1
|
Zhu Y, Wang G, Wang K, Sun M, Zhao L, Zeng Y, Yan C, Ji Y, Hou Y, Li Z, Tao J. SCN8A Epileptic Encephalopathy Mutation Displays a Loss-of-Function Phenotype and Distinct Insensitivity to Valproate. ACS Chem Neurosci 2025; 16:1132-1143. [PMID: 40033685 DOI: 10.1021/acschemneuro.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Voltage-gated sodium channels are the main targets of antiepileptic drugs, such as sodium valproate (VPA). Single nucleotide polymorphisms (SNPs) in the Nav1.6 isoform (SCN8A) have been reported to be closely associated with motor dysfunction in pediatric akathisia epileptica. In this study, we conducted a genetic screening of pediatric patients with seizures treated solely with VPA and identified two novel missense mutations of SCN8A (A1534V and Q1853H). Electrophysiological results revealed that the peak currents of the A1534V variant were smaller compared to that of the wild-type (WT) channel. The A1534V variant also caused a positive shift in the I-V curve, indicating a change in the voltage dependence of activation compared to the WT channels. In contrast, VPA induced a significant negative shift in the inactivation of both WT and A1534V mutant. However, the inhibition of currents by VPA was weaker in the A1534V variant than in WT. Furthermore, the recovery time constant of the A1534V variant was shorter than that of WT when treated with VPA. Regrettably, although the Q1853H variant can be expressed in HEK293T cells, the detected current is too small (approximately 50 pA). In conclusion, our results suggest that the A1534V mutation is a novel loss-of-function variant that exhibits moderate insensitivity to VPA. These results underscore the importance of Nav1.6 as a key target in epilepsy and highlight the necessity of analyzing its role in the pathological process.
Collapse
Affiliation(s)
- Yudan Zhu
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guangfei Wang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| | - Kaixuan Wang
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321099, China
| | - Meng Sun
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Lu Zhao
- Department of Neurology and Central Laboratory, Putuo Clinical Medical School, Anhui Medical University, Shanghai 20062, China
| | - Yunqing Zeng
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Cuina Yan
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Yonghua Ji
- Joint Laboratory of Nanxiang Branch of Ruijin Hospital-School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yangbo Hou
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| | - Jie Tao
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
- Central Laboratory, Nanxiang Branch of Ruijin Hospital, Shanghai 201802, China
- Joint Laboratory of Nanxiang Branch of Ruijin Hospital-School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Weiss N, Zamponi GW. The T-type calcium channelosome. Pflugers Arch 2024; 476:163-177. [PMID: 38036777 DOI: 10.1007/s00424-023-02891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
Collapse
Affiliation(s)
- Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Al Anazi AH, Ammar AS, Al-Hajj M, Cyrus C, Aljaafari D, Khoda I, Abdelfatah AK, Alsulaiman AA, Alanazi F, Alanazi R, Gandla D, Lad H, Barayan S, Keating BJ, Al-Ali AK. Whole-exome sequencing of a Saudi epilepsy cohort reveals association signals in known and potentially novel loci. Hum Genomics 2022; 16:71. [PMID: 36539902 PMCID: PMC9764464 DOI: 10.1186/s40246-022-00444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Epilepsy, a serious chronic neurological condition effecting up to 100 million people globally, has clear genetic underpinnings including common and rare variants. In Saudi Arabia, the prevalence of epilepsy is high and caused mainly by perinatal and genetic factors. No whole-exome sequencing (WES) studies have been performed to date in Saudi Arabian epilepsy cohorts. This offers a unique opportunity for the discovery of rare genetic variants impacting this disease as there is a high rate of consanguinity among large tribal pedigrees. RESULTS We performed WES on 144 individuals diagnosed with epilepsy, to interrogate known epilepsy-related genes for known and functional novel variants. We also used an American College of Medical Genetics (ACMG) guideline-based variant prioritization approach in an attempt to discover putative causative variants. We identified 32 potentially causative pathogenic variants across 30 different genes in 44/144 (30%) of these Saudi epilepsy individuals. We also identified 232 variants of unknown significance (VUS) across 101 different genes in 133/144 (92%) subjects. Strong enrichment of variants of likely pathogenicity was observed in previously described epilepsy-associated loci, and a number of putative pathogenic variants in novel loci are also observed. CONCLUSION Several putative pathogenic variants in known epilepsy-related loci were identified for the first time in our population, in addition to several potential new loci which may be prioritized for further investigation.
