1
|
Ying Q, Lv D, Chen Y, Mu Q. Distinguishing acute leukemia subtypes: The role of hsa_circ_0012152 and hsa_circ_0020093 in peripheral blood. Oncol Lett 2025; 30:330. [PMID: 40385694 PMCID: PMC12082030 DOI: 10.3892/ol.2025.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/06/2025] [Indexed: 05/20/2025] Open
Abstract
Acute leukemia (AL), a rapidly progressing hematological malignancy originating from the bone marrow, is primarily subclassified into acute myelocytic leukemia (AML) and acute lymphoblastic leukemia (ALL). Obtaining bone marrow samples can be challenging due to a number of reasons, including dilution or inaccessibility. Therefore, the present study focused on identifying novel diagnostic biomarkers in the peripheral blood for AL subgroups. Circular RNAs (circRNAs) are non-coding RNA molecules associated with various diseases. In the present study, to validate the distinct circRNA expression patterns distinguishing AML from ALL in peripheral blood, reverse transcription-quantitative polymerase chain reaction was employed. The diagnostic accuracy of hsa_circ_0020093 and hsa_circ_0012152 was then assessed using receiver operating characteristic curve analysis, and hsa_circ_0020093 was selected for further exploration using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The findings revealed that the expression patterns of hsa_circ_0020093 and hsa_circ_0012152 clearly differentiated ALL from AML in peripheral blood. The potential target genes of hsa_circ_0020093 identified were associated with critical biological processes such as protein serine kinase activity and cadherin binding. Furthermore, these genes are involved in signaling pathways including MAPK and mTOR. We propose that hsa_circ_0020093 plays a crucial role in initiating and promoting ALL by modulating downstream target genes through either hsa-microRNA (miR)-153-3p or hsa-miR-194-5p. The results of the present study demonstrate that hsa_circ_0020093 and hsa_circ_0012152 hold significant promise as diagnostic biomarkers for subclassifying AL into ALL or AML in peripheral blood. This discovery lays the foundation for future research endeavors aimed at elucidating the role of circRNAs in the pathogenesis and treatment of AL.
Collapse
Affiliation(s)
- Qiming Ying
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Dingfeng Lv
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Qitian Mu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
2
|
Dai C, Qianjiang H, Fu R, Yang H, Shi A, Luo H. Epigenetic and epitranscriptomic role of lncRNA in carcinogenesis (Review). Int J Oncol 2025; 66:29. [PMID: 40017127 PMCID: PMC11900940 DOI: 10.3892/ijo.2025.5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non‑coding RNAs (lncRNAs) are key players in the regulation of gene expression by mediating epigenetic and epitranscriptomic modification. Dysregulation of lncRNAs is implicated in tumor initiation, progression and metastasis. lncRNAs modulate chromatin structure and gene transcription by recruiting epigenetic regulators, including DNA‑ or histone‑modifying enzymes. Additionally, lncRNAs mediate chromatin remodeling and enhancer‑promoter long‑range chromatin interactions to control oncogene expression by recruiting chromatin organization‑associated proteins, thereby promoting carcinogenesis. Furthermore, lncRNAs aberrantly induce oncogene expression by mediating epitranscriptomic modifications, including RNA methylation and RNA editing. The present study aimed to summarize the regulatory mechanisms of lncRNAs in cancer to unravel the complex interplay between lncRNAs and epigenetic/epitranscriptomic regulators in carcinogenesis. The present review aimed to provide a novel perspective on the epigenetic and epitranscriptomic roles of lncRNAs in carcinogenesis to facilitate identification of potential biomarkers and therapeutic targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunfei Dai
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Haoyue Qianjiang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Ruishuang Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Huimin Yang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Aiqin Shi
- Xianghu Laboratory, Hangzhou, Zhejiang 311231, P.R. China
| | - Huacheng Luo
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
3
|
Xing C, Ding S, Duan T, Li Z, Yan J, Kuang Y, Liu Q, Mu Z. Epigenetic regulation and tumor suppressive function of lncRNA EP300-AS1 in nasopharyngeal carcinoma through activation of TFAP2C binding to CST6: implications for diagnosis, prognosis, and therapy. Am J Cancer Res 2025; 15:894-928. [PMID: 40226463 PMCID: PMC11982720 DOI: 10.62347/mcyv5235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 04/15/2025] Open
Abstract
The long non-coding RNA EP300-AS1 (lncRNA EP300-AS1), identified as a potential regulatory factor in various cancers, remains underexplored in nasopharyngeal carcinoma (NPC). This study investigated EP300-AS1's regulatory mechanisms in NPC, particularly its interaction with transcription factor AP-2 Gamma (TFAP2C) and its effect on cystatin E/M (CST6) expression. Employing clinical samples and NPC cell lines, we conducted in vitro and in vivo xenograft experiments to assess the impacts of modulating EP300-AS1 expression. Techniques such as CCK8, migration, scratch, apoptosis assays, cell cycle analysis, immunoblotting, and fluorescence experiments elucidated EP300-AS1's role in NPC. The interaction between EP300-AS1 and TFAP2C in regulating CST6 expression was verified using FISH, ChIP, RNA pull-down, and silver staining assays. Results indicated lower expression levels of EP300-AS1 and CST6 in NPC, with EP300-AS1 suppression inhibiting cell proliferation, migration, and invasion, while promoting apoptosis and maintaining the cell cycle in the G1 phase. EP300-AS1 also modulated epithelial-mesenchymal transition (EMT) marker expression, suggesting a role in metastasis control. Conclusively, EP300-AS1 acts as a potential tumor suppressor in NPC by interacting with TFAP2C and targeting CST6, offering novel biomarkers and therapeutic targets through its influence on methylation and the tumor microenvironment.
Collapse
Affiliation(s)
- Chengliang Xing
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Shun Ding
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Tingting Duan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Zhiqun Li
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Jinren Yan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yu Kuang
- Medical Physics Program, University of Nevada, Las VegasLas Vegas, NV 89154, USA
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Zhonglin Mu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| |
Collapse
|
4
|
Saeed BI, Kumar A, Oghenemaro EF, Almutairi LA, M RM, Kumawat R, Uthirapathy S, Hulail HM, Sharma S, Ravi Kumar M. Interactions between lncRNAs and cyclins/CDKs complexes; key players in determining cancer cell response to CDKs inhibitors. Exp Cell Res 2025; 445:114406. [PMID: 39761840 DOI: 10.1016/j.yexcr.2025.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025]
Abstract
Transcription takes place over a significant portion of the human genome. However, only a small portion of the transcriptome, roughly 1.2 %, consists of RNAs translated into proteins; the majority of transcripts, on the other hand, comprise a variety of RNA families with varying sizes and functions. A substantial portion of this diverse RNA universe consists of sequences longer than 200 bases, called the long non-coding RNA (lncRNA). The control of gene transcription, changes to DNA topology, nucleosome organization and structure, paraspeckle creation, and assistance for developing cellular organelles are only a few of the numerous tasks performed by lncRNA. The main focus of this study is on the function of lncRNA in controlling the levels and actions of cyclin-dependent kinase inhibitors (CDKIs). The enzymes required for the mitotic cycle's regulated progression are called cyclin-dependent kinases (CDKs). They have many degrees of regulation over their activities and interact with CDKIs as their crucial mechanisms. Interestingly, culminating evidence has clarified that lncRNAs are associated with several illnesses and use CDKI regulation to control cellular function. Nonetheless, despite the abundance of solid evidence in the literature, it still seems unlikely that lncRNA will have much of an impact on controlling cell proliferation or modulating CDKIs.
Collapse
Affiliation(s)
- Bahaa Ibrahim Saeed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, PMB 1, Abraka, Delta State, Nigeria.
| | - Layla A Almutairi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Subasini Uthirapathy
- Faculty of Pharmacy, Pharmacology Department, Tishk International University, Erbil, Kurdistan Region of Iraq, Iraq.
| | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India.
