1
|
Aliakbari M, Karkhane AA. In vivo cloning of PCR product via site-specific recombination in Escherichia coli. Appl Microbiol Biotechnol 2024; 108:400. [PMID: 38951186 PMCID: PMC11217044 DOI: 10.1007/s00253-024-13239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Over the past years, several methods have been developed for gene cloning. Choosing a cloning strategy depends on various factors, among which simplicity and affordability have always been considered. The aim of this study, on the one hand, is to simplify gene cloning by skipping in vitro assembly reactions and, on the other hand, to reduce costs by eliminating relatively expensive materials. We investigated a cloning system using Escherichia coli harboring two plasmids, pLP-AmpR and pScissors-CmR. The pLP-AmpR contains a landing pad (LP) consisting of two genes (λ int and λ gam) that allow the replacement of the transformed linear DNA using site-specific recombination. After the replacement process, the inducible expressing SpCas9 and specific sgRNA from the pScissors-CmR (CRISPR/Cas9) vector leads to the removal of non-recombinant pLP-AmpR plasmids. The function of LP was explored by directly transforming PCR products. The pScissors-CmR plasmid was evaluated for curing three vectors, including the origins of pBR322, p15A, and pSC101. Replacing LP with a PCR product and fast-eradicating pSC101 origin-containing vectors was successful. Recombinant colonies were confirmed following gene replacement and plasmid curing processes. The results made us optimistic that this strategy may potentially be a simple and inexpensive cloning method. KEY POINTS: •The in vivo cloning was performed by replacing the target gene with the landing pad. •Fast eradication of non-recombinant plasmids was possible by adapting key vectors. •This strategy is not dependent on in vitro assembly reactions and expensive materials.
Collapse
Affiliation(s)
- Moein Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
2
|
Rysiewicz B, Błasiak E, Dziedzicka-Wasylewska M, Polit A. The polybasic region in Gαi proteins: Relevant or not? Insights from Gαi 3 research. Cell Signal 2024; 118:111138. [PMID: 38467243 DOI: 10.1016/j.cellsig.2024.111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Heterotrimeric G proteins are responsible for signal transduction from G-protein-coupled receptors (GPCRs) to intracellular effectors. This process is only possible when G proteins are located on the inner side of the cell membrane due to the specific localization of GPCR receptors. The Gα subunit is directed to the cell membrane through several signals, including modification by fatty acid moieties, interaction with the Gβγ complex, and, as observed in some Gα proteins, the presence of basic amino acid residues in the N-terminal region. In this work, we focused on investigating the influence of the polybasic region on the localization and function of a representative member of the Gαi family, Gαi3. Through the use of confocal microscopy and fluorescence lifetime microscopy, we showed that, in the case of this protein, neutralizing the positive charge does not significantly affect its abundance in the cell membrane. However, it does affect its spatial arrangement concerning the dopamine D2 receptor and influences inhibitory effect of Gαi3 on intracellular cAMP production triggered by D2 receptor stimulation. Moreover, in this work, we have shown, for the first time, that nonlipidated Gαi3 binds to negatively charged lipids through electrostatic interactions, and membrane fluidity plays a significant role in this interaction.
