1
|
Schefzik R, Boland L, Hahn B, Kirschning T, Lindner HA, Thiel M, Schneider-Lindner V. Differential Network Testing Reveals Diverging Dynamics of Organ System Interactions for Survivors and Non-survivors in Intensive Care Medicine. Front Physiol 2022; 12:801622. [PMID: 35082693 PMCID: PMC8784681 DOI: 10.3389/fphys.2021.801622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Statistical network analyses have become popular in many scientific disciplines, where an important task is to test for differences between two networks. We describe an overall framework for differential network testing procedures that vary regarding (1) the network estimation method, typically based on specific concepts of association, and (2) the network characteristic employed to measure the difference. Using permutation-based tests, our approach is general and applicable to various overall, node-specific or edge-specific network difference characteristics. The methods are implemented in our freely available R software package DNT, along with an R Shiny application. In a study in intensive care medicine, we compare networks based on parameters representing main organ systems to evaluate the prognosis of critically ill patients in the intensive care unit (ICU), using data from the surgical ICU of the University Medical Centre Mannheim, Germany. We specifically consider both cross-sectional comparisons between a non-survivor and a survivor group and longitudinal comparisons at two clinically relevant time points during the ICU stay: first, at admission, and second, at an event stage prior to death in non-survivors or a matching time point in survivors. The non-survivor and the survivor networks do not significantly differ at the admission stage. However, the organ system interactions of the survivors then stabilize at the event stage, revealing significantly more network edges, whereas those of the non-survivors do not. In particular, the liver appears to play a central role for the observed increased connectivity in the survivor network at the event stage.
Collapse
Affiliation(s)
- Roman Schefzik
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Leonie Boland
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bianka Hahn
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Kirschning
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Holger A. Lindner
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manfred Thiel
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Schneider-Lindner
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Community Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Abstract
DNA microarrays are widely used to investigate gene expression. Even though the classical analysis of microarray data is based on the study of differentially expressed genes, it is well known that genes do not act individually. Network analysis can be applied to study association patterns of the genes in a biological system. Moreover, it finds wide application in differential coexpression analysis between different systems. Network based coexpression studies have for example been used in (complex) disease gene prioritization, disease subtyping, and patient stratification.In this chapter we provide an overview of the methods and tools used to create networks from microarray data and describe multiple methods on how to analyze a single network or a group of networks. The described methods range from topological metrics, functional group identification to data integration strategies, topological pathway analysis as well as graphical models.
Collapse
Affiliation(s)
- Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere University, Tampere, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere University, Tampere, Finland
| | - Luca Cattelani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- BioMediTech Institute, Tampere University, Tampere, Finland.
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere University, Tampere, Finland.
- Institute of Biotechnology , University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Yu H, Wang L, Chen D, Li J, Guo Y. Conditional transcriptional relationships may serve as cancer prognostic markers. BMC Med Genomics 2021; 14:101. [PMID: 34856998 PMCID: PMC8638091 DOI: 10.1186/s12920-021-00958-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND While most differential coexpression (DC) methods are bound to quantify a single correlation value for a gene pair across multiple samples, a newly devised approach under the name Correlation by Individual Level Product (CILP) revolutionarily projects the summary correlation value to individual product correlation values for separate samples. CILP greatly widened DC analysis opportunities by allowing integration of non-compromised statistical methods. METHODS Here, we performed a study to verify our hypothesis that conditional relationships, i.e., gene pairs of remarkable differential coexpression, may be sought as quantitative prognostic markers for human cancers. Alongside the seeking of prognostic gene links in a pan-cancer setting, we also examined whether a trend of global expression correlation loss appeared in a wide panel of cancer types and revisited the controversial subject of mutual relationship between the DE approach and the DC approach. RESULTS By integrating CILP with classical univariate survival analysis, we identified up to 244 conditional gene links as potential prognostic markers in five cancer types. In particular, five prognostic gene links for kidney renal papillary cell carcinoma tended to condense around cancer gene ESPL1, and the transcriptional synchrony between ESPL1 and PTTG1 tended to be elevated in patients of adverse prognosis. In addition, we extended the observation of global trend of correlation loss in more than ten cancer types and empirically proved DC analysis results were independent of gene differential expression in five cancer types. CONCLUSIONS Combining the power of CILP and the classical survival analysis, we successfully fetched conditional transcriptional relationships that conferred prognosis power for five cancer types. Despite a general trend of global correlation loss in tumor transcriptomes, most of these prognosis conditional links demonstrated stronger expression correlation in tumors, and their stronger coexpression was associated with poor survival.
