1
|
Rajamanickam G, Hu Z, Liao P. Targeting the TRPM4 Channel for Neurologic Diseases: Opportunity and Challenge. Neuroscientist 2025:10738584251318979. [PMID: 40012174 DOI: 10.1177/10738584251318979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
As a monovalent cation channel, the transient receptor potential melastatin 4 (TRPM4) channel is a unique member of the transient receptor potential family. Abnormal TRPM4 activity has been identified in various neurologic disorders, such as stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, amyotrophic lateral sclerosis, pathologic pain, and epilepsy. Following brain hypoxia/ischemia and inflammation, TRPM4 up-regulation and enhanced activity contribute to the cell death of neurons, vascular endothelial cells, and astrocytes. Enhanced ionic influx via TRPM4 leads to cell volume increase and oncosis. Depolarization of membrane potential following TRPM4 activation and interaction between TRPM4 and N-methyl-d-aspartate receptors exacerbate excitotoxicity during hypoxia. Importantly, TRPM4 expression and activity remain low in healthy neurons, making it an ideal drug target. Current approaches to inhibit or modulate the TRPM4 channel have various limitations that hamper the interpretation of TRPM4 physiology in the nervous system and potentially hinder their translation into therapy. In this review, we discuss the pathophysiologic roles of TRPM4 and the different inhibitors that modulate TRPM4 activity for potential treatment of neurologic diseases.
Collapse
Affiliation(s)
| | - Zhenyu Hu
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Casby J, Gansemer BM, Thayer SA. NMDA Receptor-Mediated Ca 2+ Flux Attenuated by the NMDA Receptor/TRPM4 Interface Inhibitor Brophenexin. Pharmacol Res Perspect 2024; 12:e70038. [PMID: 39574295 PMCID: PMC11582383 DOI: 10.1002/prp2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
Transient receptor potential melastatin-4 (TRPM4) forms a complex with N-methyl-D-aspartate receptors (NMDARs) that facilitates NMDAR-mediated neurotoxicity. Here we used pharmacological tools to determine how TRPM4 regulates NMDAR signaling. Brophenexin, a compound that binds to TRPM4 at the NMDAR binding interface, protected hippocampal neurons in culture from NMDA-induced death, consistent with published work. Brophenexin (10 μM) reduced NMDA-evoked whole-cell currents recorded at 22°C by 87% ± 14% with intracellular Ca2+ chelated to prevent TRPM4 activation. Brophenexin inhibited NMDA-evoked currents recorded in Na+-free solution by 87% ± 13%, suggesting that brophenexin and TRPM4 modulate NMDAR function. Incubating cultures in Mg2+-free buffer containing tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione, and bicuculline for 30 min inhibited NMDA-evoked increases in intracellular Ca2+ concentration ([Ca2+]i) recorded at 22°C by 50% ± 18% and prevented inhibition by brophenexin. In the absence of these inhibitors, brophenexin inhibited the NMDA-evoked response by 51% ± 16%. Treatment with the TRPM4 inhibitor 4-chloro-2-(1-naphthyloxyacetamido)benzoic acid (NBA; 10 μM) increased NMDA-evoked Ca2+ influx by 90% ± 15%. Increasing extracellular NaCl to 237 mM, a treatment that activates TRPM4, inhibited the NMDA-evoked increase in [Ca2+]i by a process that occluded the inhibition produced by brophenexin and was prevented by NBA. In recordings performed at 32°C-34°C, brophenexin inhibited the NMDA-evoked [Ca2+]i response by 42% ± 10% but NBA was without effect. These results are consistent with a model in which TRPM4 interacts with NMDARs to potentiate Ca2+ flux through the NMDAR ion channel and thus provides a potential mechanism for the neuroprotection afforded by NMDAR/TRPM4 interface inhibitors such as brophenexin.
