1
|
Liu Z, Wang L, Wu P, Yuan L. Precision tumor treatment utilizing bacteria: principles and future perspectives. Appl Microbiol Biotechnol 2025; 109:2. [PMID: 39754636 DOI: 10.1007/s00253-024-13378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025]
Abstract
Bacteria-based tumor therapy, which releases therapeutic payloads or remodels the tumor's immune-suppressive microenvironment and directly kills tumor cells or initiates an anti-tumor immune response, is recently recognized as a promising strategy. Bacteria could be endowed with the capacities of tumor targeting, tumor cell killing, and anti-tumor immune activating by established gene engineering. Furthermore, the integration of synthetic biology and nanomedicine into these engineered bacteria could further enhance their efficacy and controllability. This comprehensive review systematically elucidates the classification and mechanisms of bacterial gene expression induction systems, as well as strategies for constructing bacterial-nanomaterial nanobiohybrids. The review concludes by highlighting the challenges associated with quality control and regulation of bacteria-based tumor therapy while also providing insights into the future prospects of this therapeutic technology. KEY POINTS: • A comprehensive overview of the current status of research on bacteria-based tumor therapy. • The classification and mechanisms of bacterial gene expression induction systems are summarized. • The challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Zhaoyou Liu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Lantian Wang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Pengying Wu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Lijun Yuan
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
2
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Lara AR, Utrilla J, Martínez LM, Krausch N, Kaspersetz L, Hidalgo D, Cruz-Bournazou N, Neubauer P, Sigala JC, Gosset G, Büchs J. Recombinant protein expression in proteome-reduced cells under aerobic and oxygen-limited regimes. Biotechnol Bioeng 2024; 121:1216-1230. [PMID: 38178599 DOI: 10.1002/bit.28645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/18/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Industrial cultures are hindered by the physiological complexity of the host and the limited mass transfer capacity of conventional bioreactors. In this study, a minimal cell approach was combined with genetic devices to overcome such issues. A flavin mononucleotide-based fluorescent protein (FbFP) was expressed in a proteome-reduced Escherichia coli (PR). When FbFP was expressed from a constitutive protein generator (CPG), the PR strain produced 47% and 35% more FbFP than its wild type (WT), in aerobic or oxygen-limited regimes, respectively. Metabolic and expression models predicted more efficient biomass formation at higher fluxes to FbFP, in agreement with these results. A microaerobic protein generator (MPG) and a microaerobic transcriptional cascade (MTC) were designed to induce FbFP expression upon oxygen depletion. The FbFP fluorescence using the MTC in the PR strain was 9% higher than that of the WT bearing the CPG under oxygen limitation. To further improve the PR strain, the pyruvate dehydrogenase complex regulator gene was deleted, and the Vitreoscilla hemoglobin was expressed. Compared to oxygen-limited cultures of the WT, the engineered strains increased the FbFP expression more than 50% using the MTC. Therefore, the designed expression systems can be a valuable alternative for industrial cultivations.
Collapse
Affiliation(s)
- Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Jose Utrilla
- Synthetic Biology Program, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Luz María Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Niels Krausch
- Chair of Bioprocess Engineering, Technische Universität Berlin, Berlin, Germany
| | - Lucas Kaspersetz
- Chair of Bioprocess Engineering, Technische Universität Berlin, Berlin, Germany
| | - David Hidalgo
- Synthetic Biology Program, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Peter Neubauer
- Chair of Bioprocess Engineering, Technische Universität Berlin, Berlin, Germany
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Thakker DP, Narayanan R. Arginine deiminase produced by lactic acid bacteria as a potent anti-cancer drug. Med Oncol 2023; 40:175. [PMID: 37171497 DOI: 10.1007/s12032-023-02043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
Bacterial-based cancer immunotherapy has recently gained widespread attention due to its exceptional mechanism of rich pathogen-associated molecular patterns in anti-cancer immune responses. Contrary to conventional cancer therapies such as surgery, chemotherapy, radiation and phototherapy, bacteria-based cancer immunotherapy has the unique ability to suppress cancer by selectively accumulating and growing in tumours. In the view of this, several bacterial strains are being used for the treatment of cancer. Of which, lactic acid bacteria are a powerful, albeit still inadequately understood bacteria that possess a wide source of bioactive chemicals. Lactic acid bacteria metabolites, such as bacteriocins, short-chain fatty acids, exopolysaccharides show antitumour property. Amino acid pathways, which have lately been focussed as a new strategy to cancer therapy, are key element of the adaptability and dysregulation of metabolic pathways identified in proliferation of tumour cells. Arginine metabolism, in particular, has been shown to be critical for cancer therapy. As a result, better understanding of arginine metabolism in LAB and cancer cells could lead to new cancer therapeutic targets. This review will outline current advances in the interaction of arginine metabolism with cancer therapy and propose an arginine deiminase expression system to combat cancer more effectively.