Collapse
Affiliation(s)
- Hui Yu
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131 USA
| | - Limei Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Kaikou, Hainan 571199 China
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001 Heilongjiang China
| | - Danqian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Jin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Kaikou, Hainan 571199 China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|
4
|
Savino A, Provero P, Poli V. Differential Co-Expression Analyses Allow the Identification of Critical Signalling Pathways Altered during Tumour Transformation and Progression. Int J Mol Sci 2020; 21:E9461. [PMID: 33322692 PMCID: PMC7764314 DOI: 10.3390/ijms21249461] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
Biological systems respond to perturbations through the rewiring of molecular interactions, organised in gene regulatory networks (GRNs). Among these, the increasingly high availability of transcriptomic data makes gene co-expression networks the most exploited ones. Differential co-expression networks are useful tools to identify changes in response to an external perturbation, such as mutations predisposing to cancer development, and leading to changes in the activity of gene expression regulators or signalling. They can help explain the robustness of cancer cells to perturbations and identify promising candidates for targeted therapy, moreover providing higher specificity with respect to standard co-expression methods. Here, we comprehensively review the literature about the methods developed to assess differential co-expression and their applications to cancer biology. Via the comparison of normal and diseased conditions and of different tumour stages, studies based on these methods led to the definition of pathways involved in gene network reorganisation upon oncogenes' mutations and tumour progression, often converging on immune system signalling. A relevant implementation still lagging behind is the integration of different data types, which would greatly improve network interpretability. Most importantly, performance and predictivity evaluation of the large variety of mathematical models proposed would urgently require experimental validations and systematic comparisons. We believe that future work on differential gene co-expression networks, complemented with additional omics data and experimentally tested, will considerably improve our insights into the biology of tumours.
Collapse
Affiliation(s)
- Aurora Savino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Paolo Provero
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Corso Massimo D’Ázeglio 52, 10126 Turin, Italy;
- Center for Omics Sciences, Ospedale San Raffaele IRCCS, Via Olgettina 60, 20132 Milan, Italy
| | - Valeria Poli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
5
|
Chowdhury HA, Bhattacharyya DK, Kalita JK. (Differential) Co-Expression Analysis of Gene Expression: A Survey of Best Practices. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1154-1173. [PMID: 30668502 DOI: 10.1109/tcbb.2019.2893170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Analysis of gene expression data is widely used in transcriptomic studies to understand functions of molecules inside a cell and interactions among molecules. Differential co-expression analysis studies diseases and phenotypic variations by finding modules of genes whose co-expression patterns vary across conditions. We review the best practices in gene expression data analysis in terms of analysis of (differential) co-expression, co-expression network, differential networking, and differential connectivity considering both microarray and RNA-seq data along with comparisons. We highlight hurdles in RNA-seq data analysis using methods developed for microarrays. We include discussion of necessary tools for gene expression analysis throughout the paper. In addition, we shed light on scRNA-seq data analysis by including preprocessing and scRNA-seq in co-expression analysis along with useful tools specific to scRNA-seq. To get insights, biological interpretation and functional profiling is included. Finally, we provide guidelines for the analyst, along with research issues and challenges which should be addressed.
Collapse
|
6
|
Bhuva DD, Cursons J, Smyth GK, Davis MJ. Differential co-expression-based detection of conditional relationships in transcriptional data: comparative analysis and application to breast cancer. Genome Biol 2019; 20:236. [PMID: 31727119 PMCID: PMC6857226 DOI: 10.1186/s13059-019-1851-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Elucidation of regulatory networks, including identification of regulatory mechanisms specific to a given biological context, is a key aim in systems biology. This has motivated the move from co-expression to differential co-expression analysis and numerous methods have been developed subsequently to address this task; however, evaluation of methods and interpretation of the resulting networks has been hindered by the lack of known context-specific regulatory interactions. RESULTS In this study, we develop a simulator based on dynamical systems modelling capable of simulating differential co-expression patterns. With the simulator and an evaluation framework, we benchmark and characterise the performance of inference methods. Defining three different levels of "true" networks for each simulation, we show that accurate inference of causation is difficult for all methods, compared to inference of associations. We show that a z-score-based method has the best general performance. Further, analysis of simulation parameters reveals five network and simulation properties that explained the performance of methods. The evaluation framework and inference methods used in this study are available in the dcanr R/Bioconductor package. CONCLUSIONS Our analysis of networks inferred from simulated data show that hub nodes are more likely to be differentially regulated targets than transcription factors. Based on this observation, we propose an interpretation of the inferred differential network that can reconstruct a putative causal network.