Collapse
Affiliation(s)
- Jordan Casby
- Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Benjamin M. Gansemer
- Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Stanley A. Thayer
- Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| |
Collapse
|
3
|
Fazio L, Naik VN, Therpurakal RN, Gomez Osorio FM, Rychlik N, Ladewig J, Strüber M, Cerina M, Meuth SG, Budde T. Retigabine, a potassium channel opener, restores thalamocortical neuron functionality in a murine model of autoimmune encephalomyelitis. Brain Behav Immun 2024; 122:202-215. [PMID: 39142423 DOI: 10.1016/j.bbi.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease, whose primary hallmark is the occurrence of inflammatory lesions in white and grey matter structures. Increasing evidence in MS patients and respective murine models reported an impaired ionic homeostasis driven by inflammatory-demyelination, thereby profoundly affecting signal propagation. However, the impact of a focal inflammatory lesion on single-cell and network functionality has hitherto not been fully elucidated. OBJECTIVES In this study, we sought to determine the consequences of a localized cortical inflammatory lesion on the excitability and firing pattern of thalamic neurons in the auditory system. Moreover, we tested the neuroprotective effect of Retigabine (RTG), a specific Kv7 channel opener, on disease outcome. METHODS To resemble the human disease, we focally administered pro-inflammatory cytokines, TNF-α and IFN-γ, in the primary auditory cortex (A1) of MOG35-55 immunized mice. Thereafter, we investigated the impact of the induced inflammatory milieu on afferent thalamocortical (TC) neurons, by performing ex vivo recordings. Moreover, we explored the effect of Kv7 channel modulation with RTG on auditory information processing, using in vivo electrophysiological approaches. RESULTS Our results revealed that a cortical inflammatory lesion profoundly affected the excitability and firing pattern of neighboring TC neurons. Noteworthy, RTG restored control-like values and TC tonotopic mapping. CONCLUSION Our results suggest that RTG treatment might robustly mitigate inflammation-induced altered excitability and preserve ascending information processing.
Collapse
Affiliation(s)
- Luca Fazio
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany.
| | - Venu Narayanan Naik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | | | | | - Nicole Rychlik
- Institute of Physiology I, University of Münster, Münster, Germany.
| | - Julia Ladewig
- Department of Translational Brain Research, Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt, Germany.
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany.
| | - Thomas Budde
- Institute of Physiology I, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Takano T, Takano C, Funakoshi H, Bando Y. Impact of Neuron-Derived HGF on c-Met and KAI-1 in CNS Glial Cells: Implications for Multiple Sclerosis Pathology. Int J Mol Sci 2024; 25:11261. [PMID: 39457044 PMCID: PMC11509024 DOI: 10.3390/ijms252011261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Demyelination and axonal degeneration are fundamental pathological characteristics of multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS). Although the molecular mechanisms driving these processes are not fully understood, hepatocyte growth factor (HGF) has emerged as a potential regulator of neuroinflammation and tissue protection in MS. Elevated HGF levels have been reported in MS patients receiving immunomodulatory therapy, indicating its relevance in disease modulation. This study investigated HGF's neuroprotective effects using transgenic mice that overexpressed HGF. The experimental autoimmune encephalomyelitis (EAE) model, which mimics MS pathology, was employed to assess demyelination and axonal damage in the CNS. HGF transgenic mice showed delayed EAE progression, with reduced CNS inflammation, decreased demyelination, and limited axonal degeneration. Scanning electron microscopy confirmed the preservation of myelin and axonal integrity in these mice. In addition, we explored HGF's effects using a cuprizone-induced demyelination model, which operates independently of the immune system. HGF transgenic mice exhibited significant protection against demyelination in this model as well. We also investigated the expression of key HGF receptors, particularly c-Met and KAI-1. While c-Met, which is associated with increased inflammation, was upregulated in EAE, its expression was significantly reduced in HGF transgenic mice, correlating with decreased neuroinflammation. Conversely, KAI-1, which has been linked to axonal protection and stability, showed enhanced expression in HGF transgenic mice, suggesting a protective mechanism against axonal degeneration. These findings underscore HGF's potential in preserving CNS structure and function, suggesting it may be a promising therapeutic target for MS, offering new hope for mitigating disease progression and enhancing neuroprotection.
