1
|
Ziliotto N, Lencioni S, Cirinciani M, Zanardi A, Alessio M, Soldà G, Da Pozzo E, Asselta R, Caricasole A. Functional characterisation of missense ceruloplasmin variants and real-world prevalence assessment of Aceruloplasminemia using population data. EBioMedicine 2025; 113:105625. [PMID: 40043514 PMCID: PMC11927744 DOI: 10.1016/j.ebiom.2025.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Aceruloplasminemia (ACP) is a rare recessive disease caused by loss of ceruloplasmin activity due to pathogenic variants in the ceruloplasmin (CP) gene. ACP causes iron accumulation in various organs, leading to neurodegeneration, anaemia, and diabetes. Estimating ACP prevalence is challenging, particularly as missense variants are not readily identified as pathogenic. METHODS Heterozygous missense variants likely to impact function were mapped in gnomAD and representative examples analysed for effects on CP activity. This knowledge was complemented by prediction of destabilizing effects of potentially pathogenic missense variants and integrated with loss-of-function mutations. Global ACP prevalence was predicted and compared with a more traditional method. FINDINGS Several as yet uncharacterised missense CP variants of pathogenic interest were identified by structure-function in-silico analysis. A representative subset was functionally validated, together with known ACP missense variants. Insights on the relative importance of copper ions coordinating centres in CP and its substrate specificity were discovered. Overall, a destabilizing effect was predicted for 130 missense CP variants. This information, integrated with known ACP missense and loss-of-function CP variants in gnomAD, allowed an estimation of ACP prevalence of 12.6/106. An alternative analysis based on minor allele frequency ≤0.01 resulted in an ACP prevalence as high as 8/106. INTERPRETATION These prevalence estimates for ACP are 20-25-fold higher than previously estimated and underscore the applicability of structure-function based analyses of real-world genetic variability to provide an alternative method for representing the frequency of rare disease variants. FUNDING REACT-EU PON 2014-2021, Kedrion S.p.A.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Sara Lencioni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy; Department of Research & Innovation, Kedrion Biopharma S.p.A, Via di Fondovalle, Loc. Bolognana, Gallicano 55027, Italy
| | - Martina Cirinciani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Alan Zanardi
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milano 20132, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano 20089, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano 20089, Italy
| | - Andrea Caricasole
- Department of Research & Innovation, Kedrion Biopharma S.p.A, Via di Fondovalle, Loc. Bolognana, Gallicano 55027, Italy.
| |
Collapse
|
2
|
Belloli S, Monterisi C, Rainone P, Coliva A, Zanardi A, Conti A, Caricasole A, Moresco RM, Alessio M. Ceruloplasmin administration in the preclinical mouse model of aceruloplasminemia reveals a sex-related variation in biodistribution. Commun Biol 2025; 8:264. [PMID: 39972187 PMCID: PMC11839944 DOI: 10.1038/s42003-025-07714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Mutations in the ceruloplasmin (CP) gene are responsible for the rare genetic disease aceruloplasminemia characterized by iron accumulation in different organs, including the brain. We previously reported that administration of purified CP in the CP-deficient (cpKO) mouse model of the disease, was therapeutically effective. Here we evaluated the bioavailability of the therapeutic protein in different organs of the cpKO mouse. The distribution of administered radiolabelled-[64Cu]-CP was assessed in brain and peripheral tissues in vivo and ex vivo. The uptake of [64Cu]-CP in cpKO mice varied according to animal sex and age, with a higher accumulation in the cerebellum and liver of males at 6 months of age, while higher levels were observed in the same organs in females at 10 months. Sex-specific variations in the uptake of radiolabelled-CP were genotype-associated, by comparison with wild type mice. Based on these findings, we assessed sex effects on the therapeutic efficacy of the CP-replacement therapy previously performed. Multivariate analysis confirmed that the therapeutic effect was present for both sexes, and this was more pronounced in males than females. Therefore, sex-related variation in CP tissue bioavailability point to the possibility of sex-specific therapeutic regimens in the design of future CP-replacement therapies for aceruloplasminemia.
