluate the safety and efficacy of AAV serotype 9 encoding ARSA (AAV9-ARSA) gene therapy when administered intravenously or intrathecally in minipigs, a large animal model with anatomical and physiological similarities to humans. By comparing these two administration methods, this study contributes to the understanding of how to improve the effectiveness of MLD gene therapy and offers valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Aysilu Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alisa Shaimardanova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Daria Chulpanova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Kostennikov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza Issa
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
10
|
Muacevic A, Adler JR, Uke P. Infantile Metachromatic Leukodystrophy (MLD): A Rare Case. Cureus 2022; 14:e33155. [PMID: 36726906 PMCID: PMC9885241 DOI: 10.7759/cureus.33155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is the typical white matter disease belonging to the lysosomal sphingolipid storage group and is a genetic autosomal recessive disorder. Early presentation is in the form of learning disability and behavioral issues; the subsequent involvement is gait and balance. Prenatal blood testing for genetic screening is available for arylsulfatase A (ARSA) deficiency is indicated if the family history is positive for MLD. Diagnostic tools for MLD are- absence or low-level arylsulfatase activity in genetic screening, sulphatides in urine, and magnetic resonance image (MRI) showing frontal horns and atrial periventricular leukodystrophy. The typical finding is known as the trigonid pattern. A two and half-year-old boy was born out of marriage in near blood relation. No prenatal screening was done. As narrated by the mother, the patient was alright six months back when he gradually developed lower limb weakness. Due to this, he stopped walking, which he could initially do without support. The parent also complained that he used to speak fifteen to twenty words, and now he is not saying a single word. With the above complaint, the patient was taken to the local hospital, where an MRI showed periventricular leukodystrophy, suggesting metachromatic leukodystrophy of periventricular white matter. The practice of prenatal and newborn genetic screening could enhance the efficacy of management, as early interventions are more effective.
Collapse
|
11
|
Loo KK, Cheng J, Sarco D, Nyp SS. Diagnostic Overshadowing: Insidious Neuroregression Mimicking Presentation of Autism Spectrum Disorder. J Dev Behav Pediatr 2022; 43:437-439. [PMID: 35943376 DOI: 10.1097/dbp.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
CASE Zac is a 13-year-old boy who presented with his parents to developmental-behavioral pediatrics seeking diagnostic clarity. He was born by vaginal delivery at full term after an uncomplicated pregnancy. Developmental milestones were met at typical ages until he was noted to have language delay and to be hyperactive and impulsive on entering preschool at age 4 years. Although he used some phrases in speech, he often used physical force to take toys from other children, rather than using words.On entering preschool at age 4 years, he was noted to have language delay (i.e., continued use of phrase speech only) and to be hyperactive and impulsive. An evaluation to determine eligibility for an Individualized Education Program (IEP) was completed and found him to have delays in cognition, receptive language, expressive language, social-emotional, and adaptive skills. His fine motor skills were in the low average range, and his gross motor skills were in the average range. He was admitted into an early childhood special education program, and aggressive behavior and hyperactivity decreased in the structured classroom.At age 7 years, Zac was re-evaluated by the school district and found to have moderate intellectual disability (ID). Chromosomal microarray analysis and testing for Fragile X syndrome were normal. He was noted to enjoy interacting with other children and adults, but his play was very immature (e.g., preference for cause/effect toys). He was able to respond appropriately when asked his name and age, but he also frequently demonstrated echolalia. He was also evaluated by his primary