1
|
Dong J, Tong W, Liu M, Liu M, Liu J, Jin X, Chen J, Jia H, Gao M, Wei M, Duan Y, Zhong X. Endosomal traffic disorders: a driving force behind neurodegenerative diseases. Transl Neurodegener 2024; 13:66. [PMID: 39716330 DOI: 10.1186/s40035-024-00460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Endosomes are crucial sites for intracellular material sorting and transportation. Endosomal transport is a critical process involved in the selective uptake, processing, and intracellular transport of substances. The equilibrium between endocytosis and circulation mediated by the endosome-centered transport pathway plays a significant role in cell homeostasis, signal transduction, and immune response. In recent years, there have been hints linking endosomal transport abnormalities to neurodegenerative diseases, including Alzheimer's disease. Nonetheless, the related mechanisms remain unclear. Here, we provide an overview of endosomal-centered transport pathways and highlight potential physiological processes regulated by these pathways, with a particular focus on the correlation of endosomal trafficking disorders with common pathological features of neurodegenerative diseases. Additionally, we summarize potential therapeutic agents targeting endosomal trafficking for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Weifang Hospital of Traditional Chinese Medicine, Weifang, 261000, China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110069, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jinyue Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110167, China.
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shenyang, 110005, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Bhardwaj K, Jha A, Roy A, Kumar H. The crucial role of VPS35 and SHH in Parkinson's disease: Understanding the mechanisms behind the neurodegenerative disorder. Brain Res 2024; 1845:149204. [PMID: 39197569 DOI: 10.1016/j.brainres.2024.149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Parkinson's disease (PD) is indeed a complex neurodegenerative disorder recognized by the progressive depletion of dopaminergic neurons in the brain, particularly in the substantia nigra region, leading to motor impairments and other symptoms. But at the molecular level, the study about PD still lacks. As the number of cases worldwide continues to increase, it is critical to focus on the cellular and molecular mechanisms of the disease's presentation and neurodegeneration to develop novel therapeutic approaches. At the molecular level, the complexity is more due to the involvement of vacuolar protein sorting 35 (VPS35) and sonic hedgehog (SHH) signaling in PD (directly or indirectly), leading to one of the most prominent hallmarks of the disease, which is an accumulation of α-synuclein. This elevated pathogenesis may result from impaired autophagy due to mutation in the case of VPS35 and impairment in SHH signaling at the molecular level. The traditional understanding of PD is marked by the disruption of dopaminergic neurons and dopaminergic signaling, which exacerbates symptoms of motor function deficits. However, the changes at the molecular level that are being disregarded also impact the overall health of the dopaminergic system. Gaining insight into these two unique mechanisms is essential to determine whether they give neuroprotection or have no effect on the health of neurons. Hence, here we tried to simplify the understanding of the role of VPS35 and SHH signaling to comprehend it in one direction.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akanksha Jha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
3
|
Qiu Z, Deng X, Fu Y, Jiang M, Cui X. Exploring the triad: VPS35, neurogenesis, and neurodegenerative diseases. J Neurochem 2024; 168:2363-2378. [PMID: 39022884 DOI: 10.1111/jnc.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Vacuolar protein sorting 35 (VPS35), a critical component of the retromer complex, plays a pivotal role in the pathogenesis of neurodegenerative diseases (NDs). It is involved in protein transmembrane sorting, facilitating the transport from endosomes to the trans-Golgi network (TGN) and plasma membrane. Recent investigations have compellingly associated mutations in the VPS35 gene with neurodegenerative disorders such as Parkinson's and Alzheimer's disease. These genetic alterations are implicated in protein misfolding, disrupted autophagic processes, mitochondrial dysregulation, and synaptic impairment. Furthermore, VPS35 exerts a notable impact on neurogenesis by influencing neuronal functionality, protein conveyance, and synaptic performance. Dysregulation or mutation of VPS35 may escalate the progression of neurodegenerative conditions, underscoring its pivotal role in safeguarding neuronal integrity. This review comprehensively discusses the role of VPS35 and its functional impairments in NDs. Furthermore, we provide an overview of the impact of VPS35 on neurogenesis and further explore the intricate relationship between neurogenesis and NDs. These research advancements offer novel perspectives and valuable insights for identifying potential therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