Collapse
Affiliation(s)
- Sara Belloli
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
- Institute of Bioimaging and Complex Biological Systems, CNR, Segrate, MI, Italy
| | - Cristina Monterisi
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Paolo Rainone
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
- Institute of Bioimaging and Complex Biological Systems, CNR, Segrate, MI, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, MB, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Alan Zanardi
- Proteome Biochemistry, COSR-Center for Omics Sciences, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Antonio Conti
- Proteome Biochemistry, COSR-Center for Omics Sciences, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Andrea Caricasole
- Research and Innovation, Kedrion S.p.A., Loc. Bolognana, Gallicano, LU, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
- Institute of Bioimaging and Complex Biological Systems, CNR, Segrate, MI, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, MB, Italy
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Center for Omics Sciences, IRCCS-Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
3
|
Li S, Zhua Y, Liu X. Parkinsonism in liver diseases or dysfunction. Med Clin (Barc) 2024; 163:461-468. [PMID: 38955605 DOI: 10.1016/j.medcli.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Parkinsonism in liver diseases or dysfunction, mainly including neurological manifestations in hereditary liver diseases and neurological complications of advanced liver diseases, occur in isolation or in combination with other movement disorders, and progress along disease course. Prominent akinetic-rigidity syndrome, various onset and progression, poor levodopa response and metabolism abnormalities reflected by serum biomarkers and neuroimaging, make this atypical parkinsonism recognizable and notable in clinical practice. Different susceptibility of brain areas, especially in basal ganglia, to manganese, iron, copper, ammonia overload, together with subsequent oxidative stress, neurotransmitter alterations, disturbed glia-neuron homeostasis and eventually neurotoxicity, contribute to parkinsonism under the circumstances of insufficient liver clearance ability. These mechanisms are interrelated and may interact collectively, adding to the complexity of clinical manifestations and treatment responses. This review summarizes shared clinical features of parkinsonism in liver diseases or dysfunction, depicts their underlying mechanisms and suggests practical flowchart for differential diagnosis.
Collapse
Affiliation(s)
- Sichen Li
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxia Zhua
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Zanardi A, Nardini I, Raia S, Conti A, Ferrini B, D'Adamo P, Gilberti E, DePalma G, Belloli S, Monterisi C, Coliva A, Rainone P, Moresco RM, Mori F, Zurlo G, Scali C, Natali L, Pancanti A, Giovacchini P, Magherini G, Tovani G, Salvini L, Cicaloni V, Tinti C, Tinti L, Lana D, Magni G, Giovannini MG, Gringeri A, Caricasole A, Alessio M. New orphan disease therapies from the proteome of industrial plasma processing waste- a treatment for aceruloplasminemia. Commun Biol 2024; 7:140. [PMID: 38291108 PMCID: PMC10828504 DOI: 10.1038/s42003-024-05820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Plasma-derived therapeutic proteins are produced through an industrial fractionation process where proteins are purified from individual intermediates, some of which remain unused and are discarded. Relatively few plasma-derived proteins are exploited clinically, with most of available plasma being directed towards the manufacture of immunoglobulin and albumin. Although the plasma proteome provides opportunities to develop novel protein replacement therapies, particularly for rare diseases, the high cost of plasma together with small patient populations impact negatively on the development of plasma-derived orphan drugs. Enabling therapeutics development from unused plasma fractionation intermediates would therefore constitute a substantial innovation. To this objective, we characterized the proteome of unused plasma fractionation intermediates and prioritized proteins for their potential as new candidate therapies for human disease. We selected ceruloplasmin, a plasma ferroxidase, as a potential therapy for aceruloplasminemia, an adult-onset ultra-rare neurological disease caused by iron accumulation as a result of ceruloplasmin mutations. Intraperitoneally administered ceruloplasmin, purified from an unused plasma fractionation intermediate, was able to prevent neurological, hepatic and hematological phenotypes in ceruloplasmin-deficient mice. These data demonstrate the feasibility of transforming industrial waste plasma fraction into a raw material for manufacturing of new candidate proteins for replacement therapies, optimizing plasma use and reducing waste generation.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Nardini
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Sara Raia
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Antonio Conti
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Barbara Ferrini
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia D'Adamo
- Mouse Behavior Facility, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Enrica Gilberti