Collapse
Affiliation(s)
- Darshali P Thakker
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India
| | - Rajnish Narayanan
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Liu Y, Niu L, Li N, Wang Y, Liu M, Su X, Bao X, Yin B, Shen S. Bacterial-Mediated Tumor Therapy: Old Treatment in a New Context. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205641. [PMID: 36908053 PMCID: PMC10131876 DOI: 10.1002/advs.202205641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Targeted therapy and immunotherapy have brought hopes for precision cancer treatment. However, complex physiological barriers and tumor immunosuppression result in poor efficacy, side effects, and resistance to antitumor therapies. Bacteria-mediated antitumor therapy provides new options to address these challenges. Thanks to their special characteristics, bacteria have excellent ability to destroy tumor cells from the inside and induce innate and adaptive antitumor immune responses. Furthermore, bacterial components, including bacterial vesicles, spores, toxins, metabolites, and other active substances, similarly inherit their unique targeting properties and antitumor capabilities. Bacteria and their accessory products can even be reprogrammed to produce and deliver antitumor agents according to clinical needs. This review first discusses the role of different bacteria in the development of tumorigenesis and the latest advances in bacteria-based delivery platforms and the existing obstacles for application. Moreover, the prospect and challenges of clinical transformation of engineered bacteria are also summarized.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repairand Regeneration of Ministry of EducationOrthopaedic Department of Tongji Hospital, The Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Lili Niu
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Nannan Li
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Yang Wang
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xiaomin Su
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Xuhui Bao
- Institute for Therapeutic Cancer VaccinesFudan University Pudong Medical CenterShanghai201399China
| | - Bo Yin
- Institute for Therapeutic Cancer Vaccines and Department of OncologyFudan University Pudong Medical CenterShanghai201399China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| |
Collapse
|
6
|
Recent Advances in Bacteria-Based Cancer Treatment. Cancers (Basel) 2022; 14:cancers14194945. [PMID: 36230868 PMCID: PMC9563255 DOI: 10.3390/cancers14194945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancer refers to a disease involving abnormal cells that proliferate uncontrollably and can invade normal body tissue. It was estimated that at least 9 million patients are killed by cancer annually. Recent studies have demonstrated that bacteria play a significant role in cancer treatment and prevention. Owing to its unique mechanism of abundant pathogen-associated molecular patterns in antitumor immune responses and preferentially accumulating and proliferating within tumors, bacteria-based cancer immunotherapy has recently attracted wide attention. We aim to illustrate that naïve bacteria and their components can serve as robust theranostic agents for cancer eradication. In addition, we summarize the recent advances in efficient antitumor treatments by genetically engineering bacteria and bacteria-based nanoparticles. Further, possible future perspectives in bacteria-based cancer immunotherapy are also inspected. Abstract Owing to its unique mechanism of abundant pathogen-associated molecular patterns in antitumor immune responses, bacteria-based cancer immunotherapy has recently attracted wide attention. Compared to traditional cancer treatments such as surgery, chemotherapy, radiotherapy, and phototherapy, bacteria-based cancer immunotherapy exhibits the versatile capabilities for suppressing cancer thanks to its preferentially accumulating and proliferating within tumors. In particular, bacteria have demonstrated their anticancer effect through the toxins, and other active components from the cell membrane, cell wall, and dormant spores. More importantly, the design of engineering bacteria with detoxification and specificity is essential for the efficacy of bacteria-based cancer therapeutics. Meanwhile, bacteria can deliver the cytokines, antibody, and other anticancer theranostic nanoparticles to tumor microenvironments by regulating the expression of the bacterial genes or chemical and physical loading. In this review, we illustrate that naïve bacteria and their components can serve as robust theranostic agents for cancer eradication. In addition, we summarize the recent advances in efficient antitumor treatments by genetically engineering bacteria and bacteria-based nanoparticles. Further, possible future perspectives in bacteria-based cancer immunotherapy are also inspected.