Collapse
Affiliation(s)
- Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Rysiewicz B, Błasiak E, Mystek P, Dziedzicka-Wasylewska M, Polit A. Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi 3 heterotrimers. Cell Commun Signal 2023; 21:279. [PMID: 37817242 PMCID: PMC10566112 DOI: 10.1186/s12964-023-01307-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Specific interactions between G protein-coupled receptors (GPCRs) and G proteins play a key role in mediating signaling events. While there is little doubt regarding receptor preference for Gα subunits, the preferences for specific Gβ and Gγ subunits and the effects of different Gβγ dimer compositions on GPCR signaling are poorly understood. In this study, we aimed to investigate the subcellular localization and functional response of Gαi3-based heterotrimers with different combinations of Gβ and Gγ subunits. METHODS Live-cell imaging microscopy and colocalization analysis were used to investigate the subcellular localization of Gαi3 in combination with Gβ1 or Gβ2 heterotrimers, along with representative Gγ subunits. Furthermore, fluorescence lifetime imaging microscopy (FLIM-FRET) was used to investigate the nanoscale distribution of Gαi3-based heterotrimers in the plasma membrane, specifically with the dopamine D2 receptor (D2R). In addition, the functional response of the system was assessed by monitoring intracellular cAMP levels and conducting bioinformatics analysis to further characterize the heterotrimer complexes. RESULTS Our results show that Gαi3 heterotrimers mainly localize to the plasma membrane, although the degree of colocalization is influenced by the accompanying Gβ and Gγ subunits. Heterotrimers containing Gβ2 showed slightly lower membrane localization compared to those containing Gβ1, but certain combinations, such as Gαi3β2γ8 and Gαi3β2γ10, deviated from this trend. Examination of the spatial arrangement of Gαi3 in relation to D2R and of changes in intracellular cAMP level showed that the strongest functional response is observed for those trimers for which the distance between the receptor and the Gα subunit is smallest, i.e. complexes containing Gβ1 and Gγ8 or Gγ10 subunit. Deprivation of Gαi3 lipid modifications resulted in a significant decrease in the amount of protein present in the cell membrane, but did not always affect intracellular cAMP levels. CONCLUSION Our studies show that the composition of G protein heterotrimers has a significant impact on the strength and specificity of GPCR-mediated signaling. Different heterotrimers may exhibit different conformations, which further affects the interactions of heterotrimers and GPCRs, as well as their interactions with membrane lipids. This study contributes to the understanding of the complex signaling mechanisms underlying GPCR-G-protein interactions and highlights the importance of the diversity of Gβ and Gγ subunits in G-protein signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Huttanus HM, Triola EKH, Velasquez-Guzman JC, Shin SM, Granja-Travez RS, Singh A, Dale T, Jha RK. Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations. Front Bioeng Biotechnol 2023; 11:1202388. [PMID: 37545889 PMCID: PMC10400447 DOI: 10.3389/fbioe.2023.1202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/25/2023] [Indexed: 08/08/2023] Open
Abstract
Targeted mutagenesis of a promoter or gene is essential for attaining new functions in microbial and protein engineering efforts. In the burgeoning field of synthetic biology, heterologous genes are expressed in new host organisms. Similarly, natural or designed proteins are mutagenized at targeted positions and screened for gain-of-function mutations. Here, we describe methods to attain complete randomization or controlled mutations in promoters or genes. Combinatorial libraries of one hundred thousands to tens of millions of variants can be created using commercially synthesized oligonucleotides, simply by performing two rounds of polymerase chain reactions. With a suitably engineered reporter in a whole cell, these libraries can be screened rapidly by performing fluorescence-activated cell sorting (FACS). Within a few rounds of positive and negative sorting based on the response from the reporter, the library can rapidly converge to a few optimal or extremely rare variants with desired phenotypes. Library construction, transformation and sequence verification takes 6-9 days and requires only basic molecular biology lab experience. Screening the library by FACS takes 3-5 days and requires training for the specific cytometer used. Further steps after sorting, including colony picking, sequencing, verification, and characterization of individual clones may take longer, depending on number of clones and required experiments.
Collapse
Affiliation(s)
- Herbert M. Huttanus
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Ellin-Kristina H. Triola
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Jeanette C. Velasquez-Guzman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Rommel S. Granja-Travez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Anmoldeep Singh
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| |
Collapse
|
5
|
Liu Y, Liu Z, Guo Z, Yan T, Jin C, Wu J. Enhancement of the degradation capacity of IsPETase for PET plastic degradation by protein engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:154947. [PMID: 35367265 DOI: 10.1016/j.scitotenv.2022.154947] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
The enormous waste of polyethylene terephthalate (PET) plastic has a great negative impact on the ecological environment because of its chemical inertia. To reduce the environmental threat posed by PET plastic, researchers gradually concentrate on the biodegradation of PET plastic. In this study, DuraPETaseN233C/S282C/H214S/S245R (DuraPETase-4M) was designed through protein engineering, which can be used to improve the efficiency of PET plastic biodegradation. Based on the DuraPETase, a pair of disulfide bonds (N233C/S282C) was added to improve the thermal stability. Meanwhile, the key region flexibility adjustment (H214S) was proposed to enhance the biodegradation capacity of PET plastic. Additionally, protein surface electrostatic charge optimization (S245R) was adopted to improve the binding ability between enzyme and PET plastic. Based on molecular dynamic simulations (MDs), the rationality of the design was further verified. This study provides a strategy for obtaining high-efficiency PET degradation mutants and a new possibility of environmentally friendly plastic degradation.