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India.
| |
Collapse
|
5
|
Ge X, Du C, Fang L, Xu W, Xiang J, Liu J, Zhou M, Chen Y, Wang Z, Li Z. Long non-coding RNA CAR10 promotes angiogenesis of lung adenocarcinoma by mediating nuclear LDHA to epigenetically regulate VEGFA/C. Commun Biol 2025; 8:32. [PMID: 39789173 PMCID: PMC11718007 DOI: 10.1038/s42003-025-07452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Angiogenesis is a significant character of lung adenocarcinoma (LUAD) and is an important reason leading to high mortality rates of LUAD patients. However, the molecular mechanisms of lncRNAs regulating the angiogenesis in LUAD have not been fully elucidated. Here we show lncRNA chromatin-associated RNA 10 (CAR10) was upregulated in the tumor tissue of patients with LUAD and enhanced tumor metastasis. Mechanistically, CAR10 could bind to Lactate Dehydrogenase A (LDHA) protein to regulate the phosphorylation and acetylation of LDHA and increase the dimerization of LDHA to promote its nuclear translocation, which increased the H3K79 methylation in Vascular Endothelial Growth Factor A (VEGFA) and Vascular Endothelial Growth Factor C (VEGFC) gene interval. CAR10 induced microvascular formation in vivo and in vitro by regulating LDHA-VEGFA/C axis. In addition, MYC and TP53 bonded to the promotor of CAR10 and reverse regulated its expression in LUAD cells. CAR10 regulates post-translational modification of LDHA and increases the H3K79 methylation of VEGFA/VEGFC to promote angiogenesis of LUAD, which is a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiaolu Ge
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, PR China
| | - Chao Du
- The First Department of Thoracic Surgery, Hunan Cancer Hospital and the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Li Fang
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, PR China
| | - Wei Xu
- The First Department of Thoracic Surgery, Hunan Cancer Hospital and the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Juanjuan Xiang
- The First Department of Thoracic Surgery, Hunan Cancer Hospital and the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jiheng Liu
- Department of Hematology & Oncology, First Hospital of Changsha, Changsha, Hunan, PR China
| | - Ming Zhou
- The First Department of Thoracic Surgery, Hunan Cancer Hospital and the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Yuejun Chen
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, PR China
| | - Ziyao Wang
- The First Department of Thoracic Surgery, Hunan Cancer Hospital and the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
- NHC Key Laboratory of Carcinogenesis, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, PR China.
| | - Zheng Li
- The First Department of Thoracic Surgery, Hunan Cancer Hospital and the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| |
Collapse
|
6
|
Sharma S. Unraveling the role of long non-coding RNAs in therapeutic resistance in acute myeloid leukemia: New prospects & challenges. Noncoding RNA Res 2024; 9:1203-1221. [PMID: 39036603 PMCID: PMC11259994 DOI: 10.1016/j.ncrna.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological disease characterized by the unchecked proliferation of immature myeloid blasts in different tissues developed by various mutations in hematopoiesis. Despite intense chemotherapeutic regimens, patients often experience poor outcomes, leading to substandard remission rates. In recent years, long non-coding RNAs (lncRNAs) have increasingly become important prognostic and therapeutic hotspots, due to their contributions to dysregulating many functional epigenetic, transcriptional, and post-translational mechanisms leading to alterations in cell expressions, resulting in increased chemoresistance and reduced apoptosis in leukemic cells. Through this review, I highlight and discuss the latest advances in understanding the major mechanisms through which lncRNAs confer therapy resistance in AML. In addition, I also provide perspective on the current strategies to target lncRNA expressions. A better knowledge of the critical role that lncRNAs play in controlling treatment outcomes in AML will help improve existing medications and devise new ones.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
7
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
9
|
Xu C, Meng J, Yu XH, Wang RJ, Li ML, Yin SH, Wang G. TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway. J Physiol Biochem 2024; 80:523-539. [PMID: 38878215 DOI: 10.1007/s13105-024-01018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/12/2024] [Indexed: 10/25/2024]
Abstract
Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE-/-) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE-/- mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Can Xu
- Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jun Meng
- Department of Function, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, Hainan, People's Republic of China
| | - Ru-Jing Wang
- Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mei-Ling Li
- Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shan-Hui Yin
- Department of Neonatology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Gang Wang
- Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Zhang LQ, Liang YC, Wang JX, Zhang J, La T, Li QZ. Unlocking the potential: A novel prognostic index signature for acute myeloid leukemia. Comput Biol Med 2024; 173:108396. [PMID: 38574529 DOI: 10.1016/j.compbiomed.2024.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by challenges in treatment, including drug resistance and frequent relapse. Recent research highlights the crucial roles of tumor microenvironment (TME) in assisting tumor cell immune escape and promoting tumor aggressiveness. This study delves into the interplay between AML and TME. Through the exploration of potential driver genes, we constructed an AML prognostic index (AMLPI). Cross-platform data and multi-dimensional internal and external validations confirmed that the AMLPI outperforms existing models in terms of areas under the receiver operating characteristic curves, concordance index values, and net benefits. High AMLPIs in AML patients were indicative of unfavorable prognostic outcomes. Immune analyses revealed that the high-AMLPI samples exhibit higher expression of HLA-family genes and immune checkpoint genes (including PD1 and CTLA4), along with lower T cell infiltration and higher macrophage infiltration. Genetic variation analyses revealed that the high-AMLPI samples associate with adverse variation events, including TP53 mutations, secondary NPM1 co-mutations, and copy number deletions. Biological interpretation indicated that ALDH2 and SPATS2L contribute significantly to AML patient survival, and their abnormal expression correlates with DNA methylation at cg12142865 and cg11912272. Drug response analyses revealed that different AMLPI samples tend to have different clinical selections, with low-AMLPI samples being more likely to benefit from immunotherapy. Finally, to facilitate broader access to our findings, a user-friendly and publicly accessible webserver was established and available at http://bioinfor.imu.edu.cn/amlpi. This server provides tools including TME-related AML driver genes mining, AMLPI construction, multi-dimensional validations, AML patients risk assessment, and figures drawing.
Collapse
MESH Headings
- Humans
- Prognosis
- Nucleophosmin
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- DNA Methylation
- Tumor Microenvironment
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
Collapse
Affiliation(s)
- Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Yu-Chao Liang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| | - Jun-Xuan Wang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Jing Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Ta La
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
11
|
Lobo-Alves SC, Oliveira LAD, Kretzschmar GC, Valengo AE, Rosati R. Long noncoding RNA expression in acute lymphoblastic leukemia: A systematic review. Crit Rev Oncol Hematol 2024; 196:104290. [PMID: 38341118 DOI: 10.1016/j.critrevonc.2024.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), as gene expression modulators, are potential players in Acute Lymphoblastic Leukemia (ALL) pathogenesis. We systematically explored current literature on lncRNA expression in ALL to identify lncRNAs consistently reported as differentially expressed (DE) either in ALL versus controls or between ALL subtypes. By comparing articles that provided global expression data for DE lncRNAs in the ETV6::RUNX1-positive ALL subtype, we identified four DE lncRNAs in three independent studies (two versus other subtypes and one versus controls), showing concordant expression of LINC01013, CRNDE and lnc-KLF7-1. Additionally, LINC01503 was consistently downregulated on ALL versus controls. Within RT-qPCR studies, twelve lncRNA were DE in more than one source. Thus, several lncRNAs were supported as DE in ALL by multiple sources, highlighting their potential role as candidate biomarkers or therapeutic targets. Finally, as lncRNA annotation is rapidly expanding, standardization of reporting and nomenclature is urgently needed to improve data verifiability and compilation.
Collapse
Affiliation(s)
- Sara Cristina Lobo-Alves
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Liana Alves de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Gabriela Canalli Kretzschmar
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Andressa Eloisa Valengo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil
| | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
12
|
Chen TQ, Huang HJ, Zhu SX, Chen XT, Pu KJ, Wang D, An Y, Lian JY, Sun YM, Chen YQ, Wang WT. Blockade of the lncRNA-DOT1L-LAMP5 axis enhances autophagy and promotes degradation of MLL fusion proteins. Exp Hematol Oncol 2024; 13:18. [PMID: 38374003 PMCID: PMC10877858 DOI: 10.1186/s40164-024-00488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Mixed-lineage leukemia (MLL) fusion gene caused by chromosomal rearrangement is a dominant oncogenic driver in leukemia. Due to having diverse MLL rearrangements and complex characteristics, MLL leukemia treated by currently available strategies is frequently associated with a poor outcome. Therefore, there is an urgent need to identify novel therapeutic targets for hematological malignancies with MLL rearrangements. METHODS qRT-PCR, western blot, and spearman correction analysis were used to validate the regulation of LAMP5-AS1 on LAMP5 expression. In vitro and in vivo experiments were conducted to assess the functional relevance of LAMP5-AS1 in MLL leukemia cell survival. We utilized chromatin isolation by RNA purification (ChIRP) assay, RNA pull-down assay, chromatin immunoprecipitation (ChIP), RNA fluorescence in situ hybridization (FISH), and immunofluorescence to elucidate the relationship among LAMP5-AS1, DOT1L, and the LAMP5 locus. Autophagy regulation by LAMP5-AS1 was evaluated through LC3B puncta, autolysosome observation via transmission electron microscopy (TEM), and mRFP-GFP-LC3 puncta in autophagic flux. RESULTS The study shows the crucial role of LAMP5-AS1 in promoting MLL leukemia cell survival. LAMP5-AS1 acts as a novel autophagic suppressor, safeguarding MLL fusion proteins from autophagic degradation. Knocking down LAMP5-AS1 significantly induced apoptosis in MLL leukemia cell lines and primary cells and extended the survival of mice in vivo. Mechanistically, LAMP5-AS1 recruits the H3K79 histone methyltransferase DOT1L to LAMP5 locus, directly activating LAMP5 expression. Importantly, blockade of LAMP5-AS1-LAMP5 axis can represses MLL fusion proteins by enhancing their degradation. CONCLUSIONS The findings underscore the significance of LAMP5-AS1 in MLL leukemia progression through the regulation of the autophagy pathway. Additionally, this study unveils the novel lncRNA-DOT1L-LAMP5 axis as promising therapeutic targets for degrading MLL fusion proteins.