Collapse
Affiliation(s)
- Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hiroshi Funakoshi
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-08543, Japan
| |
Collapse
|
6
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Erdogan MA, Ugo D, Ines F. The role of ion channels in the relationship between the immune system and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:151-198. [PMID: 38007267 DOI: 10.1016/bs.ctm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The immune system is capable of identifying and eliminating cancer, a complicated illness marked by unchecked cellular proliferation. The significance of ion channels in the complex interaction between the immune system and cancer has been clarified by recent studies. Ion channels, which are proteins that control ion flow across cell membranes, have variety of physiological purposes, such as regulating immune cell activity and tumor development. Immune cell surfaces contain ion channels, which have been identified to control immune cell activation, motility, and effector activities. The regulation of immune responses against cancer cells has been linked to a number of ion channels, including potassium, calcium, and chloride channels. As an example, potassium channels are essential for regulating T cell activation and proliferation, which are vital for anti-tumor immunity. Calcium channels play a crucial role when immune cells produce cytotoxic chemicals in order to eliminate cancer cells. Chloride channels also affect immune cell infiltration and invasion into malignancies. Additionally, tumor cells' own expressed ion channels have an impact on their behavior and in the interaction with the immune system. The proliferation, resistance to apoptosis, and immune evasion of cancer cells may all be impacted by changes in ion channel expression and function. Ion channels may also affect the tumor microenvironment by controlling angiogenesis, inflammatory responses, and immune cell infiltration. Ion channel function in the interaction between the immune system and cancer has important implications for cancer treatment. A possible method to improve anti-tumor immune responses and stop tumor development is to target certain ion channels. Small compounds and antibodies are among the ion channel modulators under investigation as possible immunotherapeutics. The complex interaction between ion channels, the immune system, and cancer highlights the significance of these channels for tumor immunity. The development of novel therapeutic strategies for the treatment of cancer will be made possible by unraveling the processes by which ion channels control immune responses and tumor activity. Hence, the main driving idea of the present chapter is trying to understand the possible function of ion channels in the complex crosstalk between cancer and immunoresponse. To this aim, after giving a brief journey of ion channels throughout the history, a classification of the main ion channels involved in cancer disease will be discussed. Finally, the last paragraph will focus on more recently advancements in the use of biomaterials as therapeutic strategy for cancer treatment. The hope is that future research will take advantage of the promising combination of ion channels, immunomodulation and biomaterials filed to provide better solutions in the treatment of cancer disease.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Izmir Katip Celebi University Faculty of Medicine, Department of Physiology, Izmir, Turkey.
| | - D'Amora Ugo
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Fasolino Ines
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| |
Collapse
|
8
|
Malik HR, Bertolesi GE, McFarlane S. TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature. Commun Biol 2023; 6:127. [PMID: 36721039 PMCID: PMC9889708 DOI: 10.1038/s42003-023-04489-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Thermoregulation is a homeostatic process to maintain an organism's internal temperature within a physiological range compatible with life. In poikilotherms, body temperature fluctuates with that of the environment, with both physiological and behavioral responses employed to modify body temperature. Changing skin colour/reflectance and locomotor activity are both well-recognized temperature regulatory mechanisms, but little is known of the participating thermosensor/s. We find that Xenopus laevis tadpoles put in the cold exhibit a temperature-dependent, systemic, and rapid melanosome aggregation in melanophores, which lightens the skin. Cooling also induces a reduction in the locomotor performance. To identify the cold-sensor, we focus on transient receptor potential (trp) channel genes from a Trpm family. mRNAs for several Trpms are present in Xenopus tails, and Trpm8 protein is present in skin melanophores. Temperature-induced melanosome aggregation is mimicked by the Trpm8 agonist menthol (WS12) and blocked by a Trpm8 antagonist. The degree of skin lightening induced by cooling is correlated with locomotor performance, and both responses are rapidly regulated in a dose-dependent and correlated manner by the WS12 Trpm8 agonist. We propose that TRPM8 serves as a cool thermosensor in poikilotherms that helps coordinate skin lightening and behavioural locomotor performance as adaptive thermoregulatory responses to cold.
