1
|
Yang L, Xie L, Li M, Miao Y, Yang J, Chen S, Ma X, Xie P. Potential relationship between cuproptosis and sepsis-acquired weakness: an intermediate role for mitochondria. Front Physiol 2025; 16:1520669. [PMID: 40182687 PMCID: PMC11965645 DOI: 10.3389/fphys.2025.1520669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Skeletal muscle atrophy due to critical illness is a common phenomenon in the intensive care unit (ICU) and is referred to as ICU-acquired weakness (ICU-AW). The occurrence of ICU-AW in patients with sepsis is known as sepsis-acquired weakness (SAW). Furthermore, it is well known that maintaining normal muscle function closely relates to mitochondrial homeostasis. Once mitochondrial function is impaired, both muscle quality and function are affected. Copper plays a key role in mitochondrial homeostasis as a transition metal that regulates the function and stability of various enzymes. Copper is also involved in oxidation-reduction reactions, and intracellular copper overload causes oxidative stress and induces cell death. Previous studies have shown that excess intracellular copper induces cell death by targeting lipid-acylated proteins that regulate the mitochondrial tricarboxylic acid (TCA) cycle, which differs from the known canonical mechanisms of regulated cell death. Furthermore, inhibitors of cell death, such as apoptosis, necroptosis, pyroptosis and ferroptosis, are not effective in preventing copper-induced cell death. This new form of cell death has been termed "Cuproptosis"; however, the mechanism by which copper-induced cell death is involved in SAW remains unclear. In this paper, we review the possible relationship between cuproptosis and SAW. Cuproptosis may be involved in regulating the pathological mechanisms of SAW through mitochondria-related signaling pathways, mitochondria-related ferroptosis mechanisms, and mitochondria-related genes, and to provide new ideas for further investigations into the mechanism of SAW.
Collapse
Affiliation(s)
- Luying Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Min Li
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Jun Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Shaolin Chen
- Department of Nursing of Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Nishino D, Haginouchi T, Shimogiri T, Muroya S, Kawabata K, Urasoko S, Oshima I, Yasuo S, Gotoh T. A Pilot Study: Maternal Undernutrition Programs Energy Metabolism and Alters Metabolic Profile and Morphological Characteristics of Skeletal Muscle in Postnatal Beef Cattle. Metabolites 2025; 15:209. [PMID: 40137173 PMCID: PMC11944182 DOI: 10.3390/metabo15030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/17/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Objectives: This study investigated the long-term effects of maternal undernutrition on overall muscle metabolism, growth performance, and muscle characteristics in postnatal offspring of Wagyu (Japanese Black) cattle. Methods: Wagyu cows were divided into nutrient-adequate (control, CNT; n = 4, 120% of requirements) and nutrient-restricted groups (NR; n = 4; 60% of requirements), and treated from day 35 of gestation until parturition. Diets were delivered on the basis of crude protein requirements, meeting 100% and 80% of dry matter requirements in CNT and NR groups, respectively. All offspring were provided with the same diet from birth to 300 days of age (d). Longissimus thoracis muscle (LM) samples were collected from the postnatal offspring. Results: The NR offspring had lower birth body weight, but their body weight caught up before weaning. These offspring showed enhanced efficiency in nutrient utilization during the post-weaning growth period. Comprehensive analyses of metabolites and transcripts revealed the accumulation of proteinogenic amino acid, asparagine, in NR offspring LM at 300 d, while the abundance of nicotinamide adenine dinucleotide (NADH) and succinate were reduced. These changes were accompanied by decreased gene expression of nicotinamide phosphoribosyltransferase (NAMPT), NADH: ubiquinone oxidoreductase subunit A12 (NDUFA12), and NADH dehydrogenase subunit 5 (ND5), which are essential for mitochondrial energy production. Additionally, NR offspring LM exhibited decreased abundance of neurotransmitter, along with a higher proportion of slow-oxidative myofibers and a lower proportion of fast-oxidative myofibers at 300 d. Conclusions: Offspring from nutrient-restricted cows might suppress muscle energy production, primarily in the mitochondria, and conserve energy expenditure for muscle protein synthesis. These findings suggest that maternal undernutrition programs a thrifty metabolism in offspring muscle, with long-term effects.
Collapse
Affiliation(s)
- Daichi Nishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (D.N.); (S.Y.)
| | - Taketo Haginouchi
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-0811, Japan;
| | - Takeshi Shimogiri
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan; (T.S.); (S.M.); (I.O.)
| | - Susumu Muroya
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan; (T.S.); (S.M.); (I.O.)
| | - Kenji Kawabata
- Livestock Experiment Station, Kagoshima Prefectural Institute for Agricultural Development, 2440 Kokubuuenodan, Kirishima 899-4461, Japan; (K.K.); (S.U.)
| | - Saki Urasoko
- Livestock Experiment Station, Kagoshima Prefectural Institute for Agricultural Development, 2440 Kokubuuenodan, Kirishima 899-4461, Japan; (K.K.); (S.U.)
| | - Ichiro Oshima
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan; (T.S.); (S.M.); (I.O.)
| | - Shinobu Yasuo
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (D.N.); (S.Y.)
| | - Takafumi Gotoh
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (D.N.); (S.Y.)