Collapse
Affiliation(s)
- Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Heng-Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shun-Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao-Tong Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ke-Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dan Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong, Guangzhou, 510060, China
| | - Yan An
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun-Yi Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
13
|
Amin HM, Abukhairan R, Szabo B, Jacksi M, Varady G, Lozsa R, Schad E, Tantos A. KMT2D preferentially binds mRNAs of the genes it regulates, suggesting a role in RNA processing. Protein Sci 2024; 33:e4847. [PMID: 38058280 PMCID: PMC10731558 DOI: 10.1002/pro.4847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Histone lysine methyltransferases (HKMTs) perform vital roles in cellular life by controlling gene expression programs through the posttranslational modification of histone tails. Since many of them are intimately involved in the development of different diseases, including several cancers, understanding the molecular mechanisms that control their target recognition and activity is vital for the treatment and prevention of such conditions. RNA binding has been shown to be an important regulatory factor in the function of several HKMTs, such as the yeast Set1 and the human Ezh2. Moreover, many HKMTs are capable of RNA binding in the absence of a canonical RNA binding domain. Here, we explored the RNA binding capacity of KMT2D, one of the major H3K4 monomethyl transferases in enhancers, using RNA immunoprecipitation followed by sequencing. We identified a broad range of coding and non-coding RNAs associated with KMT2D and confirmed their binding through RNA immunoprecipitation and quantitative PCR. We also showed that a separated RNA binding region within KMT2D is capable of binding a similar RNA pool, but differences in the binding specificity indicate the existence of other regulatory elements in the sequence of KMT2D. Analysis of the bound mRNAs revealed that KMT2D preferentially binds co-transcriptionally to the mRNAs of the genes under its control, while also interacting with super enhancer- and splicing-related non-coding RNAs. These observations, together with the nuclear colocalization of KMT2D with differentially phosphorylated forms of RNA Polymerase II suggest a so far unexplored role of KMT2D in the RNA processing of the nascent transcripts.
Collapse
Affiliation(s)
- Harem Muhamad Amin
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
- Department of Biology, College of ScienceUniversity of SulaimaniSulaymaniyahIraq
| | - Rawan Abukhairan
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Beata Szabo
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Mevan Jacksi
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Gyorgy Varady
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Rita Lozsa
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Eva Schad
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Agnes Tantos
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
14
|
Sabaghi F, Sadat SY, Mirsaeedi Z, Salahi A, Vazifehshenas S, Kesh NZ, Balavar M, Ghoraeian P. The Role of Long Noncoding RNAs in Progression of Leukemia: Based on Chromosomal Location. Microrna 2024; 13:14-32. [PMID: 38275047 DOI: 10.2174/0122115366265540231201065341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 10/12/2023] [Indexed: 01/27/2024]
Abstract
Long non-coding RNA [LncRNA] dysregulation has been seen in many human cancers, including several kinds of leukemia, which is still a fatal disease with a poor prognosis. LncRNAs have been demonstrated to function as tumor suppressors or oncogenes in leukemia. This study covers current research findings on the role of lncRNAs in the prognosis and diagnosis of leukemia. Based on recent results, several lncRNAs are emerging as biomarkers for the prognosis, diagnosis, and even treatment outcome prediction of leukemia and have been shown to play critical roles in controlling leukemia cell activities, such as proliferation, cell death, metastasis, and drug resistance. As a result, lncRNA profiles may have superior predictive and diagnostic potential in leukemia. Accordingly, this review concentrates on the significance of lncRNAs in leukemia progression based on their chromosomal position.
Collapse
Affiliation(s)
- Fatemeh Sabaghi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saina Yousefi Sadat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Mirsaeedi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aref Salahi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Vazifehshenas
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Zahmat Kesh
- Department of Genetics, Zanjan Branch Islamic Azad University, Zanjan, Iran
| | - Mahdieh Balavar
- Department of Genetics, Falavarjan Branch Islamic Azad University, Falavarjan, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Hu X, Wang Y, Zhang X, Li C, Zhang X, Yang D, Liu Y, Li L. DNA methylation of HOX genes and its clinical implications in cancer. Exp Mol Pathol 2023; 134:104871. [PMID: 37696326 DOI: 10.1016/j.yexmp.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Homeobox (HOX) genes encode highly conserved transcription factors that play vital roles in embryonic development. DNA methylation is a pivotal regulatory epigenetic signaling mark responsible for regulating gene expression. Abnormal DNA methylation is largely associated with the aberrant expression of HOX genes, which is implicated in a broad range of human diseases, including cancer. Numerous studies have clarified the mechanisms of DNA methylation in both physiological and pathological processes. In this review, we focus on how DNA methylation regulates HOX genes and briefly discuss drug development approaches targeting these mechanisms.
Collapse
Affiliation(s)
- Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yong Wang
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China; Laboratory of Precision Medicine, Zhangqiu District People's Hospital of Jinan, Jinan 250200, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chensheng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xikun Zhang
- Department of Minimally Invasive Interventional, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, Shandong, China
| | - Dongxia Yang
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China
| | - Yuanyuan Liu
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China
| | - Lianlian Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
16
|
Yu Q, Cai B, Zhang Y, Xu J, Liu D, Zhang X, Han Z, Ma Y, Jiao L, Gong M, Yang X, Wang Y, Li H, Sun L, Bian Y, Yang F, Xuan L, Wu H, Yang B, Zhang Y. Long non-coding RNA LHX1-DT regulates cardiomyocyte differentiation through H2A.Z-mediated LHX1 transcriptional activation. iScience 2023; 26:108051. [PMID: 37942009 PMCID: PMC10628816 DOI: 10.1016/j.isci.2023.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play widespread roles in various processes. However, there is still limited understanding of the precise mechanisms through which they regulate early stage cardiomyocyte differentiation. In this study, we identified a specific lncRNA called LHX1-DT, which is transcribed from a bidirectional promoter of LIM Homeobox 1 (LHX1) gene. Our findings demonstrated that LHX1-DT is nuclear-localized and transiently elevated expression along with LHX1 during early differentiation of cardiomyocytes. The phenotype was rescued by overexpression of LHX1 into the LHX1-DT-/- hESCs, indicating LHX1 is the downstream of LHX1-DT. Mechanistically, we discovered that LHX1-DT physically interacted with RNA/histone-binding protein PHF6 during mesoderm commitment and efficiently replaced conventional histone H2A with a histone variant H2A.Z at the promoter region of LHX1. In summary, our work uncovers a novel lncRNA, LHX1-DT, which plays a vital role in mediating the exchange of histone variants H2A.Z and H2A at the promoter region of LHX1.
Collapse
Affiliation(s)
- Qi Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Benzhi Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dongping Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiyang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Avenue, COMRB 4100, Chicago, IL 60612, USA
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lei Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Manyu Gong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xuewen Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haodong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lihua Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yu Bian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Fan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haodi Wu
- Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences (2019RU070), Harbin 150086, China
| | - Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
17
|
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ, Wang WT. New insight into circRNAs: characterization, strategies, and biomedical applications. Exp Hematol Oncol 2023; 12:91. [PMID: 37828589 PMCID: PMC10568798 DOI: 10.1186/s40164-023-00451-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed, endogenous ncRNAs. Most circRNAs are derived from exonic or intronic sequences by precursor RNA back-splicing. Advanced high-throughput RNA sequencing and experimental technologies have enabled the extensive identification and characterization of circRNAs, such as novel types of biogenesis, tissue-specific and cell-specific expression patterns, epigenetic regulation, translation potential, localization and metabolism. Increasing evidence has revealed that circRNAs participate in diverse cellular processes, and their dysregulation is involved in the pathogenesis of various diseases, particularly cancer. In this review, we systematically discuss the characterization of circRNAs, databases, challenges for circRNA discovery, new insight into strategies used in circRNA studies and biomedical applications. Although recent studies have advanced the understanding of circRNAs, advanced knowledge and approaches for circRNA annotation, functional characterization and biomedical applications are continuously needed to provide new insights into circRNAs. The emergence of circRNA-based protein translation strategy will be a promising direction in the field of biomedicine.
