1
|
Chan ER, Benchek P, Miller G, Brustoski K, Schaffer A, Truitt B, Tag J, Freebairn L, Lewis BA, Stein CM, Iyengar SK. Importance of copy number variants in childhood apraxia of speech and other speech sound disorders. Commun Biol 2024; 7:1273. [PMID: 39369109 PMCID: PMC11455877 DOI: 10.1038/s42003-024-06968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Childhood apraxia of speech (CAS) is a severe and rare form of speech sound disorder (SSD). CAS is typically sporadic, but may segregate in families with broader speech and language deficits. We hypothesize that genetic changes may be involved in the etiology of CAS. We conduct whole-genome sequencing in 27 families with CAS, 101 individuals in all. We identify 17 genomic regions including 19 unique copy number variants (CNVs). Three variants are shared across families, but the rest are unique; three events are de novo. In four families, siblings with milder phenotypes co-inherited the same CNVs, demonstrating variable expressivity. We independently validate eight CNVs using microarray technology and find many of these CNVs are present in children with milder forms of SSD. Bioinformatic investigation reveal four CNVs with substantial functional consequences (cytobands 2q24.3, 6p12.3-6p12.2, 11q23.2-11q23.3, and 16p11.2). These discoveries show that CNVs are a heterogeneous, but prevalent, cause of CAS.
Collapse
Affiliation(s)
- E Ricky Chan
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gabrielle Miller
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kim Brustoski
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara Truitt
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica Tag
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lisa Freebairn
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara A Lewis
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
van Wijngaarden V, de Wilde H, Mink van der Molen D, Petter J, Stegeman I, Gerrits E, Smit AL, van den Boogaard MJ. Genetic outcomes in children with developmental language disorder: a systematic review. Front Pediatr 2024; 12:1315229. [PMID: 38298611 PMCID: PMC10828955 DOI: 10.3389/fped.2024.1315229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction Developmental language disorder (DLD) is a common childhood condition negatively influencing communication and psychosocial development. An increasing number of pathogenic variants or chromosomal anomalies possibly related to DLD have been identified. To provide a base for accurate clinical genetic diagnostic work-up for DLD patients, understanding the specific genetic background is crucial. This study aims to give a systematic literature overview of pathogenic variants or chromosomal anomalies causative for DLD in children. Methods We conducted a systematic search in PubMed and Embase on available literature related to the genetic background of diagnosed DLD in children. Included papers were critically appraised before data extraction. An additional search in OMIM was performed to see if the described DLD genes are associated with a broader clinical spectrum. Results The search resulted in 15,842 papers. After assessing eligibility, 47 studies remained, of which 25 studies related to sex chromosome aneuploidies and 15 papers concerned other chromosomal anomalies (SCAs) and/or Copy Number Variants (CNVs), including del15q13.1-13.3 and del16p11.2. The remaining 7 studies displayed a variety of gene variants. 45 (candidate) genes related to language development, including FOXP2, GRIN2A, ERC1, and ATP2C2. After an additional search in the OMIM database, 22 of these genes were associated with a genetic disorder with a broader clinical spectrum, including intellectual disability, epilepsy, and/or autism. Conclusion Our study illustrates that DLD can be related to SCAs and specific CNV's. The reported (candidate) genes (n = 45) in the latter category reflect the genetic heterogeneity and support DLD without any comorbidities and syndromic language disorder have an overlapping genetic etiology.