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-0811, Japan;
| |
Collapse
|
3
|
Shalata A, Saada A, Mahroum M, Hadid Y, Furman C, Shalata ZE, Desnick RJ, Lorber A, Khoury A, Higazi A, Shaag A, Barash V, Spiegel R, Vlodavsky E, Rustin P, Pietrokovski S, Manov I, Gieger D, Tal G, Salzberg A, Mandel H. Sengers syndrome caused by biallelic TIMM29 variants and RNAi silencing in Drosophila orthologue recapitulates the human phenotype. Hum Genomics 2025; 19:21. [PMID: 40022150 PMCID: PMC11871733 DOI: 10.1186/s40246-025-00723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025] Open
Abstract
PURPOSE Sengers-syndrome (S.S) is a genetic disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. All reported cases were genetically caused by biallelic mutations in the AGK gene. We herein report a pathogenic variant in TIMM29 gene, encoding Tim29 protein, as a novel cause of S.S. Notably, AGK and Tim29 proteins are components of the TIM22 complex, which is responsible for importing carrier proteins into the inner mitochondrial membrane. METHOD Clinical data of 17 consanguineous patients featuring S.S was obtained. Linkage analysis, and sequencing were used to map and identify the disease-causing gene. Tissues derived from the study participants and a Drosophila melanogaster model were used to evaluate the effects of TIMM29 variant on S.S. RESULTS The patients presented with a severe phenotype of S.S, markedly elevated serum creatine-phosphokinase, combined mitochondrial-respiratory-chain-complexes deficiency, reduced pyruvate-dehydrogenase complex activity, and reduced adenine nucleotide translocator 1 protein. Histopathological studies showed accumulation of abnormal mitochondria. Homozygosity mapping and gene sequencing revealed a biallelic variant in TIMM29 NM_138358.4:c.514T > C NP_612367.1:p.(Trp172Arg). The knockdown of the Drosophila TIMM29 orthologous gene (CG14270) recapitulated the phenotype and pathology observed in the studied cohort. We expand the clinical phenotype of S.S and provide substantial evidence supporting TIMM29 as the second causal gene of a severe type of S.S, designated as S.S- TIMM29. CONCLUSION The present study uncovers several biochemical differences between the two S.S types, including the hyperCPKemia being almost unique for S.S-TIMM29 cohort, the different frequency of MMRCC and PDHc deficiencies among the two S.S types. We propose to designate the S.S associated with TIMM29 homozygous variant as S.S-TIMM29.
Collapse
Affiliation(s)
- Adel Shalata
- Bnai Zion Medical Center, The Simon Winter Institute for Human Genetics, Haifa, Israel.
- Seba Rihana Medical Center, Sakhnin, Israel.
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Medical Laboratory Sciences, Hadassah Academic College, Jerusalem, Israel
| | - Mohammed Mahroum
- Bnai Zion Medical Center, The Simon Winter Institute for Human Genetics, Haifa, Israel
| | - Yarin Hadid
- Bnai Zion Medical Center, The Simon Winter Institute for Human Genetics, Haifa, Israel
| | - Chaya Furman
- Bnai Zion Medical Center, The Simon Winter Institute for Human Genetics, Haifa, Israel
| | | | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avraham Lorber
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatric Cardiology, Rambam Medical Center, Haifa, Israel
| | - Asaad Khoury
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatric Cardiology, Rambam Medical Center, Haifa, Israel
| | | | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Varda Barash
- Department of Biochemistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Spiegel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatric B, Emek Medical Center, Afula, Israel
| | - Euvgeni Vlodavsky
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Pierre Rustin
- NeuroDiderot, Inserm Université Paris Cité, 75019, Paris, France
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Irena Manov
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dan Gieger
- Computer Science Department, Technion, Israel Institute of Technology, Haifa, Israel
| | - Galit Tal
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- The Unit for Metabolic Disorders, Rambam Medical Center, Haifa, Israel
| | - Adi Salzberg
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hanna Mandel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- The Unit for Metabolic Disorders, Rambam Medical Center, Haifa, Israel.