Collapse
Affiliation(s)
- Xin-Yi Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shun-Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke-Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Heng-Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
18
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
19
|
Wei W, Pan J, Wang J, Mao S, Qian Y, Lin X, Ling Q, Ye W, Zhou Y, Zhao Y, Huang J, Huang X, Ma Z, Wang H, Li C, Sun J, Jin J. circSLC25A13 acts as a ceRNA to regulate AML progression via miR-616-3p/ADCY2 axis. Mol Carcinog 2023; 62:1546-1562. [PMID: 37493101 DOI: 10.1002/mc.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 07/27/2023]
Abstract
Circular RNAs (circRNAs), a type of endogenous noncoding RNA (ncRNA), exert vital roles in leukemia progression and are promising prognostic factors. Here, we report a novel circRNA, circSLC25A13 (hsa_circ_0081188), which was increased in acute myeloid leukemia (AML) patients with poor overall survival (OS) comparing to patients with good prognosis. Knockdown of circSLC25A13 in AML cells inhibited proliferation and increased cell apoptosis in vitro and in vivo. Enhanced circSLC25A13 expression promoted the survival of AML cells. Mechanistically, circSLC25A13 played as a microRNA sponge of miR-616-3p, which inhibited the expression of adenylate cyclase 2 (ADCY2). Downregulation of miR-616-3p and overexpression of ADCY2 partially rescued circSLC25A13 deficient induced cell growth arrest. In summary, through competitive absorption of miR-616-3p and thereby upregulating ADCY2 expression, circSLC25A13 promoted AML progression. Moreover, circSLC25A13 may represent a potential novel biomarker for the prognosis of AML and offer a potential therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Wenwen Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yutong Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yanchun Zhao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Zhixin Ma
- Department of Laboratorial Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Huanping Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Chenying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, People's Republic of China
| |
Collapse
|
20
|
Pathania AS. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment. Cancers (Basel) 2023; 15:2833. [PMID: 37345170 DOI: 10.3390/cancers15102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
According to the World Health Organization, every year, an estimated 400,000+ new cancer cases affect children under the age of 20 worldwide. Unlike adult cancers, pediatric cancers develop very early in life due to alterations in signaling pathways that regulate embryonic development, and environmental factors do not contribute much to cancer development. The highly organized complex microenvironment controlled by synchronized gene expression patterns plays an essential role in the embryonic stages of development. Dysregulated development can lead to tumor initiation and growth. The low mutational burden in pediatric tumors suggests the predominant role of epigenetic changes in driving the cancer phenotype. However, one more upstream layer of regulation driven by ncRNAs regulates gene expression and signaling pathways involved in the development. Deregulation of ncRNAs can alter the epigenetic machinery of a cell, affecting the transcription and translation profiles of gene regulatory networks required for cellular proliferation and differentiation during embryonic development. Therefore, it is essential to understand the role of ncRNAs in pediatric tumor development to accelerate translational research to discover new treatments for childhood cancers. This review focuses on the role of ncRNA in regulating the epigenetics of pediatric tumors and their tumor microenvironment, the impact of their deregulation on driving pediatric tumor progress, and their potential as effective therapeutic targets.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
PVT1 inhibition stimulates anti-tumor immunity, prevents metastasis, and depletes cancer stem cells in squamous cell carcinoma. Cell Death Dis 2023; 14:187. [PMID: 36894542 PMCID: PMC9998619 DOI: 10.1038/s41419-023-05710-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Cancer stem cells (CSCs) cause tumor metastasis and immune evasion by as-yet-unknown molecular mechanisms. In the present study, we identify a long noncoding RNA (lncRNA), termed PVT1, which is highly expressed in CSCs and correlated closely with lymph node metastasis of head and neck squamous cell carcinoma (HNSCC). PVT1 inhibition eliminates CSCs, prevents metastasis, and stimulates anti-tumor immunity, while inhibiting HNSCC growth. Moreover, PVT1 inhibition promotes the infiltration of CD8+ T cells into the tumor microenvironment, thereby enhancing immunotherapy by PD1 blockade. Mechanistically, PVT1 inhibition stimulates the DNA damage response, which induces CD8+ T cell-recruiting chemokines, while preventing CSCs and metastasis via regulating the miR-375/YAP1 axis. In conclusion, targeting PVT1 might potentiate the elimination of CSCs via immune checkpoint blockade, prevent metastasis, and inhibit HNSCC growth.
Collapse
|
22
|
Zeng Z, Pan Q, Sun Y, Huang H, Chen X, Chen T, He B, Ye H, Zhu S, Pu K, Fang K, Huang W, Chen Y, Wang W. METTL3 protects METTL14 from STUB1-mediated degradation to maintain m 6 A homeostasis. EMBO Rep 2023; 24:e55762. [PMID: 36597993 PMCID: PMC9986817 DOI: 10.15252/embr.202255762] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Zhan‐Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yu‐Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Heng‐Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Tong Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Tian‐Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Bo He
- Department of Hepatobiliary, and Department of Anesthesiology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hua Ye
- Department of Hepatobiliary, and Department of Anesthesiology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shun‐Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ke‐Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yue‐Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wen‐Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory for Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
23
|
Farzaneh M, Najafi S, Sheykhi-Sabzehpoush M, Nezhad Dehbashi F, Anbiyaee O, Nasrolahi A, Azizidoost S. The stem cell-specific long non-coding RNAs in leukemia. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:345-351. [PMID: 36168086 DOI: 10.1007/s12094-022-02952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Leukemia is defined as a heterogeneous group of hematological cancers whose prevalence is on the rise worldwide. Despite the large body of studies, the etiology of leukemia has not been fully elucidated. Leukemia stem cells (LSCs) are a subpopulation of cancer cells that sustain the growth of the leukemic clone and are the main culprit for the maintenance of the neoplasm. In contrast to most leukemia cells, LSCs are resistant to chemo- and radiotherapy. Several recent studies demonstrated the altered expression profile of long non-coding RNAs (lncRNAs) in LSCs and shed light on the role of lncRNAs in the survival, proliferation, and differentiation of LSCs. LncRNAs are transcripts longer than 200 nucleotides that are implicated in several cellular and molecular processes such as gene expression, apoptosis, and carcinogenesis. Likewise, lncRNAs have shown a prognostic marker in leukemia patients and represent novel treatment options. Herein, we review the current knowledge concerning lncRNAs' implication in the pathogenesis of LSCs and discuss their prognostic, diagnostic, and therapeutic potential.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Nezhad Dehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, School of Medicine, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Nasrolahi
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
25
|
Huang W, Sun YM, Pan Q, Fang K, Chen XT, Zeng ZC, Chen TQ, Zhu SX, Huang LB, Luo XQ, Wang WT, Chen YQ. The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discov 2022; 8:117. [PMID: 36316318 PMCID: PMC9622897 DOI: 10.1038/s41421-022-00460-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/18/2022] [Indexed: 01/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are usually 5' capped and 3' polyadenylated, similar to most typical mRNAs. However, recent studies revealed a type of snoRNA-related lncRNA with unique structures, leading to questions on how they are processed and how they work. Here, we identify a novel snoRNA-related lncRNA named LNC-SNO49AB containing two C/D box snoRNA sequences, SNORD49A and SNORD49B; and show that LNC-SNO49AB represents an unreported type of lncRNA with a 5'-end m7G and a 3'-end snoRNA structure. LNC-SNO49AB was found highly expressed in leukemia patient samples, and silencing LNC-SNO49AB dramatically suppressed leukemia progression in vitro and in vivo. Subcellular location indicated that the LNC-SNO49AB is mainly located in nucleolus and interacted with the nucleolar protein fibrillarin. However, we found that LNC-SNO49AB does not play a role in 2'-O-methylation regulation, a classical function of snoRNA; instead, its snoRNA structure affected the lncRNA stability. We further demonstrated that LNC-SNO49AB could directly bind to the adenosine deaminase acting on RNA 1(ADAR1) and promoted its homodimerization followed by a high RNA A-to-I editing activity. Transcriptome profiling shows that LNC-SNO49AB and ADAR1 knockdown respectively share very similar patterns of RNA modification change in downstream signaling pathways, especially in cell cycle pathways. These findings suggest a previously unknown class of snoRNA-related lncRNAs, which function via a manner in nucleolus independently on snoRNA-guide rRNA modification. This is the first report that a lncRNA regulates genome-wide RNA A-to-I editing by enhancing ADAR1 dimerization to facilitate hematopoietic malignancy, suggesting that LNC-SNO49AB may be a novel target in therapy directed to leukemia.