Collapse
Affiliation(s)
| | - Hester de Wilde
- Department of Pediatric Otorhinolaryngology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jildo Petter
- Faculty of Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ellen Gerrits
- Research Group Speech and Language Therapy, HU University of Applied Sciences Utrecht, Utrecht, Netherlands
- Department of Languages, Literature and Communication, Faculty of Humanities, Utrecht University, Utrecht, Netherlands
| | - Adriana L. Smit
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Research Group Speech and Language Therapy, HU University of Applied Sciences Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
3
|
Espinosa-Mojica AA, Varo Varo C. Determining the Linguistic Profile of Children With Rare Genetic Disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:170-186. [PMID: 38085694 DOI: 10.1044/2023_jslhr-23-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE Language studies on populations with rare genetic disorders are limited. Hence, there is little data on commonly found or expected developmental linguistic traits and cognitive mechanisms that may be impaired. Based on the hypothesis that there is a close connection between language and cognition and the relevance of specific genetic changes in the development of each, our goal was to provide linguistic data on relationships with other executive functioning mechanisms. METHOD This study assessed language skills, communicative behaviors, and executive functions in four children, aged 7-9 years, with rare genetic disorders, using standardized protocols and tests. RESULTS The findings revealed different levels of language impairment and executive functioning problems in each case. The overall executive function index performance for each of the four cases studied was clinically significantly high, indicating executive dysfunction. CONCLUSIONS The cases analyzed illustrate different types of atypical development that affect both language and other cognitive mechanisms and underscore the importance of executive skills and the various ways in which they are involved in diverse levels of language that might be affected to a greater or lesser degree in rare genetic disorders. In conclusion, we found that language dysfunction is a salient feature of the rare genetic disorders included in our study, although this is not necessarily true for all genetic disorders. Along with these conclusive results, we performed a qualitative analysis of the linguistic and cognitive components that enable functional communication in order to allow optimal interpretation of the data we have collected, laying the foundations for a more effective therapeutic approach.
Collapse
|
4
|
Investigation of the forkhead box protein P2 gene by the next-generation sequence analysis method in children diagnosed with specific learning disorder. Psychiatr Genet 2023; 33:8-19. [PMID: 36617742 DOI: 10.1097/ypg.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE It was aimed to investigate the role of the forkhead box protein P2 (FOXP2) gene in the cause of specific learning disorder (SLD) with the next-generation sequencing method. MATERIAL AND METHODS The study included 52 children diagnosed with SLD and 46 children as control between the ages of 6-12 years. Interview Schedule for Affective Disorders and Schizophrenia for School-Age Children, Present and Lifelong Version in Turkish, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-Based Screening and Evaluation Scale for Attention Deficit and Disruptive Behavior Disorders, Specific Learning Disability Test Battery were applied to all participants. The FOXP2 gene was screened by the next-generation sequencing (NGS) method in all participants. RESULTS A total of 17 variations were detected in the FOXP2 gene in participants. The number and diversity of variations were higher in the patient group. In the patient group, c.1914 + 8A>T heterozygous variation and three different types of heterozygous variation (13insT, 13delT and 4dup) in the c.1770 region were detected. It was found that the detected variations showed significant relationships with the reading phenotypes determined by the test battery. CONCLUSION It was found that FOXP2 variations were seen more frequently in the patient group. Some of the detected variations might be related to the clinical phenotype of SLD and variations found in previous studies from different countries were not seen in Turkish population. Our study is the first to evaluate the role of FOXP2 gene variations in children with SLD in Turkish population, and novel variations in the related gene were detected.
Collapse
|
5
|
Iwata‐Otsubo A, Klee VH, Ahmad AA, Walsh LE, Breman AM. A 9.8 Mb deletion at 7q31.2q31.31 downstream of FOXP2 in an individual with speech and language impairment suggests a possible positional effect. Clin Case Rep 2022; 10:e6535. [PMID: 36415709 PMCID: PMC9675869 DOI: 10.1002/ccr3.6535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 10/15/2022] [Indexed: 11/21/2022] Open
Abstract
Haploinsufficiency of FOXP2 causes FOXP2-related speech and language disorder. We report a 9.8 Mb deletion downstream of FOXP2 in a girl with speech and language impairment, developmental delay, and other features. We propose involvement of FOXP2 in pathogenesis of these phenotypes, likely due to positional effects on the gene.