Collapse
Affiliation(s)
- Hannan R. Malik
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Gabriel E. Bertolesi
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Sarah McFarlane
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| |
Collapse
|
9
|
A Novel Role of the TRPM4 Ion Channel in Exocytosis. Cells 2022; 11:cells11111793. [PMID: 35681487 PMCID: PMC9180413 DOI: 10.3390/cells11111793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Under physiological conditions, the widely expressed calcium-activated TRPM4 channel conducts sodium into cells. This sodium influx depolarizes the plasma membrane and reduces the driving force for calcium entry. The aberrant expression or function of TRPM4 has been reported in various diseases, including different types of cancer. TRPM4 is mainly localized in the plasma membrane, but it is also found in intracellular vesicles, which can undergo exocytosis. In this study, we show that calcium-induced exocytosis in the colorectal cancer cell line HCT116 is dependent on TRPM4. In addition, the findings from some studies of prostate cancer cell lines suggest a more general role of TRPM4 in calcium-induced exocytosis in cancer cells. Furthermore, calcium-induced exocytosis depends on TRPM4 ion conductivity. Additionally, an increase in intracellular calcium results in the delivery of TRPM4 to the plasma membrane. This process also depends on TRPM4 ion conductivity. TRPM4-dependent exocytosis and the delivery of TRPM4 to the plasma membrane are mediated by SNARE proteins. Finally, we provide evidence that calcium-induced exocytosis depends on TRPM4 ion conductivity, not within the plasma membrane, but rather in TRPM4-containing vesicles.
Collapse
|
10
|
A glibenclamide-sensitive TRPM4-mediated component of CA1 excitatory postsynaptic potentials appears in experimental autoimmune encephalomyelitis. Sci Rep 2022; 12:6000. [PMID: 35397639 PMCID: PMC8994783 DOI: 10.1038/s41598-022-09875-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/16/2022] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel contributes to disease severity in the murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and to neuronal cell death in models of excitotoxicity and traumatic brain injury. As TRPM4 is activated by intracellular calcium and conducts monovalent cations, we hypothesized that TRPM4 may contribute to and boost excitatory synaptic transmission in CA1 pyramidal neurons of the hippocampus. Using single-spine calcium imaging and electrophysiology, we found no effect of the TRPM4 antagonists 9-phenanthrol and glibenclamide on synaptic transmission in hippocampal slices from healthy mice. In contrast, glibenclamide but not 9-phenanthrol reduced excitatory synaptic potentials in slices from EAE mice, an effect that was absent in slices from EAE mice lacking TRPM4. We conclude that TRPM4 plays little role in basal hippocampal synaptic transmission, but a glibenclamide-sensitive TRPM4-mediated contribution to excitatory postsynaptic responses is upregulated at the acute phase of EAE.
Collapse
|
11
|
Zhu L, Miao B, Dymerska D, Kuswik M, Bueno-Martínez E, Sanoguera-Miralles L, Velasco EA, Paramasivam N, Schlesner M, Kumar A, Yuan Y, Lubinski J, Bandapalli OR, Hemminki K, Försti A. Germline Variants of CYBA and TRPM4 Predispose to Familial Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030670. [PMID: 35158942 PMCID: PMC8833488 DOI: 10.3390/cancers14030670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Whole-genome sequencing and bioinformatics analysis on unique colorectal cancer families revealed two attractive candidate predisposition genes, CYBA and TRPM4, each with a loss-of-function variant. Supported by our functional studies, we suggest that the two gene defects mechanistically involve intestinal barrier integrity through reactive oxygen species and mucus biology, which converges in chronic bowel inflammation, a known risk factor for colorectal cancer. Abstract Familial colorectal cancer (CRC) is only partially explained by known germline predisposing genes. We performed whole-genome sequencing in 15 Polish families of many affected individuals, without mutations in known CRC predisposing genes. We focused on loss-of-function variants and functionally characterized them. We identified a frameshift variant in the CYBA gene (c.246delC) in one family and a splice site variant in the TRPM4 gene (c.25–1 G > T) in another family. While both variants were absent or extremely rare in gene variant databases, we identified four additional Polish familial CRC cases and two healthy elderly individuals with the CYBA variant (odds ratio 2.46, 95% confidence interval 0.48–12.69). Both variants led to a premature stop codon and to a truncated protein. Functional characterization of the variants showed that knockdown of CYBA or TRPM4 depressed generation of reactive oxygen species (ROS) in LS174T and HT-29 cell lines. Knockdown of TRPM4 resulted in decreased MUC2 protein production. CYBA encodes a component in the NADPH oxidase system which generates ROS and controls, e.g., bacterial colonization in the gut. Germline CYBA variants are associated with early onset inflammatory bowel disease, supported with experimental evidence on loss of intestinal mucus barrier function due to ROS deficiency. TRPM4 encodes a calcium-activated ion channel, which, in a human colonic cancer cell line, controls calcium-mediated secretion of MUC2, a major component of intestinal mucus barrier. We suggest that the gene defects in CYBA and TRPM4 mechanistically involve intestinal barrier integrity through ROS and mucus biology, which converges in chronic bowel inflammation.