- Department of Genetics and Metabolic Disorders, Ziv Medical Center, Safed, Israel.
| |
Collapse
|
4
|
Starosta RT, Larson AA, Meeks NJL, Gracie S, Friederich MW, Gaughan SM, Baker PR, Knupp KG, Michel CR, Reisdorph R, Hock DH, Stroud DA, Wood T, Van Hove JLK. An integrated multi-omics approach allowed ultra-rapid diagnosis of a deep intronic pathogenic variant in PDHX and precision treatment in a neonate critically ill with lactic acidosis. Mitochondrion 2024; 79:101973. [PMID: 39413893 PMCID: PMC11578067 DOI: 10.1016/j.mito.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The diagnosis of mitochondrial disorders is complex. Rapid whole genome sequencing is a first line test for critically ill neonates and infants allowing rapid diagnosis and treatment. Standard genomic technology and bioinformatic pipelines still have an incomplete diagnostic yield requiring complementary approaches. There are currently limited options for rapid additional tests to continue a diagnostic work-up after a negative rapid whole-genome sequencing result, reflecting a gap in clinical practice. Multi-modal integrative diagnostic approaches derived from systems biology including proteomics and transcriptomics show promise in suspected mitochondrial disorders. In this article, we report the case of a neonate who presented with severe lactic acidosis on the second day of life, for whom an initial report of ultra-rapid genome sequencing was negative. The patient was started on dichloroacetate as an emergency investigational new drug (eIND), with a sharp decline in lactic acid levels and clinical stabilization. A proteomics-based approach identified a complete absence of PDHX protein, leading to a re-review of the genome data for the PDHX gene in which a homozygous deep intronic pathogenic variant was identified. Subsequent testing in the following months confirmed the diagnosis with deficient pyruvate dehydrogenase enzyme activity, reduced protein levels of E3-binding protein, and confirmed by mRNA sequencing to lead to the inclusion of a cryptic exon and a premature stop codon. This case highlights the power of rapid proteomics in guiding genomic analysis. It also shows a promising role for dichloroacetate treatment in controlling lactic acidosis related to PDHX-related pyruvate dehydrogenase complex deficiency.
Collapse
Affiliation(s)
- Rodrigo T Starosta
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sara Gracie
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sommer M Gaughan
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Kelly G Knupp
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Tim Wood
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Bunik VI. A challenging interplay between basic research, technologies and medical education to provide therapies based on disease mechanisms. Front Med (Lausanne) 2024; 11:1464672. [PMID: 39228799 PMCID: PMC11368752 DOI: 10.3389/fmed.2024.1464672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Victoria I. Bunik
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
6
|
Obiako PC, Ayisire SO, Sayes CM. Impact of perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) on oxidative stress and metabolic biomarkers in human neuronal cells (SH-SY5Y). ENVIRONMENT INTERNATIONAL 2024; 190:108864. [PMID: 38986427 DOI: 10.1016/j.envint.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Perfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that have attracted considerable attention due to their widespread utilization, resilient characteristics, adverse health implications, and regulatory scrutiny. Despite documented toxicity in living organisms, the precise molecular mechanisms governing the induced adverse effects remain unclear. This study aims to elucidate mechanisms of toxic action by collecting empirical data sets along oxidative stress and metabolic disruption pathways. We investigated the impact of long-chain PFAS (perfluorooctanoic acid (PFOA)) and its short-chain analog (perfluorobutanoic acid (PFBA)) on human neuronal cells (SH-SY5Y). The functionalities of enzymes associated with oxidative stress (catalase and glutathione reductase) and cellular metabolism (lactate dehydrogenase and pyruvate dehydrogenase) were also characterized. Our results reveal that a 24-hour exposure to PFOA and PFBA generated significant levels of reactive oxygen species. Correspondingly, there was a notable decline in catalase and glutathione reductase activities, with PFBA demonstrating a more pronounced effect. High concentrations of PFOA and PFBA reduced metabolic activity. Lactate dehydrogenase activity was only impacted by a high concentration of PFBA, while pyruvate dehydrogenase activity was decreased with PFBA exposure and increased with PFOA exposure. The findings from this study contribute to the knowledge of PFAS and cell interactions and reveal the potential underlying mechanisms of PFAS-induced toxicity.
Collapse
Affiliation(s)
- Precious C Obiako
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Solomon O Ayisire
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, United States.
| |
Collapse
|
7
|
Savvidou A, Sofou K, Eklund EA, Aronsson J, Darin N. Manifestations of X-linked pyruvate dehydrogenase complex deficiency in female PDHA1 carriers. Eur J Neurol 2024; 31:e16283. [PMID: 38497591 PMCID: PMC11235877 DOI: 10.1111/ene.16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND PURPOSE Pyruvate dehydrogenase complex deficiency is in up to 90% caused by pathogenic variants in the X-linked PDHA1 gene. We aimed to investigate female relatives of index patients with PDHA1-related disease to (i) describe the prevalence of female PDHA1 carriers, (ii) determine whether they had symptoms and signs, and (iii) delineate the associated phenotype. METHODS In a national population-based study, we identified 37 patients with pathogenic variants in PDHA1. Sanger sequencing for the presence of the pathogenic variant was performed in their mothers and female relatives. The identified female carriers were clinically assessed, and their medical records were reviewed. RESULTS The proportion carrying a de novo variant was 86%. We identified seven female PDHA1 carriers from five families. Five of them exhibited clinical features of the disease and were previously undiagnosed; all had signs of peripheral axonal neuropathy, four presented with strokelike episodes including two with Leigh-like lesions, and three had facial stigmata. CONCLUSIONS PDHA1-related disease is underrecognized in heterozygous female carriers. Peripheral axonal neuropathy, strokelike and Leigh-like changes, and facial dysmorphism should raise suspicion of the disorder. Genetic analysis and clinical examination of potential female carriers are important for genetic counseling and have implications for treatment.