Collapse
Affiliation(s)
- Aiko Iwata‐Otsubo
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Victoria H. Klee
- Department of Neurology, Section of Child NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Aaliya A. Ahmad
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Laurence E. Walsh
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Neurology, Section of Child NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Amy M. Breman
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
6
|
Mountford HS, Braden R, Newbury DF, Morgan AT. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:586. [PMID: 35626763 PMCID: PMC9139417 DOI: 10.3390/children9050586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Language disorders are highly heritable and are influenced by complex interactions between genetic and environmental factors. Despite more than twenty years of research, we still lack critical understanding of the biological underpinnings of language. This review provides an overview of the genetic landscape of developmental language disorders (DLD), with an emphasis on the importance of defining the specific features (the phenotype) of DLD to inform gene discovery. We review the specific phenotype of DLD in the genetic literature, and the influence of historic variation in diagnostic inclusion criteria on researchers' ability to compare and replicate genotype-phenotype studies. This review provides an overview of the recently identified gene pathways in populations with DLD and explores current state-of-the-art approaches to genetic analysis based on the hypothesised architecture of DLD. We will show how recent global efforts to unify diagnostic criteria have vastly increased sample size and allow for large multi-cohort metanalyses, leading the identification of a growing number of contributory loci. We emphasise the important role of estimating the genetic architecture of DLD to decipher underlying genetic associations. Finally, we explore the potential for epigenetics and environmental interactions to further unravel the biological basis of language disorders.
Collapse
Affiliation(s)
- Hayley S. Mountford
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Ruth Braden
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| |
Collapse
|
7
|
Zhou H, Ma R, Gao L, Zhang J, Zhang A, Zhang X, Ren F, Zhang W, Liao L, Yang Q, Xu S, Otieno Ogutu C, Zhao J, Yu M, Jiang Q, Korban SS, Han Y. A 1.7-Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:192-205. [PMID: 32722872 PMCID: PMC7769229 DOI: 10.1111/pbi.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/16/2020] [Indexed: 05/06/2023]
Abstract
Flat peaches have become popular worldwide due to their novelty and convenience. The peach flat fruit trait is genetically controlled by a single gene at the S locus, but its genetic basis remains unclear. Here, we report a 1.7-Mb chromosomal inversion downstream of a candidate gene encoding OVATE Family Protein, designated PpOFP1, as the causal mutation for the peach flat fruit trait. Genotyping of 727 peach cultivars revealed an occurrence of this large inversion in flat peaches, but absent in round peaches. Ectopic overexpression of PpOFP1 resulted in oval-shaped leaves and shortened siliques in Arabidopsis, suggesting its role in repressing cell elongation. Transcriptional activation of PpOFP1 by the chromosomal inversion may repress vertical elongation in flat-shaped fruits at early stages of development, resulting in the flat fruit shape. Moreover, PpOFP1 can interact with fruit elongation activator PpTRM17, suggesting a regulatory network controlling fruit shape in peach. Additionally, screening of peach wild relatives revealed an exclusive presence of the chromosomal inversion in P. ferganensis, supporting that this species is the ancestor of the domesticated peach. This study provides new insights into mechanisms underlying fruit shape evolution and molecular tools for genetic improvement of fruit shape trait in peach breeding programmes.
Collapse
Affiliation(s)
- Hui Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural CropsInstitute of HorticultureAnhui Academy of Agricultural SciencesHefeiChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Ruijuan Ma
- Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingChina
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Jinyun Zhang
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural CropsInstitute of HorticultureAnhui Academy of Agricultural SciencesHefeiChina
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Fei Ren
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei ProvinceCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
| | - Shengli Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Jianbo Zhao
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Mingliang Yu
- Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingChina
| | - Quan Jiang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| |
Collapse
|
8
|
Rieger M, Krumbiegel M, Reuter MS, Schützenberger A, Reis A, Zweier C. 7q31.2q31.31 deletion downstream of FOXP2 segregating in a family with speech and language disorder. Am J Med Genet A 2020; 182:2737-2741. [PMID: 32885567 DOI: 10.1002/ajmg.a.61838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022]
Abstract
Chromosomal 7q31 deletions have been described in individuals with variable neurodevelopmental phenotypes including speech and language impairment. These copy number variants usually encompass FOXP2, haploinsufficiency of which represents a widely acknowledged cause for specific speech and language disorders. By chromosomal microarray analysis we identified a 4.7 Mb microdeletion at 7q31.2q31.31 downstream of FOXP2 in three family members presenting with variable speech, language and neurodevelopmental phenotypes. The index individual showed delayed speech development with impaired speech production, reduced language comprehension, and additionally learning difficulties, microcephaly, and attention deficit. His younger sister had delayed speech development with impaired speech production and partially reduced language comprehension. Their mother had attended a school for children with speech and language deficiencies and presented with impaired articulation. The deletion had occurred de novo in the mother, includes 15 protein-coding genes and is located in close proximity to the 3' end of FOXP2. Though a novel locus at 7q31.2q31.31 associated with mild neurodevelopmental and more prominent speech and language impairment is possible, the close phenotypic overlap with FOXP2-associated speech and language disorder rather suggests a positional effect on FOXP2 expression and function.