Collapse
Affiliation(s)
- Lizhen Zhu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Beiping Miao
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Magdalena Kuswik
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany;
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Jan Lubinski
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
- Correspondence: (O.R.B.); (K.H.)
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Correspondence: (O.R.B.); (K.H.)
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| |
Collapse
|
12
|
Kovács ZM, Dienes C, Hézső T, Almássy J, Magyar J, Bányász T, Nánási PP, Horváth B, Szentandrássy N. Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 1: Modulation of TRPM4. Pharmaceuticals (Basel) 2022; 15:ph15010081. [PMID: 35056138 PMCID: PMC8781449 DOI: 10.3390/ph15010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential melastatin 4 is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+-sensitive and permeable to monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions by regulating the membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the pharmacological modulation of TRPM4 by listing, comparing, and describing both endogenous and exogenous activators and inhibitors of the ion channel. Moreover, other strategies used to study TRPM4 functions are listed and described. These strategies include siRNA-mediated silencing of TRPM4, dominant-negative TRPM4 variants, and anti-TRPM4 antibodies. TRPM4 is receiving more and more attention and is likely to be the topic of research in the future.
Collapse
Affiliation(s)
- Zsigmond Máté Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (T.H.); (J.A.); (J.M.); (T.B.); (P.P.N.); (B.H.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
13
|
Alquisiras-Burgos I, Franco-Pérez J, Rubio-Osornio M, Aguilera P. The short form of the SUR1 and its functional implications in the damaged brain. Neural Regen Res 2022; 17:488-496. [PMID: 34380876 PMCID: PMC8504400 DOI: 10.4103/1673-5374.320967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonylurea receptor (SUR) belongs to the adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporter family; however, SUR is associated with ion channels and acts as a regulatory subunit determining the opening or closing of the pore. Abcc8 and Abcc9 genes code for the proteins SUR1 and SUR2, respectively. The SUR1 transcript encodes a protein of 1582 amino acids with a mass around 140–177 kDa expressed in the pancreas, brain, heart, and other tissues. It is well known that SUR1 assembles with Kir6.2 and TRPM4 to establish KATP channels and non-selective cation channels, respectively. Abbc8 and 9 are alternatively spliced, and the resulting transcripts encode different isoforms of SUR1 and SUR2, which have been detected by different experimental strategies. Interestingly, the use of binding assays to sulfonylureas and Western blotting has allowed the detection of shorter forms of SUR (~65 kDa). Identity of the SUR1 variants has not been clarified, and some authors have suggested that the shorter forms are unspecific. However, immunoprecipitation assays have shown that SUR2 short forms are part of a functional channel even coexisting with the typical forms of the receptor in the heart. This evidence confirms that the structure of the short forms of the SURs is fully functional and does not lose the ability to interact with the channels. Since structural changes in short forms of SUR modify its affinity to ATP, regulation of its expression might represent an advantage in pathologies where ATP concentrations decrease and a therapeutic target to induce neuroprotection. Remarkably, the expression of SUR1 variants might be induced by conditions associated to the decrease of energetic substrates in the brain (e.g. during stroke and epilepsy). In this review, we want to contribute to the knowledge of SUR1 complexity by analyzing evidence that shows the existence of short SUR1 variants and its possible implications in brain function.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Javier Franco-Pérez
- Laboratorio de Formación Reticular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Moisés Rubio-Osornio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| |
Collapse
|
14
|