Collapse
Affiliation(s)
- Antri Savvidou
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Queen Silvia Children's Hospital, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Kalliopi Sofou
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Queen Silvia Children's Hospital, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Erik A. Eklund
- Section of Pediatrics, Department of Clinical SciencesLund UniversityLundSweden
| | | | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Queen Silvia Children's Hospital, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
8
|
Pedrón Giner CC. [Fourteenth Jesús Culebras Lecture. Ketogenic diet, a half-discovered treatment]. NUTR HOSP 2024; 41:477-488. [PMID: 38450481 DOI: 10.20960/nh.05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Introduction The ketogenic diet was an amazing approach to treating epilepsy from its beginning. The body undergoes a change in obtaining energy, going from depending on carbohydrates to depending on fats, and then a whole series of biochemical routes are launched that, independently but also complementary, give rise to a set of effects that benefit the patient. This search for its mechanism of action, of devising how to improve compliance and take advantage of it for other diseases has marked its trajectory. This article briefly reviews these aspects, emphasizing the importance of continuing to carry out basic and clinical research so that this treatment can be applied with solid scientific bases.
Collapse
Affiliation(s)
- Consuelo Carmen Pedrón Giner
- Sección de Gastroenterología y Nutrición. Servicio de Pediatría. Hospital Infantil Universitario Niño Jesús. Departamento de Pediatría. Universidad Autónoma de Madrid
| |
Collapse
|
9
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Tippetts TS, Sieber MH, Solmonson A. Beyond energy and growth: the role of metabolism in developmental signaling, cell behavior and diapause. Development 2023; 150:dev201610. [PMID: 37883062 PMCID: PMC10652041 DOI: 10.1242/dev.201610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.
Collapse
Affiliation(s)
- Trevor S. Tippetts
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew H. Sieber
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Laboratory of Developmental Metabolism and Placental Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Olszewska DA, Shetty A, Rajalingam R, Rodriguez-Antiguedad J, Hamed M, Huang J, Breza M, Rasheed A, Bahr N, Madoev H, Westenberger A, Trinh J, Lohmann K, Klein C, Marras C, Waln O. Genotype-phenotype relations for episodic ataxia genes: MDSGene systematic review. Eur J Neurol 2023; 30:3377-3393. [PMID: 37422902 DOI: 10.1111/ene.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.
Collapse
Affiliation(s)
- Diana Angelika Olszewska
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Aakash Shetty
- Department of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Jon Rodriguez-Antiguedad
- Movement Disorders Unit and Institut d'Investigacions Biomediques-Sant Pau, Hospital Sant Pau, Barcelona, Spain
| | - Moath Hamed
- Department of Neurosciences, NYP Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jana Huang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | | | - Ashar Rasheed
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyan Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga Waln
- Houston Methodist Neurological Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
12
|
Pânzaru MC, Popa S, Lupu A, Gavrilovici C, Lupu VV, Gorduza EV. Genetic heterogeneity in corpus callosum agenesis. Front Genet 2022; 13:958570. [PMID: 36246626 PMCID: PMC9562966 DOI: 10.3389/fgene.2022.958570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum is the largest white matter structure connecting the two cerebral hemispheres. Agenesis of the corpus callosum (ACC), complete or partial, is one of the most common cerebral malformations in humans with a reported incidence ranging between 1.8 per 10,000 livebirths to 230–600 per 10,000 in children and its presence is associated with neurodevelopmental disability. ACC may occur as an isolated anomaly or as a component of a complex disorder, caused by genetic changes, teratogenic exposures or vascular factors. Genetic causes are complex and include complete or partial chromosomal anomalies, autosomal dominant, autosomal recessive or X-linked monogenic disorders, which can be either de novo or inherited. The extreme genetic heterogeneity, illustrated by the large number of syndromes associated with ACC, highlight the underlying complexity of corpus callosum development. ACC is associated with a wide spectrum of clinical manifestations ranging from asymptomatic to neonatal death. The most common features are epilepsy, motor impairment and intellectual disability. The understanding of the genetic heterogeneity of ACC may be essential for the diagnosis, developing early intervention strategies, and informed family planning. This review summarizes our current understanding of the genetic heterogeneity in ACC and discusses latest discoveries.