Collapse
Affiliation(s)
- Melissa Rieger
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Miriam S Reuter
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anne Schützenberger
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Mountford HS, Villanueva P, Fernández MA, Barbieri ZD, Cazier JB, Newbury DF. Candidate gene variant effects on language disorders in Robinson Crusoe Island. Ann Hum Biol 2019; 46:109-119. [DOI: 10.1080/03014460.2019.1622776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hayley S. Mountford
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Pía Villanueva
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Institute of Biomedical Sciences, Human Genetics Division, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Angélica Fernández
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Zulema De Barbieri
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
10
|
Torres-Ruiz R, Benítez-Burraco A, Martínez-Lage M, Rodríguez-Perales S, García-Bellido P. Functional characterization of two enhancers located downstream FOXP2. BMC MEDICAL GENETICS 2019; 20:65. [PMID: 31046704 PMCID: PMC6498672 DOI: 10.1186/s12881-019-0810-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mutations in the coding region of FOXP2 are known to cause speech and language impairment. However, it is not clear how dysregulation of the gene contributes to language deficit. Interestingly, microdeletions of the region downstream the gene have been associated with cognitive deficits. METHODS Here, we investigate changes in FOXP2 expression in the SK-N-MC neuroblastoma human cell line after deletion by CRISPR-Cas9 of two enhancers located downstream of the gene. RESULTS Deletion of any of these two functional enhancers downregulates FOXP2, but also upregulates the closest 3' gene MDFIC. Because this effect is not statistically significant in a HEK 293 cell line, derived from the human kidney, both enhancers might confer a tissue specific regulation to both genes. We have also found that the deletion of any of these enhancers downregulates six well-known FOXP2 target genes in the SK-N-MC cell line. CONCLUSIONS We expect these findings contribute to a deeper understanding of how FOXP2 and MDFIC are regulated to pace neuronal development supporting cognition, speech and language.
Collapse
Affiliation(s)
- Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain.
| | - Marta Martínez-Lage
- Molecular Cytogenetics Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | - Paloma García-Bellido
- Faculty of Modern Languages, University of Oxford, Oxford, UK.,Faculty of Linguistics, Philology and Phonetics, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Aristidou C, Theodosiou A, Ketoni A, Bak M, Mehrjouy MM, Tommerup N, Sismani C. Cryptic breakpoint identified by whole-genome mate-pair sequencing in a rare paternally inherited complex chromosomal rearrangement. Mol Cytogenet 2018; 11:34. [PMID: 29930709 PMCID: PMC5991433 DOI: 10.1186/s13039-018-0384-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/15/2018] [Indexed: 11/21/2022] Open
Abstract
Background Precise characterization of apparently balanced complex chromosomal rearrangements in non-affected individuals is crucial as they may result in reproductive failure, recurrent miscarriages or affected offspring. Case presentation We present a family, where the non-affected father and daughter were found, using FISH and karyotyping, to be carriers of a three-way complex chromosomal rearrangement [t(6;7;10)(q16.2;q34;q26.1), de novo in the father]. The family suffered from two stillbirths, one miscarriage, and has a son with severe intellectual disability. In the present study, the family was revisited using whole-genome mate-pair sequencing. Interestingly, whole-genome mate-pair sequencing revealed a cryptic breakpoint on derivative (der) chromosome 6 rendering the rearrangement even more complex. FISH using a chromosome (chr) 6 custom-designed probe and a chr10 control probe confirmed that the interstitial chr6 segment, created by the two chr6 breakpoints, was translocated onto der(10). Breakpoints were successfully validated with Sanger sequencing, and small imbalances as well as microhomology were identified. Finally, the complex chromosomal rearrangement breakpoints disrupted the SIM1, GRIK2, CNTNAP2, and PTPRE genes without causing any phenotype development. Conclusions In contrast to the majority of maternally transmitted complex chromosomal rearrangement cases, our study investigated a rare case where a complex chromosomal rearrangement, which most probably resulted from a Type IV hexavalent during the pachytene stage of meiosis I, was stably transmitted from a fertile father to his non-affected daughter. Whole-genome mate-pair sequencing proved highly successful in identifying cryptic complexity, which consequently provided further insight into the meiotic segregation of chromosomes and the increased reproductive risk in individuals carrying the specific complex chromosomal rearrangement. We propose that such complex rearrangements should be characterized in detail using a combination of conventional cytogenetic and NGS-based approaches to aid in better prenatal preimplantation genetic diagnosis and counseling in couples with reproductive problems.