Collapse
|
7
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
8
|
Samadi M, Majidzadeh-A K, Salehi M, Jalili N, Noorinejad Z, Mosayebzadeh M, Muhammadnejad A, Khatibi AS, Moradi-Kalbolandi S, Farahmand L. Correction: Engineered hypoxia-responding Escherichia coli carrying cardiac peptide genes, suppresses tumor growth, angiogenesis and metastasis in vivo. J Biol Eng 2022; 16:17. [PMID: 35854341 PMCID: PMC9297636 DOI: 10.1186/s13036-022-00297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mitra Samadi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zeinab Noorinejad
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Sharif Khatibi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Progress of engineered bacteria for tumor therapy. Adv Drug Deliv Rev 2022; 185:114296. [PMID: 35439571 DOI: 10.1016/j.addr.2022.114296] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/25/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
Abstract
Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.
Collapse
|
10
|
Merikhian P, Darvishi B, Jalili N, Esmailinejad MR, Khatibi AS, Kalbolandi SM, Salehi M, Mosayebzadeh M, Barough MS, Majidzadeh-A K, Yadegari F, Rahbarizadeh F, Farahmand L. Recombinant nanobody against MUC1 tandem repeats inhibits growth, invasion, metastasis, and vascularization of spontaneous mouse mammary tumors. Mol Oncol 2021; 16:485-507. [PMID: 34694686 PMCID: PMC8763658 DOI: 10.1002/1878-0261.13123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/20/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022] Open
Abstract
Alteration in glycosylation pattern of MUC1 mucin tandem repeats during carcinomas has been shown to negatively affect adhesive properties of malignant cells and enhance tumor invasiveness and metastasis. In addition, MUC1 overexpression is closely interrelated with angiogenesis, making it a great target for immunotherapy. Alongside, easier interaction of nanobodies (single-domain antibodies) with their antigens, compared to conventional antibodies, is usually associated with superior desirable results. Herein, we evaluated the preclinical efficacy of a recombinant nanobody against MUC1 tandem repeats in suppressing tumor growth, angiogenesis, invasion, and metastasis. Expressed nanobody demonstrated specificity only toward MUC1-overexpressing cancer cells and could internalize in cancer cell lines. The IC50 values (the concentration at which the nanobody exerted half of its maximal inhibitory effect) of the anti-MUC1 nanobody against MUC1-positive human cancer cell lines ranged from 1.2 to 14.3 nm. Similar concentrations could also effectively induce apoptosis in MUC1-positive cancer cells but not in normal cells or MUC1-negative human cancer cells. Immunohistochemical staining of spontaneously developed mouse breast tumors prior to in vivo studies confirmed cross-reactivity of nanobody with mouse MUC1 despite large structural dissimilarities between mouse and human MUC1 tandem repeats. In vivo, a dose of 3 µg nanobody per gram of body weight in tumor-bearing mice could attenuate tumor progression and suppress excessive circulating levels of IL-1a, IL-2, IL-10, IL-12, and IL-17A pro-inflammatory cytokines. Also, a significant decline in expression of Ki-67, MMP9, and VEGFR2 biomarkers, as well as vasculogenesis, was evident in immunohistochemically stained tumor sections of anti-MUC1 nanobody-treated mice. In conclusion, the anti-MUC1 tandem repeat nanobody of the present study could effectively overcome tumor growth, invasion, and metastasis.
Collapse
Affiliation(s)
- Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Azadeh Sharif Khatibi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shima Moradi Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahdieh Shokrollahi Barough
- Cancer Immunotherapy and Regenerative Medicine, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|