Singh N, Bhatnagar S. Machine Learning for Prediction of Drug Targets in Microbe Associated Cardiovascular Diseases by Incorporating Host-pathogen Interaction Network Parameters. Mol Inform 2021; 41:e2100115. [PMID: 34676983 DOI: 10.1002/minf.202100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
Host-pathogen interactions play a crucial role in invasion, infection, and induction of immune response in humans. In this work, four machine learning algorithms, namely Logistic regression, K-nearest neighbor, Support Vector Machine, and Random Forest were implemented for the classification of drug targets. The algorithms were trained using 3400 hosts and 3800 pathogen drug and non-drug target proteins as learning instances. For each protein, 68 pathogen and 73 host features were computed that included sequence, structure, biological and host-pathogen network centrality characteristics. The Random Forest classifier model achieved the best accuracy after 10-fold cross-validation. 99 % accuracy was achieved with a ROC-AUC score of 0.99±0.01 for both pathogen and host training sets. The Eigenvector Centrality of host-pathogen interactions and host-host interactions was the top feature in performing classification of pathogen and host targets respectively. Other features important for classification were the presence of catalytic and binding sites, low instability/aliphatic index, and cellular location. The Random Forest classifier was then used for prediction of drug targets involved in Microbe Associated Cardiovascular Diseases. 331 host and 743 pathogen proteins were predicted as drug targets by the random forest model and can be validated experimentally for therapeutic intervention in Microbe Associated Cardiovascular Diseases.
Collapse
Affiliation(s)
- Nirupma Singh
- Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India.,Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology Dwarka, New Delhi, 110078, India
| |
Collapse
|
15
|
Arullampalam P, Preti B, Ross-Kaschitza D, Lochner M, Rougier JS, Abriel H. Species-Specific Effects of Cation Channel TRPM4 Small-Molecule Inhibitors. Front Pharmacol 2021; 12:712354. [PMID: 34335274 PMCID: PMC8321095 DOI: 10.3389/fphar.2021.712354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The Transient Receptor Potential Melastatin member 4 (TRPM4) gene encodes a calcium-activated non-selective cation channel expressed in several tissues. Mutations in TRPM4 have been reported in patients with different types of cardiac conduction defects. It is also linked to immune response and cancers, but the associated molecular mechanisms are still unclear. Thus far, 9-phenanthrol is the most common pharmacological compound used to investigate TRPM4 function. We recently identified two promising aryloxyacyl-anthranilic acid compounds (abbreviated CBA and NBA) inhibiting TRPM4. However, all aforementioned compounds were screened using assays expressing human TRPM4, whereas the efficacy of mouse TRPM4 has not been assessed. Mouse models are essential to investigate ion channel physiology and chemical compound efficacy. Aim: In this study, we performed comparative electrophysiology experiments to assess the effect of these TRPM4 inhibitors on human and mouse TRPM4 channels heterologously expressed in TsA-201 cells. Methods and Results: We identified striking species-dependent differences in TRPM4 responses. NBA inhibited both human and mouse TRPM4 currents when applied intracellularly and extracellularly using excised membrane patches. CBA inhibited human TRPM4, both intracellularly and extracellularly. Unexpectedly, the application of CBA had no inhibiting effect on mouse TRPM4 current when perfused on the extracellular side. Instead, its increased mouse TRPM4 current at negative holding potentials. In addition, CBA on the intracellular side altered the outward rectification component of the mouse TRPM4 current. Application of 9-phenanthrol, both intracellularly and extracellularly, inhibited human TRPM4. For mouse TRPM4, 9-phenanthrol perfusion led to opposite effects depending on the site of application. With intracellular 9-phenanthrol, we observed a tendency towards potentiation of mouse TRPM4 outward current at positive holding potentials. Conclusion: Altogether, these results suggest that pharmacological compounds screened using “humanised assays” should be extensively characterised before application in vivo mouse models.