Collapse
Affiliation(s)
- Constantia Aristidou
- 1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,2The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Athina Theodosiou
- 1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andria Ketoni
- 1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Mads Bak
- 3Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mana M Mehrjouy
- 3Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- 3Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Carolina Sismani
- 1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,2The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
12
|
Abstract
Mutations of the FOXP2 gene cause a severe speech and language disorder, providing a molecular window into the neurobiology of language. Individuals with FOXP2 mutations have structural and functional alterations affecting brain circuits that overlap with sites of FOXP2 expression, including regions of the cortex, striatum, and cerebellum. FOXP2 displays complex patterns of expression in the brain, as well as in non-neuronal tissues, suggesting that sophisticated regulatory mechanisms control its spatio-temporal expression. However, to date, little is known about the regulation of FOXP2 or the genomic elements that control its expression. Using chromatin conformation capture (3C), we mapped the human FOXP2 locus to identify putative enhancer regions that engage in long-range interactions with the promoter of this gene. We demonstrate the ability of the identified enhancer regions to drive gene expression. We also show regulation of the FOXP2 promoter and enhancer regions by candidate regulators - FOXP family and TBR1 transcription factors. These data point to regulatory elements that may contribute to the temporal- or tissue-specific expression patterns of human FOXP2. Understanding the upstream regulatory pathways controlling FOXP2 expression will bring new insight into the molecular networks contributing to human language and related disorders.
Collapse
Affiliation(s)
- Martin Becker
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
13
|
Zhao J, Noon SE, Krantz ID, Wu Y. A de novo interstitial deletion of 7q31.2q31.31 identified in a girl with developmental delay and hearing loss. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:102-8. [DOI: 10.1002/ajmg.c.31488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Becker M, Devanna P, Fisher SE, Vernes SC. A chromosomal rearrangement in a child with severe speech and language disorder separates FOXP2 from a functional enhancer. Mol Cytogenet 2015; 8:69. [PMID: 26300977 PMCID: PMC4546047 DOI: 10.1186/s13039-015-0173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/14/2015] [Indexed: 11/26/2022] Open
Abstract
Mutations of FOXP2 in 7q31 cause a rare disorder involving speech apraxia, accompanied by expressive and receptive language impairments. A recent report described a child with speech and language deficits, and a genomic rearrangement affecting chromosomes 7 and 11. One breakpoint mapped to 7q31 and, although outside its coding region, was hypothesised to disrupt FOXP2 expression. We identified an element 2 kb downstream of this breakpoint with epigenetic characteristics of an enhancer. We show that this element drives reporter gene expression in human cell-lines. Thus, displacement of this element by translocation may disturb gene expression, contributing to the observed language phenotype.
Collapse
Affiliation(s)
- Martin Becker
- Max Planck Institute for Psycholinguistics, PO Box 310, Nijmegen, 6500 AH The Netherlands
| | - Paolo Devanna
- Max Planck Institute for Psycholinguistics, PO Box 310, Nijmegen, 6500 AH The Netherlands
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, PO Box 310, Nijmegen, 6500 AH The Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Geert Grootplein Noord 21, Nijmegen, 6525 EZ The Netherlands
| | - Sonja C Vernes
- Max Planck Institute for Psycholinguistics, PO Box 310, Nijmegen, 6500 AH The Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Geert Grootplein Noord 21, Nijmegen, 6525 EZ The Netherlands
| |
Collapse
|