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppe DePalma
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Sara Belloli
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
| | - Cristina Monterisi
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Rainone
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, Italy
| | - Filippo Mori
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Giada Zurlo
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Carla Scali
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Letizia Natali
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Annalisa Pancanti
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | | | - Giulio Magherini
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Greta Tovani
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | | | | | | | - Laura Tinti
- Toscana Life Sciences Foundation, Siena, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | | | - Andrea Caricasole
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
5
|
Kontoghiorghes GJ. The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases. Pharmaceuticals (Basel) 2023; 16:1016. [PMID: 37513928 PMCID: PMC10384919 DOI: 10.3390/ph16071016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75-100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood-brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
6
|
Kontoghiorghes GJ. Deferiprone and Iron-Maltol: Forty Years since Their Discovery and Insights into Their Drug Design, Development, Clinical Use and Future Prospects. Int J Mol Sci 2023; 24:ijms24054970. [PMID: 36902402 PMCID: PMC10002863 DOI: 10.3390/ijms24054970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The historical insights and background of the discovery, development and clinical use of deferiprone (L1) and the maltol-iron complex, which were discovered over 40 years ago, highlight the difficulties, complexities and efforts in general orphan drug development programs originating from academic centers. Deferiprone is widely used for the removal of excess iron in the treatment of iron overload diseases, but also in many other diseases associated with iron toxicity, as well as the modulation of iron metabolism pathways. The maltol-iron complex is a recently approved drug used for increasing iron intake in the treatment of iron deficiency anemia, a condition affecting one-third to one-quarter of the world's population. Detailed insights into different aspects of drug development associated with L1 and the maltol-iron complex are revealed, including theoretical concepts of invention; drug discovery; new chemical synthesis; in vitro, in vivo and clinical screening; toxicology; pharmacology; and the optimization of dose protocols. The prospects of the application of these two drugs in many other diseases are discussed under the light of competing drugs from other academic and commercial centers and also different regulatory authorities. The underlying scientific and other strategies, as well as the many limitations in the present global scene of pharmaceuticals, are also highlighted, with an emphasis on the priorities for orphan drug and emergency medicine development, including the roles of the academic scientific community, pharmaceutical companies and patient organizations.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
7
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
8
|
Lobbes H, Reynaud Q, Mainbourg S, Savy-Stortz C, Ropert M, Bardou-Jacquet E, Durupt S. A New Pathogenic Missense Variant in a Consanguineous North-African Family Responsible for a Highly Variable Aceruloplasminemia Phenotype: A Case-Report. Front Neurosci 2022; 16:906360. [PMID: 35585918 PMCID: PMC9108494 DOI: 10.3389/fnins.2022.906360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Aceruloplasminemia is a rare autosomal recessive inherited disorder. Mutations in the ceruloplasmin gene cause depressed ferroxidase activity leading to iron accumulation. The clinical phenotype is highly variable: anemia, retinopathy, diabetes mellitus, psychiatric disorders, and neurological symptoms including parkinsonian disorders and dementia are the main features of this disease. Characterized by high serum ferritin with low transferrin saturation, aceruloplasminemia uniquely combines brain, liver and systemic iron overload. We report here four new cases of aceruloplasminemia in a consanguineous North-African family. Genetic sequencing revealed a homozygous missense variant c.656T>A in exon 4 of the ceruloplasmin gene, which had been described previously as of “unknown significance” in the dbSNP database and never associated with ACP in the HGMD database. Ferroxidase activity was strongly depressed. Clinical manifestations varied among cases. The proband exhibited mild microcytic anemia, diabetes mellitus, psychosis and parkinsonism, whereas the other cases were asymptomatic or mildly anemic, although high serum ferritin and brain iron deposition were documented in all of them. Therapeutic management was complex. The proband started deferoxamine treatment when already symptomatic and he rapidly declined. In the asymptomatic cases, the treatment was associated with poor tolerance and was discontinued due to anemia requiring red blood cell transfusion. Our series illustrates the need for new therapeutic approaches to aceruloplasminemia.