Collapse
Affiliation(s)
- Wei Huang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yu-Meng Sun
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Qi Pan
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Ke Fang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xiao-Tong Chen
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Zhan-Cheng Zeng
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Tian-Qi Chen
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Shun-Xin Zhu
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Li-Bin Huang
- grid.412615.50000 0004 1803 6239The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xue-Qun Luo
- grid.412615.50000 0004 1803 6239The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Wen-Tao Wang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yue-Qin Chen
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
26
|
Zhang X, Han Y, Hu X, Wang H, Tian Z, Zhang Y, Wang X. Competing endogenous RNA networks related to prognosis in chronic lymphocytic leukemia: comprehensive analyses and construction of a novel risk score model. Biomark Res 2022; 10:75. [PMID: 36271413 PMCID: PMC9585723 DOI: 10.1186/s40364-022-00423-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell malignancy that lacks specific biomarkers and drug targets. Competing endogenous RNAs (ceRNAs) play vital roles in oncogenesis and tumor progression by sponging microRNAs (miRNAs). Nevertheless, the regulatory mechanisms of survival-related ceRNA networks in CLL remain to be uncovered. METHODS We included 865 de novo CLL patients to investigate RNA expression profiles and Illumina sequencing was performed on four CLL patients, two CLL cell lines and six healthy donors in our center. According to univariate Cox regression, LASSO regression as well as multivariate Cox regression analyses, we established a novel risk score model in CLL patients. Immune signatures were compared between the low- and high-risk groups with CIBERSORT and ESTIMATE program. Afterwards, we analyzed the relationship between differentially expressed miRNAs (DEmiRNAs) and IGHV mutational status, p53 mutation status and del17p. Based on the survival analyses and differentially expressed RNAs with targeting relationships, the lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed. In addition, the circRNA circ_0002078/miR-185-3p/TCF7L1 axis was verified and their interrelations were delineated by dual-luciferase reporter gene assay. RESULTS Totally, 57 differentially expressed mRNAs (DEmRNAs) and 335 DEmiRNAs were identified between CLL patient specimens and normal B cells. A novel risk score model consisting of HTN3, IL3RA and NCK1 was established and validated. The concordance indexes of the model were 0.825, 0.719 and 0.773 in the training, test and total sets, respectively. The high-risk group was related to del(13q14) as well as shorter overall survival (OS). Moreover, we identified DEmiRNAs that related to cytogenetic abnormality of CLL patients, which revealed that miR-324-3p was associated with IGHV mutation, p53 mutation and del17p. The survival-related lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed to further facilitate the development of potential predictive biomarkers. Besides, the expression of circ_0002078 and TCF7L1 were significantly elevated and miR-185-3p was obviously decreased in CLL patients. Circ_0002078 regulated TCF7L1 expression by competing with TCF7L1 for miR-185-3p. CONCLUSIONS The comprehensive analyses of RNA expression profiles provide pioneering insights into the molecular mechanisms of CLL. The novel risk score model and survival-related ceRNA networks promote the development of prognostic biomarkers and potential therapeutic vulnerabilities for CLL.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Hua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Zheng Tian
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
27
|
Pathania AS, Prathipati P, Pandey MK, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. The emerging role of non-coding RNAs in the epigenetic regulation of pediatric cancers. Semin Cancer Biol 2022; 83:227-241. [PMID: 33910063 DOI: 10.1016/j.semcancer.2021.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023]
Abstract
Epigenetics is a process that involves the regulation of gene expression without altering the sequence of DNA. Numerous studies have documented that epigenetic mechanisms play a critical role in cell growth, differentiation, and cancer over the past decade. The well-known epigenetic modifications are either on DNA or at the histone proteins. Although several studies have focused on regulating gene expression by non-coding RNAs, the current understanding of their biological functions in various human diseases, particularly in cancers, is inadequate. Only about two percent of DNA is involved in coding the protein-coding genes, and leaving the rest 98 percent is non-coding and the scientific community regarded as junk or noise with no known purpose. Most non-coding RNAs are derived from such junk DNA and are known to be involved in various signaling pathways involving cancer initiation, progression, and the development of therapy resistance in many human cancer types. Recent studies have suggested that non-coding RNAs, especially microRNAs, piwi-interactingRNAs, and long non-coding RNAs, play a significant role in controlling epigenetic mechanism(s), indicating the potential effect of epigenetic modulation of non-coding RNAs on cancer progression. In this review article, we briefly presented epigenetic marks' characteristics, crosstalk between epigenetic modifications and microRNAs, piwi-interactingRNAs, and long non-coding RNAs to uncover the effect on the phenotype of pediatric cancers. Further, current knowledge on understanding the RNA epigenetics will help design novel therapeutics that target epigenetic regulatory networks to benefit cancer patients in the clinic.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Siddappa N Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Children's Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
28
|
Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol 2022; 83:197-207. [PMID: 32738290 DOI: 10.1016/j.semcancer.2020.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni Km 7, 73100 Lecce, Italy.
| | - George Calin
- Department of Experimental Therapeutics, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, "Federico II" via Pansini 5, Napoli, Italy.
| |
Collapse
|
29
|
Pabon CM, Abbas HA, Konopleva M. Acute myeloid leukemia: therapeutic targeting of stem cells. Expert Opin Ther Targets 2022; 26:547-556. [DOI: 10.1080/14728222.2022.2083957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Cindy M. Pabon
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hussein A. Abbas
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
31
|
Neyazi S, Ng M, Heckl D, Klusmann JH. Long noncoding RNAs as regulators of pediatric acute myeloid leukemia. Mol Cell Pediatr 2022; 9:10. [PMID: 35596093 PMCID: PMC9123150 DOI: 10.1186/s40348-022-00142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly emerging as regulators across human development and disease, and many have been described in the context of hematopoiesis and leukemogenesis. These studies have yielded new molecular insights into the contribution of lncRNAs to AML development and revealed connections between lncRNA expression and clinical parameters in AML patients. In this mini review, we illustrate the versatile functions of lncRNAs in AML, with a focus on pediatric AML, and present examples that may serve as future therapeutic targets or predictive factors.
Collapse
Affiliation(s)
- Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Michelle Ng
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
32
|
Wu Y, Hayat K, Hu Y, Yang J. Long Non-Coding RNAs as Molecular Biomarkers in Cholangiocarcinoma. Front Cell Dev Biol 2022; 10:890605. [PMID: 35573683 PMCID: PMC9093656 DOI: 10.3389/fcell.2022.890605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary system cancer that has the characteristics of strong invasiveness, poor prognosis, and few therapy choices. Furthermore, the absence of precise biomarkers for early identification and prognosis makes it hard to intervene in the early phase of initial diagnosis or recurring cholangiocarcinoma following surgery. Encouragingly, previous studies found that long non-coding RNA (lncRNA), a subgroup of RNA that is more than 200 nucleotides long, can affect cell proliferation, migration, apoptosis, and even drug resistance by altering numerous signaling pathways, thus reaching pro-cancer or anti-cancer outcomes. This review will take a retrospective view of the recent investigations on the work of lncRNAs in cholangiocarcinoma progression and the potential of lncRNAs serving as promising clinical biomarkers and therapeutic targets for CCA.
Collapse
Affiliation(s)
- Yanhua Wu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Khizar Hayat
- Department of Gastroenterology, International Education College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Jianfeng Yang,
| |
Collapse
|
33
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|
34
|
Yi Y, Ge S. Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias. J Hematol Oncol 2022; 15:35. [PMID: 35331314 PMCID: PMC8944089 DOI: 10.1186/s13045-022-01251-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 01/28/2023] Open
Abstract
Disrupting the methylation of telomeric silencing 1-like (DOT1L)-mediated histone H3 lysine 79 has been implicated in MLL fusion-mediated leukemogenesis. Recently, DOT1L has become an attractive therapeutic target for MLL-rearranged leukemias. Rigorous studies have been performed, and much progress has been achieved. Moreover, one DOT1L inhibitor, EPZ-5676, has entered clinical trials, but its clinical activity is modest. Here, we review the recent advances and future trends of various therapeutic strategies against DOT1L for MLL-rearranged leukemias, including DOT1L enzymatic activity inhibitors, DOT1L degraders, protein-protein interaction (PPI) inhibitors, and combinatorial interventions. In addition, the limitations, challenges, and prospects of these therapeutic strategies are discussed. In summary, we present a general overview of DOT1L as a target in MLL-rearranged leukemias to provide valuable guidance for DOT1L-associated drug development in the future. Although a variety of DOT1L enzymatic inhibitors have been identified, most of them require further optimization. Recent advances in the development of small molecule degraders, including heterobifunctional degraders and molecular glues, provide valuable insights and references for DOT1L degraders. However, drug R&D strategies and platforms need to be developed and preclinical experiments need to be performed with the purpose of blocking DOT1L-associated PPIs. DOT1L epigenetic-based combination therapy is worth considering and exploring, but the therapy should be based on a thorough understanding of the regulatory mechanism of DOT1L epigenetic modifications.