Collapse
Affiliation(s)
- Abdulrahman H. Al Anazi
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed S. Ammar
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mahmoud Al-Hajj
- grid.415296.d0000 0004 0607 1539Department of Neurosurgery, King Fahd Hospital, Alhafof, Saudi Arabia
| | - Cyril Cyrus
- grid.411975.f0000 0004 0607 035XDepartment of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Danah Aljaafari
- grid.411975.f0000 0004 0607 035XDepartment of Neurology, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Iname Khoda
- grid.411975.f0000 0004 0607 035XDepartment of Neurology, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed K. Abdelfatah
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah A. Alsulaiman
- grid.411975.f0000 0004 0607 035XDepartment of Neurology, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Firas Alanazi
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rawan Alanazi
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Divya Gandla
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - Hetal Lad
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - Samar Barayan
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Brendan J. Keating
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - Amein K. Al-Ali
- grid.411975.f0000 0004 0607 035XDepartment of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
4
|
Mustafá ER, Gambeta E, Stringer RN, Souza IA, Zamponi GW, Weiss N. Electrophysiological and computational analysis of Ca v3.2 channel variants associated with familial trigeminal neuralgia. Mol Brain 2022; 15:91. [PMID: 36397158 PMCID: PMC9670400 DOI: 10.1186/s13041-022-00978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Trigeminal neuralgia (TN) is a rare form of chronic neuropathic pain characterized by spontaneous or elicited paroxysms of electric shock-like or stabbing pain in a region of the face. While most cases occur in a sporadic manner and are accompanied by intracranial vascular compression of the trigeminal nerve root, alteration of ion channels has emerged as a potential exacerbating factor. Recently, whole exome sequencing analysis of familial TN patients identified 19 rare variants in the gene CACNA1H encoding for Cav3.2T-type calcium channels. An initial analysis of 4 of these variants pointed to a pathogenic role. In this study, we assessed the electrophysiological properties of 13 additional TN-associated Cav3.2 variants expressed in tsA-201 cells. Our data indicate that 6 out of the 13 variants analyzed display alteration of their gating properties as evidenced by a hyperpolarizing shift of their voltage dependence of activation and/or inactivation resulting in an enhanced window current supported by Cav3.2 channels. An additional variant enhanced the recovery from inactivation. Simulation of neuronal electrical membrane potential using a computational model of reticular thalamic neuron suggests that TN-associated Cav3.2 variants could enhance neuronal excitability. Altogether, the present study adds to the notion that ion channel polymorphisms could contribute to the etiology of some cases of TN and further support a role for Cav3.2 channels.
Collapse
Affiliation(s)
- Emilio R. Mustafá
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eder Gambeta
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Robin N. Stringer
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana A. Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Norbert Weiss
- grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
6
|
The Genetic Diagnosis of Ultrarare DEEs: An Ongoing Challenge. Genes (Basel) 2022; 13:genes13030500. [PMID: 35328054 PMCID: PMC8953579 DOI: 10.3390/genes13030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Epileptic encephalopathies (EEs) and developmental and epileptic encephalopathies (DEEs) are a group of severe early-onset neurodevelopmental disorders (NDDs). In recent years, next-generation equencing (NGS) technologies enabled the discovery of numerous genes involved in these conditions. However, more than 50% of patients remained undiagnosed. A major obstacle lies in the high degree of genetic heterogeneity and the wide phenotypic variability that has characterized these disorders. Interpreting a large amount of NGS data is also a crucial challenge. This study describes a dynamic diagnostic procedure used to investigate 17 patients with DEE or EE with previous negative or inconclusive genetic testing by whole-exome sequencing (WES), leading to a definite diagnosis in about 59% of participants. Biallelic mutations caused most of the diagnosed cases (50%), and a pathogenic somatic mutation resulted in 10% of the subjects. The high diagnostic yield reached highlights the relevance of the scientific approach, the importance of the reverse phenotyping strategy, and the involvement of a dedicated multidisciplinary team. The study emphasizes the role of recessive and somatic variants, new genetic mechanisms, and the complexity of genotype–phenotype associations. In older patients, WES results could end invasive diagnostic procedures and allow a more accurate transition. Finally, an early pursued diagnosis is essential for comprehensive care of patients, precision approach, knowledge of prognosis, patient and family planning, and quality of life.
Collapse
|
7
|
Wong JC, Butler KM, Shapiro L, Thelin JT, Mattison KA, Garber KB, Goldenberg PC, Kubendran S, Schaefer GB, Escayg A. Pathogenic in-Frame Variants in SCN8A: Expanding the Genetic Landscape of SCN8A-Associated Disease. Front Pharmacol 2021; 12:748415. [PMID: 34867351 PMCID: PMC8635767 DOI: 10.3389/fphar.2021.748415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, United States.,Greenwood Genetic Center, Greenwood, SC, United States
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kari A Mattison
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kathryn B Garber
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Paula C Goldenberg
- Department of Pediatrics and Medical Genetics, Harvard Medical School, Boston, MA, United States
| | - Shobana Kubendran
- Department of Pediatrics, Kansas University School of Medicine-Wichita, Wichita, KS, United States
| | - G Bradley Schaefer
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|