Collapse
Affiliation(s)
- Yidi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Changxu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
6
|
Jajesniak P, Tee KL, Wong TS. Rapid Cloning of Random Mutagenesis Libraries Using PTO-QuickStep. Methods Mol Biol 2022; 2461:123-135. [PMID: 35727447 DOI: 10.1007/978-1-0716-2152-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PTO-QuickStep is a quick and easy molecular cloning technique that allows seamless point integration of a DNA fragment, encoding either a tag or a protein, into any position within a target plasmid. The entire process is conducted in a time-efficient and cost-effective manner, without the need of DNA gel purification and enzymatic restriction and ligation. PTO-QuickStep further innovates protein engineering by providing the possibility of integrating a random mutagenesis step (e.g., error-prone PCR) into the workflow, without compromising the time duration required. Random mutagenesis libraries can be quickly and efficiently cloned into a plasmid of interest, thereby accelerating directed evolution. On top of that, PTO-QuickStep can be utilized for rapid integration of noncoding DNA fragments to modify existing plasmids, making it an excellent tool for synthetic biologists.
Collapse
Affiliation(s)
- Pawel Jajesniak
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre, University of Sheffield, Sheffield, England, UK
| | - Kang Lan Tee
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre, University of Sheffield, Sheffield, England, UK
| | - Tuck Seng Wong
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre, University of Sheffield, Sheffield, England, UK.
| |
Collapse
|
7
|
Mulyanti D, Soewandhi SN, Riani C. Insertion of prpoD_rpoS fragment enhances expression of recombinant protein by dps auto-inducible promoter in Escherichia coli. Mol Biol Rep 2021; 48:5833-5845. [PMID: 34342815 DOI: 10.1007/s11033-021-06562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nowadays, recombinant therapeutic proteins have been widely produced and consumed. For the safety and effectiveness of the protein production, an auto-inducible expression vector is required to replace inducer interference, which is uneconomic and could be harmful. In this research, an auto-inducible expression plasmid, pCAD2_sod (a pBR322 derivate plasmid), which was under dps (RpoS-dependent gene) promoter control, was modified to provide RpoS at earlier phase. Hence, accumulates more target protein and resulting a new plasmid, pCAD2+_sod. pCAD2_sod had been constructed to automatically induces the expression of recombinant superoxide dismutase (SOD) from Staphylococcus equorum (rMnSODSeq) in the stationary growth phase of Escherichia coli. This work aimed to obtain pCAD2+_sod and determine the expression level of rMnSODSeq on mRNA and protein level. METHOD AND RESULTS A synthetic rpoS coding region under rpoD promoter control (prpoD_rpoS) was inserted to pCAD2_sod and generated pCAD2+_sod. The rMnSODSeq (24.3 kDa) produced from pCAD2+_sod was ~ 1.5 fold higher at 37 °C and more intense at 43 °C compared to that from pCAD2_sod, likewise shifted to earlier phase (after 1 h of incubation), as shown in the SDS-PAGE. The dismutase activity was also retained after zymography assay. The mRNA level from pCAD2+_sod was determined by qPCR and gave quantification cycle (Cq) values of cDNA lowest among others. It made the relative quantification (RQ) of the mRNA expression towards rho reference gene were high. CONCLUSIONS The prpoD_rpoS insertion shifts and increases the rMnSODSeq production from stationary to exponential phase. The pCAD2+_sod plasmid is potential for further recombinant protein productions.