Collapse
Affiliation(s)
- Hervé Lobbes
- Service de Médecine Interne, Hôpital Estaing, CHU de Clermont-Ferrand, Clermont-Ferrand, France
- SIGMA Clermont, Institut Pascal, CHU Clermont-Ferrand, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- *Correspondence: Hervé Lobbes
| | - Quitterie Reynaud
- Département de Médecine Interne et Centre de Référence Mucoviscidose, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- Research on Healthcare Performance (REHSAPE), INSERM U1290, Université Claude Bernard Lyon 1, Lyon, France
| | - Sabine Mainbourg
- Département de Médecine Interne et Centre de Référence Mucoviscidose, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- Equipe Evaluation et Modélisation des Effets Thérapeutiques, UMR 5558, Laboratoire de Biométrie et Biologie évolutive, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Claire Savy-Stortz
- Médecine interne et médecine vasculaire, Groupe Hospitalier les Portes du Sud, Vénissieux, France
| | - Martine Ropert
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France
- Department of Biochemistry, CHU de Rennes, Rennes, France
| | - Edouard Bardou-Jacquet
- Liver Disease Department, French Reference Center for Hemochromatosis and Iron Metabolism Disease, CHU de Rennes, Rennes, France
- INSERM, CIC141, CHU de Rennes, Rennes, France
| | - Stéphane Durupt
- Département de Médecine Interne et Centre de Référence Mucoviscidose, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
9
|
Tan EK. A case os senile-onset progressive hemiballism and cognitive decline with diffuse brain iron accumulations: Expert commentary. Parkinsonism Relat Disord 2022; 98:118-119. [PMID: 35643592 DOI: 10.1016/j.parkreldis.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Duke NUS Medical School, Singapore.
| |
Collapse
|
10
|
Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation. Tremor Other Hyperkinet Mov (N Y) 2021; 11:51. [PMID: 34909266 PMCID: PMC8641530 DOI: 10.5334/tohm.661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Neurodegeneration with brain iron accumulation (NBIA) disorders comprise a group of rare but devastating inherited neurological diseases with unifying features of progressive cognitive and motor decline, and increased iron deposition in the basal ganglia. Although at present there are no proven disease-modifying treatments, the severe nature of these monogenic disorders lends to consideration of personalized medicine strategies, including targeted gene therapy. In this review we summarize the progress and future direction towards precision therapies for NBIA disorders. Methods: This review considered all relevant publications up to April 2021 using a systematic search strategy of PubMed and clinical trials databases. Results: We review what is currently known about the underlying pathophysiology of NBIA disorders, common NBIA disease pathways, and how this knowledge has influenced current management strategies and clinical trial design. The safety profile, efficacy and clinical outcome of clinical studies are reviewed. Furthermore, the potential for future therapeutic approaches is also discussed. Discussion: Therapeutic options in NBIAs remain very limited, with no proven disease-modifying treatments at present. However, a number of different approaches are currently under development with increasing focus on targeted precision therapies. Recent advances in the field give hope that novel strategies, such as gene therapy, gene editing and substrate replacement therapies are both scientifically and financially feasible for these conditions. Highlights This article provides an up-to-date review of the current literature about Neurodegeneration with Brain Iron Accumulation (NBIA), with a focus on disease pathophysiology, current and previously trialed therapies, and future treatments in development, including consideration of potential genetic therapy approaches.
Collapse
|
11
|
Vroegindeweij LHP, Wielopolski PA, Boon AJW, Wilson JHP, Verdijk RM, Zheng S, Bonnet S, Bossoni L, van der Weerd L, Hernandez-Tamames JA, Langendonk JG. MR imaging for the quantitative assessment of brain iron in aceruloplasminemia: A postmortem validation study. Neuroimage 2021; 245:118752. [PMID: 34823024 DOI: 10.1016/j.neuroimage.2021.118752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/15/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022] Open
Abstract
AIMS Non-invasive measures of brain iron content would be of great benefit in neurodegeneration with brain iron accumulation (NBIA) to serve as a biomarker for disease progression and evaluation of iron chelation therapy. Although magnetic resonance imaging (MRI) provides several quantitative measures of brain iron content, none of these have been validated for patients with a severely increased cerebral iron burden. We aimed to validate R2* as a quantitative measure of brain iron content in aceruloplasminemia, the most severely iron-loaded NBIA phenotype. METHODS Tissue samples from 50 gray- and white matter regions of a postmortem aceruloplasminemia brain and control subject were scanned at 1.5 T to obtain R2*, and biochemically analyzed with inductively coupled plasma mass spectrometry. For gray matter samples of the aceruloplasminemia brain, sample R2* values were compared with postmortem in situ MRI data that had been obtained from the same subject at 3 T - in situ R2*. Relationships between R2* and tissue iron concentration were determined by linear regression analyses. RESULTS Median iron concentrations throughout the whole aceruloplasminemia brain were 10 to 15 times higher than in the control subject, and R2* was linearly associated with iron concentration. For gray matter samples of the aceruloplasminemia subject with an iron concentration up to 1000 mg/kg, 91% of variation in R2* could be explained by iron, and in situ R2* at 3 T and sample R2* at 1.5 T were highly correlated. For white matter regions of the aceruloplasminemia brain, 85% of variation in R2* could be explained by iron. CONCLUSIONS R2* is highly sensitive to variations in iron concentration in the severely iron-loaded brain, and might be used as a non-invasive measure of brain iron content in aceruloplasminemia and potentially other NBIA disorders.