Collapse
Affiliation(s)
- Yan Yi
- Departments of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shenglei Ge
- Departments of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Street, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
35
|
Liu S, Bu X, Kan A, Luo L, Xu Y, Chen H, Lin X, Lai Z, Wen D, Huang L, Shi M. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback. Cancer Lett 2022; 528:16-30. [PMID: 34958891 DOI: 10.1016/j.canlet.2021.12.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Oxaliplatin-based chemotherapy is widely used to treat advanced hepatocellular carcinoma (HCC), but many patients develop drug resistance that leads to tumor recurrence. Cancer stem cells (CSCs) are known to contribute to chemoresistance, the underlying mechanism, however, remains largely unknown. In this study, we discovered a specificity protein 1 (SP1)-induced long noncoding RNA--DPPA2 upstream binding RNA (DUBR) and its high expression in HCC tissues and liver CSCs. DUBR was associated with HCC progression and poor chemotherapy response. Moreover, DUBR facilitated the stemness and oxaliplatin resistance of HCC in vitro and in vivo. Mechanistically, DUBR upregulated cancerous inhibitor of protein phosphatase 2A (CIP2A) expression through E2F1-mediated transcription regulation. DUBR also exerted function by binding microRNA (miR)-520d-5p as a competing endogenous RNA to upregulate CIP2A at mRNA level. CIP2A, in turn, stabilized E2F1 protein and activated the Notch1 signaling pathway, thereby increasing the stemness feature of HCC and leading to chemoresistance. In conclusion, we identified SP1/DUBR/E2F1-CIP2A as a critical axis to activate the Notch1 signaling pathway and promote stemness and chemoresistance of HCC. Therefore, DUBR could be a potential target in HCC treatment.
Collapse
Affiliation(s)
- S Liu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xy Bu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - L Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yj Xu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hl Chen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xj Lin
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zc Lai
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ds Wen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lc Huang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - M Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
36
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Jamali E. The emerging role non-coding RNAs in B cell-related disorders. Cancer Cell Int 2022; 22:91. [PMID: 35193592 PMCID: PMC8862212 DOI: 10.1186/s12935-022-02521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs and microRNAs have recently attained much attention regarding their role in the development of B cell lineage as well as participation in the lymphomagenesis. These transcripts have a highly cell type specific signature which endows them the potential to be used as biomarkers for clinical situations. Aberrant expression of several non-coding RNAs has been linked with B cell malignancies and immune related disorders such as rheumatoid arthritis, systemic lupus erythematous, asthma and graft-versus-host disease. Moreover, these transcripts can alter response of immune system to infectious conditions. miR-7, miR-16-1, miR-15a, miR-150, miR-146a, miR-155, miR-212 and miR-132 are among microRNAs whose role in the development of B cell-associated disorders has been investigated. Similarly, SNHG14, MALAT1, CRNDE, AL133346.1, NEAT1, SMAD5-AS1, OR3A4 and some other long non-coding RNAs participate in this process. In the current review, we describe the role of non-coding RNAs in B cell malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Wang K, Liu J, Deng G, Ou Z, Li S, Xu X, Zhang M, Peng X, Chen F. LncSIK1 enhanced the sensitivity of AML cells to retinoic acid by the E2F1/autophagy pathway. Cell Prolif 2022; 55:e13185. [PMID: 35092119 PMCID: PMC8891555 DOI: 10.1111/cpr.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ke Wang
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Jun‐da Liu
- Department of Anesthesiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ge Deng
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Zi‐yao Ou
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Shu‐fang Li
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐ling Xu
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Mei‐Ju Zhang
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐Qing Peng
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fei‐hu Chen
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
38
|
Ma Y, Guo G, Li T, Wen F, Yang J, Chen B, Wang X, Chen JL. A novel imatinib-upregulated long noncoding RNA plays a critical role in inhibition of tumor growth induced by Abl oncogenes. Mol Cancer 2022; 21:5. [PMID: 34980123 PMCID: PMC8722111 DOI: 10.1186/s12943-021-01478-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dysregulation of long noncoding RNAs (lncRNAs) has been linked to various human cancers. Bcr-Abl oncogene that results from a reciprocal translocation between human chromosome 9 and 22, is associated with several hematological malignancies. However, the role of lncRNAs in Bcr-Abl-induced leukemia remains largely unexplored. METHODS LncRNA cDNA microarray was employed to identify key lncRNAs involved in Bcr-Abl-mediated cellular transformation. Abl-transformed cell survival and xenografted tumor growth in mice were evaluated to dissect the role of imatinib-upregulated lncRNA 1 (IUR1) in Abl-induced tumorigenesis. Primary bone marrow transformation and in vivo leukemia transplant using lncRNA-IUR1 knockout (KO) mice were further conducted to address the functional relevance of lncRNA-IUR1 in Abl-mediated leukemia. Transcriptome RNA-seq and Western blotting were performed to determine the mechanisms by which lncRNA-IUR1 regulates Bcr-Abl-induced tumorigenesis. RESULTS We identified lncRNA-IUR1 as a critical negative regulator of Bcr-Abl-induced tumorigenesis. LncRNA-IUR1 expressed in a very low level in Bcr-Abl-positive cells from chronic myeloid leukemia patients. Interestingly, it was significantly induced in Abl-positive leukemic cells treated by imatinib. Depletion of lncRNA-IUR1 promoted survival of Abl-transformed human leukemic cells in experiments in vitro and xenografted tumor growth in mice, whereas ectopic expression of lncRNA-IUR1 sensitized the cells to apoptosis and suppressed tumor growth. In concert, silencing murine lncRNA-IUR1 in Abl-transformed cells accelerated cell survival and the development of leukemia in mice. Furthermore, lncRNA-IUR1 deficient mice were generated, and we observed that knockout of murine lncRNA-IUR1 facilitated Bcr-Abl-mediated primary bone marrow transformation. Moreover, animal leukemia model revealed that lncRNA-IUR1 deficiency promoted Abl-transformed cell survival and development of leukemia in mice. Mechanistically, we demonstrated that lncRNA-IUR1 suppressed Bcr-Abl-induced tumorigenesis through negatively regulating STAT5-mediated GATA3 expression. CONCLUSIONS These findings unveil an inhibitory role of lncRNA-IUR1 in Abl-mediated cellular transformation, and provide new insights into molecular mechanisms underlying Abl-induced leukemogenesis.
Collapse
Affiliation(s)
- Yun Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingting Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faxin Wen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianling Yang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
39
|
Zhou W, Xu S, Deng T, Zhou R, Wang C. LncRNA USP30-AS1 promotes the survival of acute myeloid leukemia cells by cis-regulating USP30 and ANKRD13A. Hum Cell 2022; 35:360-378. [PMID: 34694569 PMCID: PMC8732929 DOI: 10.1007/s13577-021-00636-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant tumor derived from leukemia stem cells, with complicated pathogenesis. LncRNAs play an important role in tumors genesis and progression. According to results from bioinformatics analysis, lncRNA USP30-AS1 is highly expressed in AML and both the high expression of USP30-AS1 and low methylation level at Cg03124318 locus of USP30-AS1 gene promoter are associated with poor prognosis of AML. This study knocked down and overexpressed USP30-AS1 to determine the roles in AML cell lines. High-throughput sequencing was performed to explore the genes regulated by USP30-AS1. Results showed that USP30-AS1 promoted AML cell viability and inhibited apoptosis. Genes regulated by USP30-AS1 are mainly related to genetic regulation and immune system. Among them, USP30 and ANKRD13A genes are close to USP30-AS1 gene in chromosome. Knockdown of USP30, but not ANKRD13A, abolished the cancer-promoting effects of USP30-AS1. ANKRD13A recognizes Lys-63-linked polyubiquitin chain in HLA-I. USP30-AS1 induced HLA-I internalization from the cell membrane by up-regulating ANKRD13A, which might induce the immune escape of AML cells. ChIP analysis revealed that the regulatory effects of USP30-AS1 on USP30 and ANKRD13A are associated with H3K4me3 and H3K27Ac. In summary, USP30-AS1 probably promotes AML cell survival by cis-regulating USP30 and ANKRD13A.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Shilin Xu
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Tingfen Deng
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Ruiqing Zhou
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Caixia Wang
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Mishra S, Liu J, Chai L, Tenen DG. Diverse functions of long noncoding RNAs in acute myeloid leukemia: emerging roles in pathophysiology, prognosis, and treatment resistance. Curr Opin Hematol 2022; 29:34-43. [PMID: 34854833 PMCID: PMC8647777 DOI: 10.1097/moh.0000000000000692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Advancements in the next-generation sequencing technologies have identified rare transcripts of long noncoding RNAs (lncRNAs) in the genome of cancers, including in acute myeloid leukemia (AML). The purpose of this review is to highlight the contribution of lncRNAs in AML pathogenesis, prognosis, and chemoresistance. RECENT FINDINGS Several studies have recently reported that deregulated lncRNAs are novel key players in the development of AML and are associated with AML pathophysiology and may serve as prognostic indicators. A few aberrantly expressed lncRNAs that correlated with the recurrent genetic mutations in AML such as NPM1 and RUNX1 have recently been characterized. Moreover, a few lncRNAs in MLL-rearranged leukemia have been described. Additionally, the involvement of lncRNAs in AML chemoresistance has been postulated. SUMMARY Investigating the functional roles of the noncoding regions including lncRNAs, may provide novel insights into the pathophysiology, refine the prognostic schema, and provide novel therapeutic treatment strategies in AML.