Collapse
Affiliation(s)
- Dina Mulyanti
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia.,Department of Pharmacy, Bandung Islamic University, Ranggagading 8, Bandung, 40116, Indonesia
| | | | - Catur Riani
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|
8
|
Identification of the contact region responsible for the formation of the homomeric CYP1A2•CYP1A2 complex. Biochem J 2021; 478:2163-2178. [PMID: 34032264 DOI: 10.1042/bcj20210269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Previous studies showed that cytochrome P450 1A2 (CYP1A2) forms a homomeric complex that influences its metabolic characteristics. Specifically, CYP1A2 activity exhibits a sigmoidal response as a function of NADPH-cytochrome P450 reductase (POR) concentration and is consistent with an inhibitory CYP1A2•CYP1A2 complex that is disrupted by increasing [POR] (Reed et al. (2012) Biochem. J. 446, 489-497). The goal of this study was to identify the CYP1A2 contact regions involved in homomeric complex formation. Examination of X-ray structure of CYP1A2 implicated the proximal face in homomeric complex formation. Consequently, the involvement of residues L91-K106 (P1 region) located on the proximal face of CYP1A2 was investigated. This region was replaced with the homologous region of CYP2B4 (T81-S96) and the protein was expressed in HEK293T/17 cells. Complex formation and its disruption was observed using bioluminescence resonance energy transfer (BRET). The P1-CYP1A2 (CYP1A2 with the modified P1 region) exhibited a decreased BRET signal as compared with wild-type CYP1A2 (WT-CYP1A2). On further examination, P1-CYP1A2 was much less effective at disrupting the CYP1A2•CYP1A2 homomeric complex, when compared with WT-CYP1A2, thereby demonstrating impaired binding of P1-CYP1A2 to WT-CYP1A2 protein. In contrast, the P1 substitution did not affect its ability to form a heteromeric complex with CYP2B4. P1-CYP1A2 also showed decreased activity as compared with WT-CYP1A2, which was consistent with a decrease in the ability of P1-CYP1A2 to associate with WT-POR, again implicating the P1 region in POR binding. These results indicate that the contact region responsible for the CYP1A2•CYP1A2 homomeric complex resides in the proximal region of the protein.
Collapse
|
9
|
Abstract
As the GroES/GroEL chaperonin system is the only bacterial chaperone that is essential under all conditions, we have been interested in the development of GroES/GroEL inhibitors as potential antibiotics. Using Escherichia coli GroES/GroEL as a surrogate, we have discovered several classes of GroES/GroEL inhibitors that show potent antibacterial activity against both Gram-positive and Gram-negative bacteria. However, it remains unknown if E. coli GroES/GroEL is functionally identical to other GroES/GroEL chaperonins and hence if our inhibitors will function against other chaperonins. Herein we report our initial efforts to characterize the GroES/GroEL chaperonins from clinically significant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). We used complementation experiments in GroES/GroEL-deficient and -null E. coli strains to report on exogenous ESKAPE chaperone function. In GroES/GroEL-deficient (but not knocked-out) E. coli, we found that only a subset of the ESKAPE GroES/GroEL chaperone systems could complement to produce a viable organism. Surprisingly, GroES/GroEL chaperone systems from two of the ESKAPE pathogens were found to complement in E. coli, but only in the strict absence of either E. coli GroEL (P. aeruginosa) or both E. coli GroES and GroEL (E. faecium). In addition, GroES/GroEL from S. aureus was unable to complement E. coli GroES/GroEL under all conditions. The resulting viable strains, in which E. coli groESL was replaced with ESKAPE groESL, demonstrated similar growth kinetics to wild-type E. coli, but displayed an elongated phenotype (potentially indicating compromised GroEL function) at some temperatures. These results suggest functional differences between GroES/GroEL chaperonins despite high conservation of amino acid identity.IMPORTANCE The GroES/GroEL chaperonin from E. coli has long served as the model system for other chaperonins. This assumption seemed valid because of the high conservation between the chaperonins. It was, therefore, shocking to discover ESKAPE pathogen GroES/GroEL formed mixed-complex chaperonins in the presence of E. coli GroES/GroEL, leading to loss of organism viability in some cases. Complete replacement of E. coli groESL with ESKAPE groESL restored organism viability, but produced an elongated phenotype, suggesting differences in chaperonin function, including client specificity and/or refolding cycle rates. These data offer important mechanistic insight into these remarkable machines, and the new strains developed allow for the synthesis of homogeneous chaperonins for biochemical studies and to further our efforts to develop chaperonin-targeted antibiotics.