care physician and found to meet the criteria for attention-deficit/hyperactivity disorder, combined presentation (ADHD). Treatment with methylphenidate was initiated but discontinued after a brief time because of increased aggressive behaviors.Owing to continued significant tantrums, aggressive tendencies, and inability to communicate his basic needs, Zac was evaluated at a local Regional Center (statewide system for resources and access to services for individuals with developmental disabilities) at age 10 years and found to meet the criteria for autism spectrum disorder (ASD), and previous diagnosis of ID was confirmed. Zac received applied behavior analysis (ABA), but this was discontinued after 1 year because of a combination of a change in the insurance provider and parental perception that the therapy had not been beneficial.Zac became less hyperactive and energetic as he grew older. By the time Zac presented to the developmental-behavioral clinic at age 13 years, he was consistently using approximately 30 single words and was no longer combining words into phrases. He had a long latency in responding to verbal and nonverbal cues and seemed to be quite withdrawn. Physical examination revealed scoliosis and hand tremors while executing fine motor tasks. Seizures were not reported, but neuromotor regression was apparent from the examination and history. Laboratory studies including thyroid-stimulating hormone, free T4, creatine kinase, very-long-chain fatty acids, lactate, pyruvate, urine organic acids, and plasma amino acids were normal. Cranial magnetic resonance imaging demonstrated abnormal T2 hyperintensities in the periventricular and deep cerebral white matter and peridentate cerebellar white matter, consistent with a "tigroid" pattern seen in metachromatic leukodystrophy (MLD) and other white matter neurodegenerative diseases. Arylsulfatase A mutation was detected with an expanded ID/ASD panel, and leukocyte arylsulfatase activity was low, confirming the diagnosis of juvenile-onset MLD.Are there behavioral markers and/or historical caveats that clinicians can use to distinguish between ASD/ID with coexisting ADHD and a neurodegenerative disorder with an insidious onset of regression?
Collapse
Affiliation(s)
- Kek Khee Loo
- Department of Pediatrics, Kaiser Permanente Los Angeles Medical Center, Developmental-Behavioral Pediatrics, Pasadena, CA
| | - Jerry Cheng
- Department of Pediatrics, Division of Hematology-Oncology/BMT, Southern California Permanente Medical Group, Kaiser Permanente School of Medicine, Los Angeles, CA
| | - Dean Sarco
- Pediatric Neurology, Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, CA; and
| | - Sarah S Nyp
- Division of Developmental and Behavioral Health, UMKC School of Medicine, Kansas City, MO
| |
Collapse
|
12
|
Esmail S, Danter WR. Artificially Induced Pluripotent Stem Cell-Derived Whole-Brain Organoid for Modelling the Pathophysiology of Metachromatic Leukodystrophy and Drug Repurposing. Biomedicines 2021; 9:biomedicines9040440. [PMID: 33923989 PMCID: PMC8073899 DOI: 10.3390/biomedicines9040440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a rare neurodegenerative disease that results from a deficiency of the lysosomal enzyme arylsulfatase A (ARSA). Worldwide, there are between one in 40,000 and one in 160,000 people living with the disease. While there are currently no effective treatments for MLD, induced pluripotent stem cell-derived brain organoids have the potential to provide a better understanding of MLD pathogenesis. However, developing brain organoid models is expensive, time consuming and may not accurately reflect disease progression. Using accurate and inexpensive computer simulations of human brain organoids could overcome the current limitations. Artificially induced whole-brain organoids (aiWBO) have the potential to greatly expand our ability to model MLD and guide future wet lab research. In this study, we have upgraded and validated our artificially induced whole-brain organoid platform (NEUBOrg) using our previously validated machine learning platform, DeepNEU (v6.2). Using this upgraded NEUBorg, we have generated aiWBO simulations of MLD and provided a novel approach to evaluate factors associated with MLD pathogenesis, disease progression and new potential therapeutic options.