Collapse
Affiliation(s)
- Srishti Mishra
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Jun Liu
- Department of Pathology, Brigham & Women's Hospital
| | - Li Chai
- Department of Pathology, Brigham & Women's Hospital
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Sun L, Wang W, Han C, Huang W, Sun Y, Fang K, Zeng Z, Yang Q, Pan Q, Chen T, Luo X, Chen Y. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Mol Cell 2021; 81:4493-4508.e9. [PMID: 34555354 DOI: 10.1016/j.molcel.2021.08.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 01/21/2023]
Abstract
Initiation is the rate-limiting step in translation, and its dysregulation is vital for carcinogenesis, including hematopoietic malignancy. Thus, discovery of novel translation initiation regulators may provide promising therapeutic targets. Here, combining Ribo-seq, mass spectrometry, and RNA-seq datasets, we discovered an oncomicropeptide, APPLE (a peptide located in ER), encoded by a non-coding RNA transcript in acute myeloid leukemia (AML). APPLE is overexpressed in various subtypes of AML and confers a poor prognosis. The micropeptide is enriched in ribosomes and regulates the initiation step to enhance translation and to maintain high rates of oncoprotein synthesis. Mechanically, APPLE promotes PABPC1-eIF4G interaction and facilitates mRNA circularization and eIF4F initiation complex assembly to support a specific pro-cancer translation program. Targeting APPLE exhibited broad anti-cancer effects in vitro and in vivo. This study not only reports a previously unknown function of micropeptides but also provides new opportunities for targeting the translation machinery in cancer cells.
Collapse
Affiliation(s)
- Linyu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wentao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yumeng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhancheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qianqian Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tianqi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xuequn Luo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yueqin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
42
|
Small nucleolar RNA is potential as a novel player in leukemogenesis and clinical application. BLOOD SCIENCE 2021; 3:122-131. [PMID: 35402848 PMCID: PMC8975097 DOI: 10.1097/bs9.0000000000000091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Lack of clarity of the mechanisms that underlie leukemogenesis obstructs the diagnosis, prognosis, and treatment of leukemia. Research has found that small nuclear RNA (snoRNA) plays an essential role in leukemia. These small non-coding RNAs are involved in ribosome biogenesis, including the 2′-O-methylation and pseudouridylation of precursor ribosomal RNA (pre-rRNA), and pre-rRNA splicing. Recently, many snoRNAs were found to be orphans that have no predictable RNA modification targets, but these RNAs have always been found to be located in different subcellular organelles, and they play diverse roles. Using high-throughput technology, snoRNA expression profiles have been revealed in leukemia, and some of the deregulated snoRNAs may regulate the cell cycle, differentiation, proliferation, and apoptosis in leukemic cells and confer drug resistance during leukemia treatment. In this review, we discuss the expression profiles and functions of snoRNAs, particularly orphan snoRNAs, in leukemia. It is possible that the dysregulated snoRNAs are promising diagnosis and prognosis markers for leukemia, which may serve as potential therapeutic targets in leukemia treatment.
Collapse
|
43
|
Ye H, Chen T, Zeng Z, He B, Yang Q, Pan Q, Chen Y, Wang W. The m6A writers regulated by the IL-6/STAT3 inflammatory pathway facilitate cancer cell stemness in cholangiocarcinoma. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0661. [PMID: 34347395 PMCID: PMC8958887 DOI: 10.20892/j.issn.2095-3941.2020.0661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/05/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Investigation of the regulatory mechanisms of cell stemness in cholangiocarcinoma (CCA) is essential for developing effective therapies to improve patient outcomes. The purpose of this study was to investigate the function and regulatory mechanism of m6A modifications in CCA cell stemness. METHODS Interleukin 6 (IL-6) treatment was used to induce an inflammatory response, and loss-of-function studies were conducted using mammosphere culture assays. Chromatin immunoprecipitation, polysome profiling, and methylated RNA immunoprecipitation analyses were used to identify signaling pathways. The in vitro findings were verified in a mice model. RESULTS We first identified that m6A writers were highly expressed in CCAs and further showed that STAT3 directly bound to the gene loci of m6A writers, showing that IL-6/STAT3 signaling regulated expressions of m6A writers. Downregulating m6A writers prevented cell proliferation and migration in vitro and suppressed CCA tumorigenesis in vivo. Notably, the knockdown of m6A writers inhibited CCA cell stemness that was triggered by IL-6 treatment. Mechanistically, IGF2BP2 was bound to CTNNB1 transcripts, significantly enhancing their stability and translation, and conferring stem-like properties. Finally, we confirmed that the combination of m6A writers, IGF2BP2, and CTNNB1 distinguished CCA tissues from normal tissues. CONCLUSIONS Overall, this study showed that the IL-6-triggered inflammatory response facilitated the expressions of m6A writers and cell stemness in an m6A-IGF2BP2-dependent manner. Furthermore, the study showed that m6A modification was a targetable mediator of the response to inflammation factor exposure, was a potential diagnostic biomarker for CCA, and was critical to the progression of CCA.
Collapse
Affiliation(s)
- Hua Ye
- Department of Hepatobiliary, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Tianqi Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhancheng Zeng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo He
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qianqian Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Pan
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yueqin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wentao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
44
|
Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol 2021; 14:117. [PMID: 34315512 PMCID: PMC8313886 DOI: 10.1186/s13045-021-01129-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) has emerged as an abundant modification throughout the transcriptome with widespread functions in protein-coding and noncoding RNAs. It affects the fates of modified RNAs, including their stability, splicing, and/or translation, and thus plays important roles in posttranscriptional regulation. To date, m6A methyltransferases have been reported to execute m6A deposition on distinct RNAs by their own or forming different complexes with additional partner proteins. In this review, we summarize the function of these m6A methyltransferases or complexes in regulating the key genes and pathways of cancer biology. We also highlight the progress in the use of m6A methyltransferases in mediating therapy resistance, including chemotherapy, targeted therapy, immunotherapy and radiotherapy. Finally, we discuss the current approaches and clinical potential of m6A methyltransferase-targeting strategies.
Collapse
Affiliation(s)
- Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hua Ye
- Department of Hepatobiliary, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
45
|
Li S, Lin L. Long noncoding RNA MCF2L-AS1 promotes the cancer stem cell-like traits in non-small cell lung cancer cells through regulating miR-873-5p level. ENVIRONMENTAL TOXICOLOGY 2021; 36:1457-1465. [PMID: 33783940 DOI: 10.1002/tox.23142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The roles of long noncoding RNA (lncRNA) MCF2L-AS1 have been identified in colorectal cancer, however, its roles in lung cancer progression have never been revealed. Here, we found that lncRNA MCF2L-AS1 was highly expressed in lung cancer tissues and cells, especially in non-small cell lung cancer (NSCLC). Functional experiments showed that MCF2L-AS1 knockdown suppressed the cancer stem cell (CSC)-like traits of NSCLC cells through qRT-PCR, western blot, tumor-sphere formation, and ALDH activity detection. Additionally, bioinformatic assay combined with RNA pull down and luciferase reporter analysis confirmed that MCF2L-AS1 downregulated miR-873-5p level. Furthermore, miR-873-5p expression exhibited a lower level in lung cancer tissues and cells, and a negative correlation with MCF2L-AS1 expression in lung cancer tissues. Moreover, miR-873-5p inhibition partially reversed the suppression of MCF2L-AS1 on the CSC-like traits on NSCLC cells. Thus, this work identifies a novel MCF2L-AS1/miR-873-5p regulatory axis responsible for the CSC-like traits of NSCLC cells.
Collapse
Affiliation(s)
- Shouguo Li
- Department of Cancer Radiotherapy, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Liancheng Lin
- The Third Departments of Thoracic Tumor, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
46
|
Huang X, Huang L, Xie Q, Zhang L, Huang S, Hong M, Li J, Huang Z, Zhang H. LncRNAs serve as novel biomarkers for diagnosis and prognosis of childhood ALL. Biomark Res 2021; 9:45. [PMID: 34112247 PMCID: PMC8193891 DOI: 10.1186/s40364-021-00303-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 02/12/2023] Open
Abstract
Background Although some studies have demonstrated that lncRNAs are dysregulated in hematopoietic malignancies and may regulate the progression of leukemia, the detailed mechanism underlying tumorigenesis is still unclear. This study aimed to investigate lncRNAs that are differentially expressed in childhood B-cell acute lymphoblastic leukemia (B-ALL) and T-cell acute lymphoblastic leukemia (T-ALL) and their potential roles in the progression of childhood ALL. Methods Microarrays were used to detect differentially expressed lncRNAs and mRNAs. Several aberrantly expressed lncRNAs were validated by qRT-PCR. Leukemia-free survival was analyzed using the Kaplan–Meier method with a log-rank test. The co-expression correlations of lncRNAs and mRNAs were determined by Spearman’s correlation coefficient. CCK-8 assays and flow cytometry were performed to measure cell proliferation and apoptosis. Results We revealed that many lncRNAs were abnormally expressed in B-ALL and T-ALL. LncRNA/mRNA co-expression and the gene locus network showed that dysregulated lncRNAs are involved in diverse cellular processes. We also assessed the diagnostic value of the differentially expressed lncRNAs and confirmed the optimal combination of TCONS_00026679, uc002ubt.1, ENST00000411904, and ENST00000547644 with an area under the curve of 0.9686 [95 % CI: 0.9369–1.000, P < 0.001], with 90.7 % sensitivity and 92.19 % specificity, at a cut-off point of -0.5700 to distinguish childhood B-ALL patients from T-ALL patients, implying that these specific lncRNAs may have potential to detect subsets of childhood ALL. Notably, we found that the 8-year leukemia-free survival of patients with high TCONS_00026679 (p = 0.0081), ENST00000522339 (p = 0.0484), ENST00000499583 (p = 0.0381), ENST00000457217 (p = 0.0464), and ENST00000451368 (p = 0.0298) expression levels was significantly higher than that of patients with low expression levels of these lncRNAs, while patients with high uc002ubt.1 (p = 0.0499) and ENST00000547644 (p = 0.0451) expression levels exhibited markedly shorter 8-year leukemia-free survival. In addition, some lncRNAs were found to play different roles in cell proliferation and apoptosis in T-ALL and B-ALL. Conclusions Dysregulated lncRNAs involved in different regulatory mechanisms underlying the progression of childhood T-ALL and B-ALL might serve as novel biomarkers to distinguish ALL subsets and indicate poor outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00303-x.