Collapse
Affiliation(s)
- Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Gavrilovici
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
13
|
Gokcan H, Bedoyan JK, Isayev O. Simulations of Pathogenic E1α Variants: Allostery and Impact on Pyruvate Dehydrogenase Complex-E1 Structure and Function. J Chem Inf Model 2022; 62:3463-3475. [PMID: 35797142 DOI: 10.1021/acs.jcim.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. The E1 component of the mitochondrial multienzyme PDC (PDC-E1) is a symmetric dimer of heterodimers (αβ/α'β') encoded by the PDHA1 and PDHB genes, with two symmetric active sites each consisting of highly conserved phosphorylation loops A and B. PDHA1 mutations are responsible for 82-88% of cases. Greater than 85% of E1α residues with disease-causing missense mutations (DMMs) are solvent-inaccessible, with ∼30% among those involved in subunit-subunit interface contact (SSIC). We performed molecular dynamics simulations of wild-type (WT) PDC-E1 and E1 variants with E1α DMMs at R349 and W185 (residues involved in SSIC), to investigate their impact on human PDC-E1 structure. We evaluated the change in E1 structure and dynamics and examined their implications on E1 function with the specific DMMs. We found that the dynamics of phosphorylation Loop A, which is crucial for E1 biological activity, changes with DMMs that are at least about 15 Å away. Because communication is essential for PDC-E1 activity (with alternating active sites), we also investigated the possible communication network within WT PDC-E1 via centrality analysis. We observed that DMMs altered/disrupted the communication network of PDC-E1. Collectively, these results indicate allosteric effect in PDC-E1, with implications for the development of novel small-molecule therapeutics for specific recurrent E1α DMMs such as replacements of R349 responsible for ∼10% of PDC deficiency due to E1α DMMs.
Collapse
Affiliation(s)
- Hatice Gokcan
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jirair K Bedoyan
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224, United States.,Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Burns W, Chaudhari BP, Haffner DN. Neurogenetic and Metabolic Mimics of Common Neonatal Neurological Disorders. Semin Pediatr Neurol 2022; 42:100972. [PMID: 35868729 DOI: 10.1016/j.spen.2022.100972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Neurogenetic and metabolic diseases often present in the neonatal period, masquerading as other disorders, most commonly as neonatal encephalopathy and seizures. Advancements in our understanding of inborn errors of metabolism are leading to an increasing number of therapeutic options. Many of these treatments can improve long-term neurodevelopment and seizure control. However, the treatments are frequently condition-specific. A high index of suspicion is required for prompt identification and treatment. When suspected, simultaneous metabolic and molecular testing are recommended along with concurrent treatment.
Collapse
Affiliation(s)
- William Burns
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH.
| | - Bimal P Chaudhari
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neonatology, Nationwide Children's Hospital, Columbus, OH; Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Darrah N Haffner
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
15
|
Karissa P, Simpson T, Dawson SP, Low TY, Tay SH, Nordin FDA, Zain SM, Lee PY, Pung YF. Comparison Between Dichloroacetate and Phenylbutyrate Treatment for Pyruvate Dehydrogenase Deficiency. Br J Biomed Sci 2022; 79:10382. [PMID: 35996497 PMCID: PMC9302545 DOI: 10.3389/bjbs.2022.10382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Pyruvate dehydrogenase (PDH) deficiency is caused by a number of pathogenic variants and the most common are found in the PDHA1 gene. The PDHA1 gene encodes one of the subunits of the PDH enzyme found in a carbohydrate metabolism pathway involved in energy production. Pathogenic variants of PDHA1 gene usually impact the α-subunit of PDH causing energy reduction. It potentially leads to increased mortality in sufferers. Potential treatments for this disease include dichloroacetate and phenylbutyrate, previously used for other diseases such as cancer and maple syrup urine disease. However, not much is known about their efficacy in treating PDH deficiency. Effective treatment for PDH deficiency is crucial as carbohydrate is needed in a healthy diet and rice is the staple food for a large portion of the Asian population. This review analysed the efficacy of dichloroacetate and phenylbutyrate as potential treatments for PDH deficiency caused by PDHA1 pathogenic variants. Based on the findings of this review, dichloroacetate will have an effect on most PDHA1 pathogenic variant and can act as a temporary treatment to reduce the lactic acidosis, a common symptom of PDH deficiency. Phenylbutyrate can only be used on patients with certain pathogenic variants (p.P221L, p.R234G, p.G249R, p.R349C, p.R349H) on the PDH protein. It is hoped that the review would provide an insight into these treatments and improve the quality of lives for patients with PDH deficiency.