Collapse
|
13
|
Amr K, Fateen E, Mansour L, Tosson AM, Zaki MS, Salam GMA, Mohamed AN, El-Bassyouni HT. Clinical, Biochemical, and Molecular Characterization of Metachromatic Leukodystrophy Among Egyptian Pediatric Patients: Expansion of the ARSA Mutational Spectrum. J Mol Neurosci 2020; 71:1112-1130. [PMID: 33185815 DOI: 10.1007/s12031-020-01734-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
Metachromatic leukodystrophy (MLD) is a neurodegenerative disorder characterized by progressive demyelination due to deficiency of the enzyme arylsulfatase A (ARSA) in leukocytes, and consequently leads to impaired degradation and accumulation of cerebroside-3-sulfate (sulfatide). This study aimed to sequence the ARSA gene in a total of 43 patients with metachromatic leukodystrophy descendant from 40 Egyptian families. In addition, four carrier parents from two families with children who had died from MLD came to the clinic for genetic analysis. Prenatal diagnosis was performed for four families with molecularly diagnosed MLD sibs. Different mutations were characterized in our cohort, including missense, nonsense, splice, and deletion. Overall, 21 different mutations in the ARSA gene were detected, with 12 novel mutations, i.e. p.Arg60Pro, p.Tyr65*, p.Val112Asp, p.Arg116*, p.Gly124Asp, p.Pro193Ser, p.Gln238*, p.Gln456*, p.Thr276Lys, and p.Gly311Arg, in addition to two new acceptor splice-site mutations 685-1G > A and c.954_956 delCTT. The amniotic fluid samples revealed two carrier fetuses with heterozygous monoallelic mutations, and two affected fetuses had the homozygous biallelic mutations. In conclusion, the current study sheds light on the underlying ARSA gene defect, with an expansion of the mutation spectrum. To our knowledge, this is the first molecular study of MLD among the Egyptian population.
Collapse
Affiliation(s)
- Khalda Amr
- Medical Molecular Genetics, National Research Center, Cairo, Egypt
| | - Ekram Fateen
- Biochemical Genetics Department, National Research Centre, Cairo, 12622, Postal Code, Egypt
| | - Lobna Mansour
- Pediatrics Department, Faculty of Medicine, Kasr Al Ainy, Cairo University, Cairo, Egypt
| | - Angie Ms Tosson
- Pediatrics Department, Faculty of Medicine, Kasr Al Ainy, Cairo University, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | | | - Ahmed Nabil Mohamed
- Prenatal Diagnosis and Fetal Medicine Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
14
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA. Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Front Med (Lausanne) 2020; 7:576221. [PMID: 33195324 PMCID: PMC7606900 DOI: 10.3389/fmed.2020.576221] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Aysilu I Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
15
|
Affiliation(s)
- Chujun Wu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Golchin N, Hajjari M, Malamiri RA, Aminzadeh M, Mohammadi-Asl J. Identification of a novel mutation in ARSA gene in three patients of an Iranian family with metachromatic leukodystrophy disorder. Genet Mol Biol 2017; 40:759-762. [PMID: 29111560 PMCID: PMC5738620 DOI: 10.1590/1678-4685-gmb-2016-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/03/2017] [Indexed: 11/21/2022] Open
Abstract
Metachromatic leukodystrophy disorder (MLD) is an autosomal recessive and lysosomal storage disease. The disease is caused by the deficiency of the enzyme arylsulfatase A (ARSA) which is encoded by the ARSA gene. Different mutations have been reported in different populations. The present study was aimed to detect the mutation type of the ARSA gene in three relative Iranian patients. We found a novel homozygous missense mutation c.1070 G > T (p.Gly357Val) in exon 6 of these patients. The mutation was found to be reported for the first time in MLD patients. The data can update the mutation profile and contribute toward improved clinical management and counseling of MLD patients.