Collapse
Affiliation(s)
- Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Piotr A Wielopolski
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - J H Paul Wilson
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Rob M Verdijk
- Department of Pathology, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Sipeng Zheng
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Lucia Bossoni
- C.J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- C.J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Sheth S, Sud S, Buxi TBS, Bhargava S, Puri RD, Sandal S, Agrawal C. Aceruloplasminemia: MRI and Biochemical Profile Clue to Early Diagnosis in an Adolescent. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1736603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAceruloplasminemia (ACP) is a rare autosomal recessive genetic disorder with systemic and brain iron overload, secondary to ceruloplasmin gene mutation, usually presents in adults with neurological manifestations. An abnormal biochemical profile may be the only clue in an adolescent patient, that is, microcytic anemia, low transferrin saturation, hyperferritinemia, and should warrant a possible diagnosis of ACP, which can be established by low serum ceruloplasmin levels and appropriate genetic testing. We present a case of an adolescent patient in whom ACP was suspected when brain magnetic resonance imaging showed iron overload in basal ganglia, thalami, red nuclei, dentate nuclei, and choroid plexus and later on confirmed by biochemical profile. The final diagnosis was confirmed by the presences of a novel mutation on genetic analysis. To the best of our knowledge, our case is the second description of ACP with choroid plexus hemosiderosis.We proposed in this article that the combination of parenchymal and choroid plexus iron overload should prompt the suspicion of ACP.
Collapse
Affiliation(s)
- Swapnil Sheth
- Department of Radiology, Sir Ganga Ram Hospital, New Delhi, India
| | - Seema Sud
- Department of CT & MRI, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Salil Bhargava
- Department of Radiology, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Department of Genetics, Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sapna Sandal
- Department of Genetics, Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - C.S Agrawal
- Department of Neurology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
13
|
Neurodegeneration with Brain Iron Accumulation and a Brief Report of the Disease in Iran. Can J Neurol Sci 2021; 49:338-351. [PMID: 34082843 DOI: 10.1017/cjn.2021.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Collapse
|
14
|
Iankova V, Karin I, Klopstock T, Schneider SA. Emerging Disease-Modifying Therapies in Neurodegeneration With Brain Iron Accumulation (NBIA) Disorders. Front Neurol 2021; 12:629414. [PMID: 33935938 PMCID: PMC8082061 DOI: 10.3389/fneur.2021.629414] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegeneration with Brain Iron Accumulation (NBIA) is a heterogeneous group of progressive neurodegenerative diseases characterized by iron deposition in the globus pallidus and the substantia nigra. As of today, 15 distinct monogenetic disease entities have been identified. The four most common forms are pantothenate kinase-associated neurodegeneration (PKAN), phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN), beta-propeller protein-associated neurodegeneration (BPAN) and mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurodegeneration with Brain Iron Accumulation disorders present with a wide spectrum of clinical symptoms such as movement disorder signs (dystonia, parkinsonism, chorea), pyramidal involvement (e.g., spasticity), speech disorders, cognitive decline, psychomotor retardation, and ocular abnormalities. Treatment remains largely symptomatic but new drugs are in the pipeline. In this review, we discuss the rationale of new compounds, summarize results from clinical trials, provide an overview of important results in cell lines and animal models and discuss the future development of disease-modifying therapies for NBIA disorders. A general mechanistic approach for treatment of NBIA disorders is with iron chelators which bind and remove iron. Few studies investigated the effect of deferiprone in PKAN, including a recent placebo-controlled double-blind multicenter trial, demonstrating radiological improvement with reduction of iron load in the basal ganglia and a trend to slowing of disease progression. Disease-modifying strategies address the specific metabolic pathways of the affected enzyme. Such tailor-made approaches include provision of an alternative substrate (e.g., fosmetpantotenate or 4′-phosphopantetheine for PKAN) in order to bypass the defective enzyme. A recent randomized controlled trial of fosmetpantotenate, however, did not show any significant benefit of the drug as compared to placebo, leading to early termination of the trials' extension phase. 4′-phosphopantetheine showed promising results in animal models and a clinical study in patients is currently underway. Another approach is the activation of other enzyme isoforms using small molecules (e.g., PZ-2891 in PKAN). There are also compounds which counteract downstream cellular effects. For example, deuterated polyunsaturated fatty acids (D-PUFA) may reduce mitochondrial lipid peroxidation in PLAN. In infantile neuroaxonal dystrophy (a subtype of PLAN), desipramine may be repurposed as it blocks ceramide accumulation. Gene replacement therapy is still in a preclinical stage.