Collapse
Affiliation(s)
- Patricia Karissa
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Timothy Simpson
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Simon P Dawson
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sook Hui Tay
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | - Shamsul Mohd Zain
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
16
|
Pavuluri H, F A, Menon RN, Nair SS, Sundaram S. Pyruvate Dehydrogenase Complex Deficiency Due to PDHA1 Mutation-A Rare Treatable Cause for Episodic Ataxia in Children. Indian J Pediatr 2022; 89:519. [PMID: 35132535 DOI: 10.1007/s12098-021-04068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Harini Pavuluri
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Alfiya F
- R Madhavan Nayar Center for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramshekhar N Menon
- R Madhavan Nayar Center for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Sruthi S Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Soumya Sundaram
- Pediatric Neurology and Neurodevelopmental Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
17
|
Ducich NH, Mears JA, Bedoyan JK. Solvent accessibility of E1α and E1β residues with known missense mutations causing pyruvate dehydrogenase complex (PDC) deficiency: Impact on PDC-E1 structure and function. J Inherit Metab Dis 2022; 45:557-570. [PMID: 35038180 PMCID: PMC9297371 DOI: 10.1002/jimd.12477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/08/2022]
Abstract
Pyruvate dehydrogenase complex deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. PDHA1 mutations are responsible for >82% of cases. The E1 component of PDC is a symmetric dimer of heterodimers (αβ/α'β') encoded by PDHA1 and PDHB. We measured solvent accessibility surface area (SASA), utilized nearest-neighbor analysis, incorporated sequence changes using mutagenesis tool in PyMOL, and performed molecular modeling with SWISS-MODEL, to investigate the impact of residues with disease-causing missense variants (DMVs) on E1 structure and function. We reviewed 166 and 13 genetically resolved cases due to PDHA1 and PDHB, respectively, from variant databases. We expanded on 102 E1α and 13 E1β nonduplicate DMVs. DMVs of E1α Arg112-Arg224 stretch (exons 5-7) and of E1α Arg residues constituted 40% and 39% of cases, respectively, with invariant Arg349 accounting for 22% of arginine replacements. SASA analysis showed that 86% and 84% of residues with nonduplicate DMVs of E1α and E1β, respectively, are solvent inaccessible ("buried"). Furthermore, 30% of E1α buried residues with DMVs are deleterious through perturbation of subunit-subunit interface contact (SSIC), with 73% located in the Arg112-Arg224 stretch. E1α Arg349 represented 74% of buried E1α Arg residues involved in SSIC. Structural perturbations resulting from residue replacements in some matched neighboring pairs of amino acids on different subunits involved in SSIC at 2.9-4.0 Å interatomic distance apart, exhibit similar clinical phenotype. Collectively, this work provides insight for future target-based advanced molecular modeling studies, with implications for development of novel therapeutics for specific recurrent DMVs of E1α.
Collapse
Affiliation(s)
- Nicole H. Ducich
- Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Jason A. Mears
- Department of Pharmacology, CWRU, Cleveland, Ohio, USA
- Center for Mitochondrial Diseases, CWRU, Cleveland, Ohio, USA
| | - Jirair K. Bedoyan
- Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Lopriore P, Ricciarini V, Siciliano G, Mancuso M, Montano V. Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity. Neurol Int 2022; 14:337-356. [PMID: 35466209 PMCID: PMC9036286 DOI: 10.3390/neurolint14020028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Ataxia is increasingly being recognized as a cardinal manifestation in primary mitochondrial diseases (PMDs) in both paediatric and adult patients. It can be caused by disruption of cerebellar nuclei or fibres, its connection with the brainstem, or spinal and peripheral lesions leading to proprioceptive loss. Despite mitochondrial ataxias having no specific defining features, they should be included in hereditary ataxias differential diagnosis, given the high prevalence of PMDs. This review focuses on the clinical and neuropathological features and genetic background of PMDs in which ataxia is a prominent manifestation.
Collapse
|
19
|
Savvidou A, Ivarsson L, Naess K, Eklund EA, Lundgren J, Dahlin M, Frithiof D, Sofou K, Darin N. Novel imaging findings in pyruvate dehydrogenase complex (PDHc) deficiency-Results from a nationwide population-based study. J Inherit Metab Dis 2022; 45:248-263. [PMID: 34873726 DOI: 10.1002/jimd.12463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023]
Abstract
The vast clinical and radiological spectrum of pyruvate dehydrogenase complex (PDHc) deficiency continues to pose challenges both in diagnostics and disease monitoring. Prompt diagnosis is important to enable early initiation of ketogenic diet. The patients were recruited from an ongoing population-based study in Sweden. All patients with a genetically confirmed diagnosis who had been investigated with an MRI of the brain were included. Repeated investigations were assessed to study the evolution of the MRI changes. Sixty-two MRI investigations had been performed in 34 patients (23 females). The genetic cause was mutations in PDHA1 in 29, PDHX and DLAT in 2 each, and PDHB in 1. The lesions were prenatal developmental in 16, prenatal clastic in 18, and postnatal clastic in 15 individuals. Leigh-like lesions with predominant involvement of globus pallidus were present in 12, while leukoencephalopathy was present in 6 and stroke-like lesions in 3 individuals. A combination of prenatal developmental and clastic lesions was present in 15 individuals. In addition, one male with PDHA1 also had postnatal clastic lesions. The most common lesions found in our study were agenesis or hypoplasia of corpus callosum, ventriculomegaly, or Leigh-like lesions. Furthermore, we describe a broad spectrum of other MRI changes that include leukoencephalopathy and stroke-like lesions. We argue that a novel important clue, suggesting the possibility of PDHc deficiency on MRI scans, is the simultaneous presence of multiple lesions on MRI that have occurred during different phases of brain development.