Collapse
|
10
|
Jajesniak P, Tee KL, Wong TS. PTO-QuickStep: A Fast and Efficient Method for Cloning Random Mutagenesis Libraries. Int J Mol Sci 2019; 20:ijms20163908. [PMID: 31405219 PMCID: PMC6720219 DOI: 10.3390/ijms20163908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
QuickStep is a cloning method that allows seamless point integration of a DNA sequence at any position within a target plasmid using only Q5 High-Fidelity DNA Polymerase and DpnI endonuclease. This efficient and cost-effective method consists of two steps: two parallel asymmetric PCRs, followed by a megaprimer-based whole-plasmid amplification. To further simplify the workflow, enhance the efficiency, and increase the uptake of QuickStep, we replaced the asymmetric PCRs with a conventional PCR that uses phosphorothioate (PTO) oligos to generate megaprimers with 3' overhangs. The ease and speed of PTO-QuickStep were demonstrated through (1) right-first-time cloning of a 1.8 kb gene fragment into a pET vector and (2) creating a random mutagenesis library for directed evolution. Unlike most ligation-free random mutagenesis library creation methods (e.g., megaprimer PCR of whole plasmid [MEGAWHOP]), PTO-QuickStep does not require the gene of interest to be precloned into an expression vector to prepare a random mutagenesis library. Therefore, PTO-QuickStep is a simple, reliable, and robust technique, adding to the ever-expanding molecular toolbox of synthetic biology and expediting protein engineering via directed evolution.
Collapse
Affiliation(s)
- Pawel Jajesniak
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Kang Lan Tee
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
11
|
Ortega C, Abreu C, Oppezzo P, Correa A. Overview of High-Throughput Cloning Methods for the Post-genomic Era. Methods Mol Biol 2019; 2025:3-32. [PMID: 31267446 DOI: 10.1007/978-1-4939-9624-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The advent of new DNA sequencing technologies leads to a dramatic increase in the number of available genome sequences and therefore of target genes with potential for functional analysis. The insertion of these sequences into proper expression vectors requires a simple an efficient cloning method. In addition, when expressing a target protein, quite often it is necessary to evaluate different DNA constructs to achieve a soluble and homogeneous expression of the target with satisfactory yields. The development of new molecular methods made possible the cloning of a huge number of DNA sequences in a high-throughput manner, necessary for meeting the increasing demands for soluble protein expression and characterization. In this chapter several molecular methods suitable for high-throughput cloning are reviewed.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular, Cellular and Animal Technology Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
12
|
Ortega C, Prieto D, Abreu C, Oppezzo P, Correa A. Multi-Compartment and Multi-Host Vector Suite for Recombinant Protein Expression and Purification. Front Microbiol 2018; 9:1384. [PMID: 29997597 PMCID: PMC6030378 DOI: 10.3389/fmicb.2018.01384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Recombinant protein expression has become an invaluable tool in basic and applied research. The accumulated knowledge in this field allowed the expression of thousands of protein targets in a soluble, pure, and homogeneous state, essential for biochemical and structural analyses. A lot of progress has been achieved in the last decades, where challenging proteins were expressed in a soluble manner after evaluating different parameters such as host, strain, and fusion partner or promoter strength, among others. In this regard, we have previously developed a vector suite that allows the evaluation of different promoters and solubility enhancer-proteins, through an easy and efficient cloning strategy. Nonetheless, the proper expression of many targets remains elusive, requiring, for example, the addition of complex post-translation modifications and/or passage through specialized compartments. In order to overcome the limitations found when working with a single subcellular localization and a single host type, we herein expanded our previously developed vector suite to include the evaluation of recombinant protein expression in different cell compartments and cell hosts. In addition, these vectors also allow the assessment of alternative purification strategies for the improvement of target protein yields.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Daniel Prieto
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Abreu
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
13
|
Abstract
QuickStep-Cloning is a novel molecular cloning technique that builds upon the concepts of asymmetric PCR and megaprimer-based amplification of whole plasmid. It was designed specifically to address the major drawbacks of previously reported cloning methods. The fully optimized protocol allows for a seamless integration of a long DNA fragment into any position within a plasmid of choice, in a time-efficient and cost-effective manner, without the need of a tedious DNA gel purification, a restriction digestion, and an enzymatic ligation. QuickStep-Cloning can be completed in less than 6 h, significantly faster than most of the existing cloning methods, while retaining high efficiency.
Collapse
|