Collapse
Affiliation(s)
- Xuanmei Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Big Data Mining and Precision Drug Design, School of Medical Technology, Guangdong Medical University, Guangdong Medical University, 523808, Dongguan, China
| | - Libin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong shan Er Lu, 510080, Guangzhou, China
| | - Qing Xie
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Big Data Mining and Precision Drug Design, School of Medical Technology, Guangdong Medical University, Guangdong Medical University, 523808, Dongguan, China
| | - Ling Zhang
- Health Science Center, The University of Texas, 77030, Houston, USA
| | - Shaohui Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Big Data Mining and Precision Drug Design, School of Medical Technology, Guangdong Medical University, Guangdong Medical University, 523808, Dongguan, China
| | - Mingye Hong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Big Data Mining and Precision Drug Design, School of Medical Technology, Guangdong Medical University, Guangdong Medical University, 523808, Dongguan, China
| | - Jiangbin Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Big Data Mining and Precision Drug Design, School of Medical Technology, Guangdong Medical University, Guangdong Medical University, 523808, Dongguan, China
| | - Zunnan Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Big Data Mining and Precision Drug Design, School of Medical Technology, Guangdong Medical University, Guangdong Medical University, 523808, Dongguan, China
| | - Hua Zhang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Big Data Mining and Precision Drug Design, School of Medical Technology, Guangdong Medical University, Guangdong Medical University, 523808, Dongguan, China.
| |
Collapse
|
47
|
Sun Z, Dang Q, Liu Z, Shao B, Chen C, Guo Y, Chen Z, Zhou Q, Hu S, Liu J, Yuan W. LINC01272/miR-876/ITGB2 axis facilitates the metastasis of colorectal cancer via epithelial-mesenchymal transition. J Cancer 2021; 12:3909-3919. [PMID: 34093798 PMCID: PMC8176243 DOI: 10.7150/jca.55666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background: At the time of diagnosis, colorectal cancer (CRC) patients are usually in an advanced stage of disease, which is accompanied by metastasis. Long noncoding RNAs (lncRNAs) play critical regulatory roles in cancer biology. However, the contributions of lncRNA LINC01272 to CRC remain elusive. Methods: Bioinformatics and the survminer R package were used to predict intermolecular correlations and prognostic indicators. Quantitative real-time PCR was used to examine molecular expression. In vitro experiments, including migration assays, invasion assays, and wound healing assays, were used to investigate the effects of LINC01272, ITGB2 and miR-876 on CRC cell migration and invasion abilities. Furthermore, a dual-luciferase reporter gene assay was performed to explore the potential mechanism by which LINC01272 contributes to CRC. Results: We found that LINC01272 was highly expressed in multiple cancers and closely related to core epithelial-mesenchymal transition (EMT) factors and that high levels of LINC01272 are associated with a poor prognosis in CRC patients. qRT-PCR revealed that LINC01272 was highly expressed and negatively associated with miR-876 in CRC. Additionally, LINC01272 or ITGB2 silencing reduced, while miR-876 overexpression promoted, the invasiveness and metastatic capacity of CRC cells in vitro. Moreover, LINC01272 potentially targeted miR-876, and miR-876 potentially targeted ITGB2. Conclusion: LINC01272 was highly expressed in CRC and predicted a poor prognosis. LINC01272 promoted EMT and metastasis by regulating miR-876/ITGB2 to act as an oncogene in CRC. LINC01272 may be a promising prognostic biomarker and therapeutic target for the treatment of CRC patients in the future.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, Henan, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuying Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
48
|
A novel Lnc408 maintains breast cancer stem cell stemness by recruiting SP3 to suppress CBY1 transcription and increasing nuclear β-catenin levels. Cell Death Dis 2021; 12:437. [PMID: 33934099 PMCID: PMC8088435 DOI: 10.1038/s41419-021-03708-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022]
Abstract
Tumor initiation, development, and relapse may be closely associated with cancer stem cells (CSCs). The complicated mechanisms underlying the maintenance of CSCs are keeping in illustration. Long noncoding RNAs (lncRNAs), due to their multifunction in various biological processes, have been indicated to play a crucial role in CSC renewal and stemness maintenance. Using lncRNA array, we identified a novel lncRNA (named lnc408) in epithelial-mesenchymal transition-related breast CSCs (BCSCs). The lnc408 is high expressed in BCSCs in vitro and in vivo. The enhanced lnc408 is critical to BCSC characteristics and tumorigenesis. Lnc408 can recruit transcript factor SP3 to CBY1 promoter to serve as an inhibitor in CBY1 transcription in BCSCs. The high expressed CBY1 in non-BCSC interacts with 14-3-3 and β-catenin to form a ternary complex, which leads a translocation of the ternary complex into cytoplasm from nucleus and degradation of β-catenin in phosphorylation-dependent pattern. The lnc408-mediated decrease of CBY1 in BCSCs impairs the formation of 14-3-3/β-catenin/CBY1 complex, and keeps β-catenin in nucleus to promote CSC-associated CD44, SOX2, Nanog, Klf4, and c-Myc expressions and contributes to mammosphere formation; however, restoration of CBY1 expression in tumor cells reduces BCSC and its enrichment, thus lnc408 plays an essential role in maintenance of BCSC stemness. In shortly, these findings highlight that the novel lnc408 functions as an oncogenic factor by recruiting SP3 to inhibit CBY1 expression and β-catenin accumulation in nucleus to maintain stemness properties of BCSCs. Lnc408-CBY1-β-catenin signaling axis might serve as a new diagnostic and therapeutic target for breast cancer.
Collapse
|
49
|
Izadirad M, Jafari L, James AR, Unfried JP, Wu ZX, Chen ZS. Long noncoding RNAs have pivotal roles in chemoresistance of acute myeloid leukemia. Drug Discov Today 2021; 26:1735-1743. [PMID: 33781951 DOI: 10.1016/j.drudis.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Many patients with acute myeloid leukemia (AML) experience poor outcomes following traditional high-dose chemotherapies and complete remission rates remain suboptimal. Chemoresistance is an obstacle to effective chemotherapy and the precise mechanisms involved remain to be determined. Recently, long noncoding RNAs (lncRNAs) have been identified as relevant factors in the development of drug resistance in patients with AML. Furthermore, accumulating data support the importance of lncRNAs as potentially useful novel therapeutic targets in many cancers. Here, we review the role of lncRNAs in the development and induction of the chemoresistance in AML, and suggest lncRNAs as novel molecular markers for diagnosis, prediction of patient response to chemotherapy, and novel therapeutic targets for AML.
Collapse
Affiliation(s)
- Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Jafari
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alva Rani James
- Digital Health & Machine Learning, Hasso Plattner Institute, University of Potsdam, Germany
| | - Juan Pablo Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, St John's University, New York, NY, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St John's University, New York, NY, USA.
| |
Collapse
|
50
|
Wang WT, Chen TQ, Zeng ZC, Pan Q, Huang W, Han C, Fang K, Sun LY, Yang QQ, Wang D, Luo XQ, Sun YM, Chen YQ. Correction to: The lncRNA LAMP5-AS1 drives leukemia cell stemness by directly modulating DOT1L methyltransferase activity in MLL leukemia. J Hematol Oncol 2021; 14:42. [PMID: 33706768 PMCID: PMC7953691 DOI: 10.1186/s13045-020-00967-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The original article [1] contains an error in Fig. 6b for the image of western blot panels.
Collapse
Affiliation(s)
- Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qian-Qian Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dan Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong, 510060, China
| | - Xue-Qun Luo
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|