Collapse
Affiliation(s)
- Prakash Arullampalam
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Barbara Preti
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Jean-Sébastien Rougier
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Deletion of Trpm4 Alters the Function of the Na v1.5 Channel in Murine Cardiac Myocytes. Int J Mol Sci 2021; 22:ijms22073401. [PMID: 33810249 PMCID: PMC8037196 DOI: 10.3390/ijms22073401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential melastatin member 4 (TRPM4) encodes a Ca2+-activated, non-selective cation channel that is functionally expressed in several tissues, including the heart. Pathogenic mutants in TRPM4 have been reported in patients with inherited cardiac diseases, including conduction blockage and Brugada syndrome. Heterologous expression of mutant channels in cell lines indicates that these mutations can lead to an increase or decrease in TRPM4 expression and function at the cell surface. While the expression and clinical variant studies further stress the importance of TRPM4 in cardiac function, the cardiac electrophysiological phenotypes in Trpm4 knockdown mouse models remain incompletely characterized. To study the functional consequences of Trpm4 deletion on cardiac electrical activity in mice, we performed perforated-patch clamp and immunoblotting studies on isolated atrial and ventricular cardiac myocytes and surfaces, as well as on pseudo- and intracardiac ECGs, either in vivo or in Langendorff-perfused explanted mouse hearts. We observed that TRPM4 is expressed in atrial and ventricular cardiac myocytes and that deletion of Trpm4 unexpectedly reduces the peak Na+ currents in myocytes. Hearts from Trpm4−/− mice presented increased sensitivity towards mexiletine, a Na+ channel blocker, and slower intraventricular conduction, consistent with the reduction of the peak Na+ current observed in the isolated cardiac myocytes. This study suggests that TRPM4 expression impacts the Na+ current in murine cardiac myocytes and points towards a novel function of TRPM4 regulating the Nav1.5 function in murine cardiac myocytes.
Collapse
|
17
|
Chen X, Liu K, Lin Z, Huang K, Pan S. Knockout of Transient Receptor Potential Melastatin 4 Channel Mitigates Cerebral Edema and Neuronal Injury After Status Epilepticus in Mice. J Neuropathol Exp Neurol 2021; 79:1354-1364. [PMID: 33186453 DOI: 10.1093/jnen/nlaa134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate whether the knockout of transient receptor potential melastatin 4 (TRPM4) could reduce cerebral edema and improve neurologic outcome in a mouse model of status epilepticus (SE). Wild-type (WT) (n = 61) and Trpm4-/- mice (n = 61) with behavioral seizures induced by lithium (10 mEq/kg) and pilocarpine (30-40 mg/kg) were terminated 2.5 hours after the onset of SE. After SE, 28 WT-SE and 27 Trpm4-/--SE mice were observed for 28 days and assessed for survival and cognitive function; the others were killed after 24 hours, 72 hours, or 7 days, and evaluated for cerebral edema and histological injury. In comparison to WT-SE mice, the mortality and cognitive deficit for Trpm4-/--SE mice following SE after 28 days were significantly ameliorated. Trpm4-/--SE mice also showed less water content and cerebral edema assessed by magnetic resonance imaging, and decreased blood-brain barrier breakdown after SE. Moreover, Trpm4 deficiency significantly mitigated neuronal loss, cellular necrosis and apoptosis in the hippocampus and piriform cortex and mitigated astrocytosis and microgliosis. In conclusion, this study suggests that Trmp4 may represent a new target for improving outcomes after SE.