Collapse
Affiliation(s)
- Antri Savvidou
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Liz Ivarsson
- Department of Radiology, Institute of Clinical Sciences, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Karin Naess
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Lundgren
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Dahlin
- Neuropediatric Unit, Department of Women's and Children's Health, Karolinska Institute and Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | | | - Kalliopi Sofou
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
20
|
Exome Sequencing Reveals Novel Variants and Expands the Genetic Landscape for Congenital Microcephaly. Genes (Basel) 2021; 12:genes12122014. [PMID: 34946966 PMCID: PMC8700965 DOI: 10.3390/genes12122014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly. This etiological heterogeneity manifests in a clinical variability and presents a major diagnostic and therapeutic challenge, leaving an unacceptably large proportion of over half of microcephaly patients without molecular diagnosis. To elucidate the clinical and genetic landscapes of congenital microcephaly, we sequenced the exomes of 191 clinically diagnosed patients with microcephaly as one of the features. We established a molecular basis for microcephaly in 71 patients (37%), and detected novel variants in five high confidence candidate genes previously unassociated with this condition. We report a large number of patients with mutations in tubulin-related genes in our cohort as well as higher incidence of pathogenic mutations in MCPH genes. Our study expands the phenotypic and genetic landscape of microcephaly, facilitating differential clinical diagnoses for disorders associated with most commonly disrupted genes in our cohort.
Collapse
|
21
|
Duarte IF, Caio J, Moedas MF, Rodrigues LA, Leandro AP, Rivera IA, Silva MFB. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cell Mol Life Sci 2021; 78:7451-7468. [PMID: 34718827 PMCID: PMC11072406 DOI: 10.1007/s00018-021-03996-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
In human metabolism, pyruvate dehydrogenase complex (PDC) is one of the most intricate and large multimeric protein systems representing a central hub for cellular homeostasis. The worldwide used antiepileptic drug valproic acid (VPA) may potentially induce teratogenicity or a mild to severe hepatic toxicity, where the underlying mechanisms are not completely understood. This work aims to clarify the mechanisms that intersect VPA-related iatrogenic effects to PDC-associated dihydrolipoamide dehydrogenase (DLD; E3) activity. DLD is also a key enzyme of α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, α-ketoadipate dehydrogenase, and the glycine decarboxylase complexes. The molecular effects of VPA will be reviewed underlining the data that sustain a potential interaction with DLD. The drug-associated effects on lipoic acid-related complexes activity may induce alterations on the flux of metabolites through tricarboxylic acid cycle, branched-chain amino acid oxidation, glycine metabolism and other cellular acetyl-CoA-connected reactions. The biotransformation of VPA involves its complete β-oxidation in mitochondria causing an imbalance on energy homeostasis. The drug consequences as histone deacetylase inhibitor and thus gene expression modulator have also been recognized. The mitochondrial localization of PDC is unequivocal, but its presence and function in the nucleus were also demonstrated, generating acetyl-CoA, crucial for histone acetylation. Bridging metabolism and epigenetics, this review gathers the evidence of VPA-induced interference with DLD or PDC functions, mainly in animal and cellular models, and highlights the uncharted in human. The consequences of this interaction may have significant impact either in mitochondrial or in nuclear acetyl-CoA-dependent processes.
Collapse
Affiliation(s)
- I F Duarte
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - J Caio
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M F Moedas
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - L A Rodrigues
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - A P Leandro
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - I A Rivera
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M F B Silva
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
22
|
Méneret A, Garcin B, Frismand S, Lannuzel A, Mariani LL, Roze E. Treatable Hyperkinetic Movement Disorders Not to Be Missed. Front Neurol 2021; 12:659805. [PMID: 34925200 PMCID: PMC8671871 DOI: 10.3389/fneur.2021.659805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperkinetic movement disorders are characterized by the presence of abnormal involuntary movements, comprising most notably dystonia, chorea, myoclonus, and tremor. Possible causes are numerous, including autoimmune disorders, infections of the central nervous system, metabolic disturbances, genetic diseases, drug-related causes and functional disorders, making the diagnostic process difficult for clinicians. Some diagnoses may be delayed without serious consequences, but diagnosis delays may prove detrimental in treatable disorders, ranging from functional disabilities, as in dopa-responsive dystonia, to death, as in Whipple's disease. In this review, we focus on treatable disorders that may present with prominent hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Aurélie Méneret
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Béatrice Garcin
- Service de Neurologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Solène Frismand
- Département de Neurologie, Hôpital universitaire de Nancy, Nancy, France
| | - Annie Lannuzel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Département de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-à-Pitre, France