Collapse
Affiliation(s)
- Vassilena Iankova
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ivan Karin
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Klopstock
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Susanne A Schneider
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Vroegindeweij LHP, Bossoni L, Boon AJW, Wilson JHP, Bulk M, Labra-Muñoz J, Huber M, Webb A, van der Weerd L, Langendonk JG. Quantification of different iron forms in the aceruloplasminemia brain to explore iron-related neurodegeneration. NEUROIMAGE-CLINICAL 2021; 30:102657. [PMID: 33839643 PMCID: PMC8055714 DOI: 10.1016/j.nicl.2021.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Ferrihydrite-iron is the most abundant iron form in the aceruloplasminemia brain. Iron concentrations over 1 mg/g are found in deep gray matter structures. The deep gray matter contains over three times more iron than the temporal cortex. Iron-sensitive MRI contrast is primarily driven by the amount of ferrihydrite-iron. R2* is more illustrative of the pattern of iron accumulation than QSM at 7 T.
Aims Aceruloplasminemia is an ultra-rare neurodegenerative disorder associated with massive brain iron deposits, of which the molecular composition is unknown. We aimed to quantitatively determine the molecular iron forms in the aceruloplasminemia brain, and to illustrate their influence on iron-sensitive MRI metrics. Methods The inhomogeneous transverse relaxation rate (R2*) and magnetic susceptibility obtained from 7 T MRI were combined with Electron Paramagnetic Resonance (EPR) and Superconducting Quantum Interference Device (SQUID) magnetometry. The basal ganglia, thalamus, red nucleus, dentate nucleus, superior- and middle temporal gyrus and white matter of a post-mortem aceruloplasminemia brain were studied. MRI, EPR and SQUID results that had been previously obtained from the temporal cortex of healthy controls were included for comparison. Results The brain iron pool in aceruloplasminemia detected in this study consisted of EPR-detectable Fe3+ ions, magnetic Fe3+ embedded in the core of ferritin and hemosiderin (ferrihydrite-iron), and magnetic Fe3+ embedded in oxidized magnetite/maghemite minerals (maghemite-iron). Ferrihydrite-iron represented above 90% of all iron and was the main driver of iron-sensitive MRI contrast. Although deep gray matter structures were three times richer in ferrihydrite-iron than the temporal cortex, ferrihydrite-iron was already six times more abundant in the temporal cortex of the patient with aceruloplasminemia compared to the healthy situation (162 µg/g vs. 27 µg/g), on average. The concentrations of Fe3+ ions and maghemite-iron in the temporal cortex in aceruloplasminemia were within the range of those in the control subjects. Conclusions Iron-related neurodegeneration in aceruloplasminemia is primarily associated with an increase in ferrihydrite-iron, with ferrihydrite-iron being the major determinant of iron-sensitive MRI contrast.
Collapse
Affiliation(s)
- Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Lucia Bossoni
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Agnita J W Boon
- Department of Neurology, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - J H Paul Wilson
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Marjolein Bulk
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacqueline Labra-Muñoz
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Yang J, Dong C, Duan H, Shu Q, Li H. RDmap: a map for exploring rare diseases. Orphanet J Rare Dis 2021; 16:101. [PMID: 33632281 PMCID: PMC7905868 DOI: 10.1186/s13023-021-01741-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/11/2021] [Indexed: 02/01/2023] Open
Abstract
Background The complexity of the phenotypic characteristics and molecular bases of many rare human genetic diseases makes the diagnosis of such diseases a challenge for clinicians. A map for visualizing, locating and navigating rare diseases based on similarity will help clinicians and researchers understand and easily explore these diseases. Methods A distance matrix of rare diseases included in Orphanet was measured by calculating the quantitative distance among phenotypes and pathogenic genes based on Human Phenotype Ontology (HPO) and Gene Ontology (GO), and each disease was mapped into Euclidean space. A rare disease map, enhanced by clustering classes and disease information, was developed based on ECharts. Results A rare disease map called RDmap was published at http://rdmap.nbscn.org. Total 3287 rare diseases are included in the phenotype-based map, and 3789 rare genetic diseases are included in the gene-based map; 1718 overlapping diseases are connected between two maps. RDmap works similarly to the widely used Google Map service and supports zooming and panning. The phenotype similarity base disease location function performed better than traditional keyword searches in an in silico evaluation, and 20 published cases of rare diseases also demonstrated that RDmap can assist clinicians in seeking the rare disease diagnosis. Conclusion RDmap is the first user-interactive map-style rare disease knowledgebase. It will help clinicians and researchers explore the increasingly complicated realm of rare genetic diseases.