Collapse
Affiliation(s)
- Xing Chen
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenzhou Lin
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Dalenogare DP, Theisen MC, Peres DS, Fialho MFP, Lückemeyer DD, Antoniazzi CTDD, Kudsi SQ, Ferreira MDA, Ritter CDS, Ferreira J, Oliveira SM, Trevisan G. TRPA1 activation mediates nociception behaviors in a mouse model of relapsing-remitting experimental autoimmune encephalomyelitis. Exp Neurol 2020; 328:113241. [DOI: 10.1016/j.expneurol.2020.113241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
|
19
|
Xue Y, Yin P, Li G, Zhong D. Transcriptomes in rat sciatic nerves at different stages of experimental autoimmune neuritis determined by RNA sequencing. Clin Exp Immunol 2019; 198:184-197. [PMID: 31344254 DOI: 10.1111/cei.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 11/28/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is characterized by acute immune-mediated peripheral neuropathy, which may result in rapidly progressive paralysis and fatal respiratory failure. As the underlying pathological mechanisms of GBS are unclear, we surveyed the transcriptome of rats with experimental autoimmune neuritis (EAN), a model of GBS. Briefly, sciatic nerves on both sides were collected from 8-10-week-old Lewis rats during early (10 days post-induction), peak (19 days) and late neuritis (30 days). Total RNA was sequenced to identify differentially expressed genes. Compared to control rats without induced neuritis, 33 genes were differentially expressed in the early phase (14 up-regulated and 19 down-regulated), with an adjusted P-value < 0·05 and |log2 fold-change| >1, as were 137 genes in the peak phase (126 up-regulated and 11 down-regulated) and 60 genes in the late phase (58 up-regulated and two down-regulated). Eleven of these genes were common to all stages, suggesting their crucial roles throughout the disease course. Analysis of protein-protein interactions revealed Fos, Ccl2, Itgax and C3 as node genes at different stages. Functional analysis of differentially expressed genes identified biological processes and pathways that are activated as neuritis progresses. This is the first genomewide gene expression study of peripheral nerves in experimental autoimmune neuritis model. Dynamic gene expression and significantly altered biological functions were detected in different phases of the disease, increasing our understanding of the molecular mechanisms underlying EAN and highlighting potential targets for its diagnosis and treatment.
Collapse
Affiliation(s)
- Y Xue
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - P Yin
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - G Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - D Zhong
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Gong Y, Du MY, Yu HL, Yang ZY, Li YJ, Zhou L, Mei R, Yang L, Wang F. Increased TRPM4 Activity in Cerebral Artery Myocytes Contributes to Cerebral Blood Flow Reduction After Subarachnoid Hemorrhage in Rats. Neurotherapeutics 2019; 16:901-911. [PMID: 31073979 PMCID: PMC6694375 DOI: 10.1007/s13311-019-00741-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cerebral blood flow (CBF) reduction underlies unfavorable outcomes after subarachnoid hemorrhage (SAH). Transient receptor potential melastatin-4 (TRPM4) has a pivotal role in cerebral artery myogenic tone maintenance and CBF regulation under physiological conditions. However, the role of TRPM4 in CBF reduction after SAH is unclear. In this study, we aimed at testing whether TRPM4 would contribute to CBF reduction after SAH in vivo and determining underlying mechanisms. Rat SAH model was established by stereotaxic injection of autologous nonheparinized arterial blood at the suprasellar cistern. A TRPM4 blocker, 9-phenanthrol (9-Phe), was infused through an intraventricular catheter connected to a programmed subcutaneous pump to evaluate the contribution of TRPM4 to SAH outcomes. TRPM4 expression and translocation in cerebral artery myocytes were detected by immunoblotting. Macroscopic currents in cerebral artery myocytes were determined by whole-cell patch clamp. Myogenic tone of cerebral arteries was studied by pressurized myography. Cortical and global CBFs were measured via laser Doppler flowmetry and fluorescent microspheres, respectively. After SAH, TRPM4 translocation and macroscopic current density increased significantly. Furthermore, TRPM4 accounted for a greater proportion of myogenic tone after SAH, suggesting an upregulation of TRPM4 activity in response to SAH. Cortical and global CBFs were reduced after SAH, but were restored significantly by 9-Phe, implying that TRPM4 contributed to CBF reduction after SAH. Collectively, these discoveries show that increased TRPM4 activity has a pivotal role in CBF reduction after SAH, and provide a novel target for the management of cerebral perfusion dysfunction following SAH.
Collapse
Affiliation(s)
- Yi Gong
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032 China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032 China
- Department of Neurosurgery, The Third People’s Hospital of Yunnan Province, Kunming, 650011 China
| | - Ming-yue Du
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032 China
| | - Hua-lin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032 China
| | - Zhi-yong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032 China
| | - Yu-jin Li
- Department of Anesthesiology, The First People’s Hospital of Yunnan Province, Kunming, 650032 China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500 China
| | - Rong Mei
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, 650500 China
| | - Li Yang
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500 China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032 China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032 China
| |
Collapse
|