- School of Medicine, Kashi University, Xinjiang, China
| |
Collapse
|
4
|
Yoshida S, Hasegawa T, Nakamura T, Sato K, Sugeno N, Ishiyama S, Sekiguchi K, Tobita M, Takeda A, Aoki M. Dysregulation of SNX1-retromer axis in pharmacogenetic models of Parkinson's disease. Cell Death Discov 2024; 10:290. [PMID: 38886344 PMCID: PMC11183211 DOI: 10.1038/s41420-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Since the identification of vacuolar protein sorting (VPS) 35, as a causative molecule for familial Parkinson's disease (PD), retromer-mediated endosomal machinery has been a rising factor in the pathogenesis of the disease. The retromer complex cooperates with sorting nexin (SNX) dimer and DNAJC13, another causal molecule in PD, to transport cargoes from endosomes to the trans-Golgi network, and is also involved in mitochondrial dynamics and autophagy. Retromer dysfunction may induce neuronal death leading to PD via several biological cascades, including misfolded, insoluble α-synuclein (aS) accumulation and mitochondrial dysfunction; however, the detailed mechanisms remain poorly understood. In this study, we showed that the stagnation of retromer-mediated retrograde transport consistently occurs in different PD-mimetic conditions, i.e., overexpression of PD-linked mutant DNAJC13, excess aS induction, or toxin-induced mitochondrial dysfunction. Mechanistically, DNAJC13 was found to be involved in clathrin-dependent retromer transport as a functional modulator of SNX1 together with heat shock cognate 70 kDa protein (Hsc70), which was controlled by the binding and dissociation of DNAJC13 and SNX1 in an Hsc70 activity-dependent manner. In addition, excess amount of aS decreased the interaction between SNX1 and VPS35, the core component of retromer. Furthermore, R33, a pharmacological retromer chaperone, reduced insoluble aS and mitigated rotenone-induced neuronal apoptosis. These findings suggest that retrograde transport regulated by SNX1-retromer may be profoundly involved in the pathogenesis of PD and is a potential target for disease-modifying therapy for the disease.
Collapse
Grants
- 20K07896 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K06823 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K16998 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K14769 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20K07862 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K19557 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
- Department of Neurology, NHO Yonezawa National Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan.
- Department of Neurology, NHO Sendai-Nishitaga Hospital, Sendai, Miyagi, 982-8555, Japan.
| | - Takaaki Nakamura
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
- Department of Neurology, NHO Miyagi National Hospital, Watari, Miyagi, 989-2202, Japan
| | - Kazuki Sato
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shun Ishiyama
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Muneshige Tobita
- Department of Neurology, NHO Yonezawa National Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Atsushi Takeda
- Department of Neurology, NHO Sendai-Nishitaga Hospital, Sendai, Miyagi, 982-8555, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
5
|
Rowlands J, Moore DJ. VPS35 and retromer dysfunction in Parkinson's disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220384. [PMID: 38368930 PMCID: PMC10874700 DOI: 10.1098/rstb.2022.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
The vacuolar protein sorting 35 ortholog (VPS35) gene encodes a core component of the retromer complex essential for the endosomal sorting and recycling of transmembrane cargo. Endo-lysosomal pathway deficits are suggested to play a role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Mutations in VPS35 cause a late-onset, autosomal dominant form of PD, with a single missense mutation (D620N) shown to segregate with disease in PD families. Understanding how the PD-linked D620N mutation causes retromer dysfunction will provide valuable insight into the pathophysiology of PD and may advance the identification of therapeutics. D620N VPS35 can induce LRRK2 hyperactivation and impair endosomal recruitment of the WASH complex but is also linked to mitochondrial and autophagy-lysosomal pathway dysfunction and altered neurotransmitter receptor transport. The clinical similarities between VPS35-linked PD and sporadic PD suggest that defects observed in cellular and animal models with the D620N VPS35 mutation may provide valuable insights into sporadic disease. In this review, we highlight the current knowledge surrounding VPS35 and its role in retromer dysfunction in PD. We provide a critical discussion of the mechanisms implicated in VPS35-mediated neurodegeneration in PD, as well as the interplay between VPS35 and other PD-linked gene products. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Jordan Rowlands
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|