- Faculté de Médecine, Université Des Antilles, Pointe-à-Pitre, France
- Centre D'investigation Clinique Antilles Guyane, Pointe-à-Pitre, France
| | - Louise-Laure Mariani
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Emmanuel Roze
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| |
Collapse
|
23
|
Alfarsi A, Alfadhel M, Alameer S, Alhashem A, Tabarki B, Ababneh F, Al Fares A, Al Mutairi F. The phenotypic spectrum of dihydrolipoamide dehydrogenase deficiency in Saudi Arabia. Mol Genet Metab Rep 2021; 29:100817. [PMID: 34745891 PMCID: PMC8554626 DOI: 10.1016/j.ymgmr.2021.100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022] Open
Abstract
Background Dihydrolipoamide dehydrogenase deficiency (DLDD) is a rare metabolic disorder inherited in an autosomal recessive manner. This heterogeneous disease has a variable clinical presentation, onset, and biochemical markers. Materials and methods We retrospectively reviewed the clinical and molecular diagnosis of eight cases with DLDD from four referral centers in Saudi Arabia. Results Remarkably, we found hepatic involvement ranging from acute hepatic failure to chronic hepatitis in five patients. In addition, neurological disorders in the form of seizures, developmental delay, ataxia, hypotonia and psychomotor symptoms were found in five patients, two of them with a combination of hepatic and neurological symptoms. In addition, only one patient had recurrent episodes of hypoglycemia. While most patients had the hepatic form of homozygous variant c.685G > T in the DLD gene, one patient was found to have a novel variant c.623C > T that had neurological and hepatic symptoms. Conclusions We describe the largest reported DLDD cohort in the Saudi population. Clinical, biochemical, radiological, and molecular characterization was reviewed and no clear genotype-phenotype correlation was found in this cohort.
Collapse
Key Words
- BCAAs, Branched Chain Amino Acids
- BCKDH, Branched-chain a-keto acid dehydrogenase
- DCA, Dichloroacetate
- DLDD, Dihydrolipoamide Dehydrogenase Deficiency
- Dihydrolipoamide dehydrogenase deficiency
- Flavoprotein and E3
- Hypoglycemia
- IRB, Institutional Review Board
- KAIMRC, King Abdullah International Medical Research Centre
- Lactic acidosis
- MRI, Magnetic resonance imaging
- PDH, Pyruvate dehydrogenase
- Pyruvate dehydrogenase complex
- WES, Whole Exome Sequencing
- αKGDH, alpha-ketoglutarate dehydrogenase
Collapse
Affiliation(s)
- Anar Alfarsi
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Seham Alameer
- King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Jeddah, Saudi Arabia
| | - Amal Alhashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,Department of Anatomy and Cell biology, college of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Faroug Ababneh
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ahmed Al Fares
- King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Division of Translational Pathology, Department of Pathology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pediatrics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Fuad Al Mutairi
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Pavlu-Pereira H, Lousa D, Tomé CS, Florindo C, Silva MJ, de Almeida IT, Leandro P, Rivera I, Vicente JB. Structural and functional impact of clinically relevant E1α variants causing pyruvate dehydrogenase complex deficiency. Biochimie 2021; 183:78-88. [PMID: 33588022 DOI: 10.1016/j.biochi.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/19/2023]
Abstract
Pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-coenzyme A, hinging glycolysis and the tricarboxylic acid cycle. PDC deficiency, an inborn error of metabolism, has a broad phenotypic spectrum. Symptoms range from fatal lactic acidosis or progressive neuromuscular impairment in the neonatal period, to chronic neurodegeneration. Most disease-causing mutations in PDC deficiency affect the PDHA1 gene, encoding the α subunit of the PDC-E1 component. Detailed biophysical analysis of pathogenic protein variants is a challenging approach to support the design of therapies based on improving and correcting protein structure and function. Herein, we report the characterization of clinically relevant PDC-E1α variants identified in Portuguese PDC deficient patients. These variants bear amino acid substitutions in different structural regions of PDC-E1α. The structural and functional analyses of recombinant heterotetrameric (αα'ββ') PDC-E1 variants, combined with molecular dynamics (MD) simulations, show a limited impact of the amino acid changes on the conformational stability, apart from the increased propensity for aggregation of the p.R253G variant as compared to wild-type PDC-E1. However, all variants presented a functional impairment in terms of lower residual PDC-E1 enzymatic activity and ≈3-100 × lower affinity for the thiamine pyrophosphate (TPP) cofactor, in comparison with wild-type PDC-E1. MD simulations neatly showed generally decreased stability (increased flexibility) of all variants with respect to the WT heterotetramer, particularly in the TPP binding region. These results are discussed in light of disease severity of the patients bearing such mutations and highlight the difficulty of developing chaperone-based therapies for PDC deficiency.
Collapse
Affiliation(s)
- Hana Pavlu-Pereira
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina S Tomé
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Florindo
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Tavares de Almeida
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Isabel Rivera
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
25
|
Beck M. Clinical Manifestation in Females with X-linked Metabolic Disorders: Genetic and Pathophysiological Considerations. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|