Collapse
Affiliation(s)
- Dharmesh D Bhuva
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Joseph Cursons
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gordon K Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
7
|
Lucchetta M, da Piedade I, Mounir M, Vabistsevits M, Terkelsen T, Papaleo E. Distinct signatures of lung cancer types: aberrant mucin O-glycosylation and compromised immune response. BMC Cancer 2019; 19:824. [PMID: 31429720 PMCID: PMC6702745 DOI: 10.1186/s12885-019-5965-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genomic initiatives such as The Cancer Genome Atlas (TCGA) contain data from -omics profiling of thousands of tumor samples, which may be used to decipher cancer signaling, and related alterations. Managing and analyzing data from large-scale projects, such as TCGA, is a demanding task. It is difficult to dissect the high complexity hidden in genomic data and to account for inter-tumor heterogeneity adequately. METHODS In this study, we used a robust statistical framework along with the integration of diverse bioinformatic tools to analyze next-generation sequencing data from more than 1000 patients from two different lung cancer subtypes, i.e., the lung adenocarcinoma (LUAD) and the squamous cell carcinoma (LUSC). RESULTS We used the gene expression data to identify co-expression modules and differentially expressed genes to discriminate between LUAD and LUSC. We identified a group of genes which could act as specific oncogenes or tumor suppressor genes in one of the two lung cancer types, along with two dual role genes. Our results have been validated against other transcriptomics data of lung cancer patients. CONCLUSIONS Our integrative approach allowed us to identify two key features: a substantial up-regulation of genes involved in O-glycosylation of mucins in LUAD, and a compromised immune response in LUSC. The immune-profile associated with LUSC might be linked to the activation of three oncogenic pathways, which promote the evasion of the antitumor immune response. Collectively, our results provide new future directions for the design of target therapies in lung cancer.
Collapse
Affiliation(s)
- Marta Lucchetta
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Isabelle da Piedade
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Mohamed Mounir
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Marina Vabistsevits
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Borin GP, Carazzolle MF, Dos Santos RAC, Riaño-Pachón DM, Oliveira JVDC. Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30. Front Bioeng Biotechnol 2018; 6:151. [PMID: 30406095 PMCID: PMC6204389 DOI: 10.3389/fbioe.2018.00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
The biomass-degrading fungus Trichoderma reesei has been considered a model for cellulose degradation, and it is the primary source of the industrial enzymatic cocktails used in second-generation (2G) ethanol production. However, although various studies and advances have been conducted to understand the cellulolytic system and the transcriptional regulation of T. reesei, the whole set of genes related to lignocellulose degradation has not been completely elucidated. In this study, we inferred a weighted gene co-expression network analysis based on the transcriptome dataset of the T. reesei RUT-C30 strain aiming to identify new target genes involved in sugarcane bagasse breakdown. In total, ~70% of all the differentially expressed genes were found in 28 highly connected gene modules. Several cellulases, sugar transporters, and hypothetical proteins coding genes upregulated in bagasse were grouped into the same modules. Among them, a single module contained the most representative core of cellulolytic enzymes (cellobiohydrolase, endoglucanase, β-glucosidase, and lytic polysaccharide monooxygenase). In addition, functional analysis using Gene Ontology (GO) revealed various classes of hydrolytic activity, cellulase activity, carbohydrate binding and cation:sugar symporter activity enriched in these modules. Several modules also showed GO enrichment for transcription factor activity, indicating the presence of transcriptional regulators along with the genes involved in cellulose breakdown and sugar transport as well as other genes encoding proteins with unknown functions. Highly connected genes (hubs) were also identified within each module, such as predicted transcription factors and genes encoding hypothetical proteins. In addition, various hubs contained at least one DNA binding site for the master activator Xyr1 according to our in silico analysis. The prediction of Xyr1 binding sites and the co-expression with genes encoding carbohydrate active enzymes and sugar transporters suggest a putative role of these hubs in bagasse cell wall deconstruction. Our results demonstrate a vast range of new promising targets that merit additional studies to improve the cellulolytic potential of T. reesei strains and to decrease the production costs of 2G ethanol.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|