Collapse
Affiliation(s)
| | - Mohammadreza Hajjari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Reza Azizi Malamiri
- Department of Pediatric Neurology Golestan Medical, Educational and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Aminzadeh
- Department of Pediatrics, Faculty of Medicine, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mohammadi-Asl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| |
Collapse
|
17
|
Shahzad MA, Khaliq S, Amar A, Mahmood S. Metachromatic Leukodystrophy (MLD): a Pakistani Family with Novel ARSA Gene Mutation. J Mol Neurosci 2017; 63:84-90. [PMID: 28799099 DOI: 10.1007/s12031-017-0959-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/31/2017] [Indexed: 01/18/2023]
Abstract
A deficiency of the enzyme arylsulfatase A (ARSA) causes a progressive neurodegenerative lysosomal storage disease known as metachromatic leukodystrophy (MLD). Diagnosis is based on the onset of neurological symptoms, presence of gait abnormalities, spasticity, decreased muscle stretch reflexes and neuro-radiological evidence of demyelination. The purpose of the present study was to identify any mutation in the candidate ARSA gene in a family of late infantile MLD patients. The diagnosis of suspected MLD patients was confirmed by a MRI report and low ARSA enzymatic activity in leukocytes. Sanger sequencing of full-length coding regions of ARSA gene was performed. Changes in the nucleotide sequence were determined by comparing the obtained data with the wild-type sequence. mRNA expression was analysed using real-time PCR. A novel base pair substitution at position c.338T>C (p.L113P) of ARSA gene was observed in the family and was confirmed in a normal population via ARMS-PCR and Sanger sequencing. The mRNA expression of ARSA gene showed a significant difference between normal and carrier individuals (p = 0.0008). In silico analysis by POLYPHEN, a pathogenicity prediction tool, predicted the possible damaging nature of this mutation. I-TASSER, a protein-modelling server, demonstrated the effects of this mutation on different domains of the ARSA protein, which plays a crucial role in the structural and functional integrity of enzyme. The novel p.L113P mutation in a Pakistani family with late infantile MLD has a pathogenic and destructive effect on the protein structure and function of ARSA. It is the first case reported in a Pakistani population using genetic analysis.
Collapse
Affiliation(s)
- Muhammad Aiman Shahzad
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Ali Amar
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Saqib Mahmood
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
18
|
The use of targeted genomic capture and massively parallel sequencing in diagnosis of Chinese Leukoencephalopathies. Sci Rep 2016; 6:35936. [PMID: 27779215 PMCID: PMC5078786 DOI: 10.1038/srep35936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
Leukoencephalopathies are diseases with high clinical heterogeneity. In clinical work, it’s difficult for doctors to make a definite etiological diagnosis. Here, we designed a custom probe library which contains the known pathogenic genes reported to be associated with Leukoencephalopathies, and performed targeted gene capture and massively parallel sequencing (MPS) among 49 Chinese patients who has white matter damage as the main imaging changes, and made the validation by Sanger sequencing for the probands’ parents. As result, a total of 40.8% (20/49) of the patients identified pathogenic mutations, including four associated with metachromatic leukodystrophy, three associated with vanishing white matter leukoencephalopathy, three associated with mitochondrial complex I deficiency, one associated with Globoid cell leukodystrophy (or Krabbe diseases), three associated with megalencephalic leukoencephalopathy with subcortical cysts, two associated with Pelizaeus-Merzbacher disease, two associated with X-linked adrenoleukodystrophy, one associated with Zellweger syndrome and one associated with Alexander disease. Targeted capture and MPS enables to identify mutations of all classes causing leukoencephalopathy. Our study combines targeted capture and MPS technology with clinical and genetic diagnosis and highlights its usefulness for rapid and comprehensive genetic testing in the clinical setting. This method will also expand our knowledge of the genetic and clinical spectra of leukoencephalopathy.
Collapse
|
19
|
[Metachromatic Leukodystrophy. Case Presentation]. ACTA ACUST UNITED AC 2016; 46:44-49. [PMID: 28193373 DOI: 10.1016/j.rcp.2016.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/04/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
Abstract
Metachromatic leukodystrophy (MLD) is a rare demyelinating disease (prevalence 1:40 000), also called arylsulfatase A deficiency (ARS-A), which may present with neurological and psychiatric symptoms. Clinical assessment may be difficult, due to unspecific signs and symptoms. A case is presented of a 16 year-old female patient seen in psychiatry due to behavioural changes, psychosis, and with impaired overall performance. She was initially diagnosed with schizophrenia, but the Nuclear Magnetic Resonance (NMR) scan and laboratory tests lead to the diagnosis of MLD.
Collapse
|