Collapse
Affiliation(s)
- Jian Yang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binsheng Road 3333#, Hangzhou, Zhejiang, 310052, China.,The College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
| | - Cong Dong
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binsheng Road 3333#, Hangzhou, Zhejiang, 310052, China.,The College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
| | - Huilong Duan
- The College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binsheng Road 3333#, Hangzhou, Zhejiang, 310052, China
| | - Haomin Li
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binsheng Road 3333#, Hangzhou, Zhejiang, 310052, China.
| |
Collapse
|
17
|
Tridimas A, Gillett GT, Pollard S, Sadasivam N, Williams A, Mellor K, Catchpole A, Stepien KM. Three-year follow up of using combination therapy with fresh-frozen plasma and iron chelation in a patient with acaeruloplasminemia. JIMD Rep 2021; 57:23-28. [PMID: 33473336 PMCID: PMC7802632 DOI: 10.1002/jmd2.12176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Acaeruloplasminemia is a rare autosomal recessive condition caused by inactivating mutations of the CP gene encoding caeruloplasmin (ferroxidase). Caeruloplasmin is a copper-containing plasma ferroxidase enzyme with a key role in facilitating cellular iron efflux. We describe a case of a patient with acaeruloplasminemia, confirmed by genetic analysis, treated with combination therapy of monthly fresh-frozen plasma (FFP) or Octaplas and iron chelation over a 3-year period. This 19-year-old male was diagnosed at the age of 14 after developing issues with social interaction at school prompting investigation. Prior to this, he had been well with a normal childhood. He was found to have an iron deficient picture with a paradoxically high ferritin, with low serum copper and undetectable caeruloplasmin. Genetic testing identified a homozygous splicing mutation, c.(1713 + delG);(c.1713 + delG), in intron 9 of the caeruloplasmin gene. Ferriscan showed a high liver iron concentration of 5.3 mg/g dry tissue (0.17-1.8). Brain and cardiac T2-weighted magnetic resonance (MR) imaging did not detect iron deposition of the brain or heart respectively. Treatment with monthly Octaplas infusion was commenced alongside deferasirox (540 mg o.d.) in an attempt to increase caeruloplasmin levels and reduce iron overload, respectively. After 3 years of treatment, there was biochemical improvement with a reduction in ferritin from 1084 (12-250) to 457 μg/L, ALT from 87 (<50) to 34 U/L together with improvement in his microcytic anaemia. No significant adverse events occurred. This case report adds further evidence of treatment efficacy and safety of combined FFP and iron chelation therapy in acaeruloplasminemia.
Collapse
Affiliation(s)
- Andreas Tridimas
- Department of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool HospitalLiverpoolUK
| | - Godfrey T. Gillett
- Laboratory Medicine, Northern General HospitalSheffield Teaching Hospitals NHS Foundation TrustSheffieldUK
| | - Sally Pollard
- Paediatrics DepartmentBradford Teaching Hospitals NHS Foundation Trust, Bradford Royal InfirmaryBradfordUK
| | - Nandini Sadasivam
- Red cell and General Haematology DepartmentManchester Royal InfirmaryManchesterUK
| | | | - Kirsty Mellor
- Clinical Nurse HaemoglobinopathyBradford Royal InfirmaryBradfordUK
| | - Anthony Catchpole
- Scottish Trace Element and Micronutrient Diagnostic and Research Laboratory, Department of Clinical BiochemistryGlasgow Royal InfirmaryGlasgowUK
| | - Karolina M. Stepien
- Adult Inherited Metabolic DiseasesSalford Royal Hospital NHS TrustSalfordUK
- Division of Diabetes, Endocrinology and GastroenterologyUniversity of ManchesterManchesterUK
| |
Collapse
|
18
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|