1
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Chen P, Huang S, Yu Q, Chao K, Wang Y, Zhou G, Zhuang X, Zeng Z, Chen M, Zhang S. Serum exosomal microRNA-144-3p: a promising biomarker for monitoring Crohn's disease. Gastroenterol Rep (Oxf) 2021; 10:goab056. [PMID: 35382172 PMCID: PMC8973006 DOI: 10.1093/gastro/goab056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Crohn’s disease (CD) has a tendency for recurrence and requires adequate monitoring and personalized treatment. Since endoscopy is considerably invasive, serum biomarkers are required as alternatives for CD monitoring. Toward this, exosomal microRNAs (miRNAs) may serve as promising candidates. In this study, we aimed to assess the role of serum exosomal microRNA-144-3p (miR-144-3p) as a biomarker for CD monitoring. Methods We prospectively recruited 154 patients without a history of surgery (Cohort 1) and 75 patients who were to undergo intestinal resection (Cohort 2). Serum samples were collected from Cohort 1 before colonoscopy and from Cohort 2 before surgery and during post-operative colonoscopic examination. The serum levels of exosomal miR-144-3p were measured using quantitative reverse-transcription polymerase chain reaction (PCR). Correlations between relative exosomal miR-144-3p levels, disease activity, and disease behavior were analysed. The area under the receiver-operating characteristic curve (AUC) was used to assess the predictive value of exosomal miR-144-3p regarding mucosal activity and post-operative recurrence. Results A 3.33-fold increase in serum exosomal miR-144-3p levels was recorded in patients with CD compared with those in healthy controls (P < 0.001). The exosomal miR-144-3p levels were positively correlated with the simple endoscopic score of CD (ρ = 0.547, P < 0.001) as well as the Rutgeerts score (ρ = 0.478, P < 0.001). Elevated exosomal miR-144-3p levels were correlated with the penetrating disease with high specificity (100% [95% confidence interval, 95.1%–100%]). The accuracy of exosomal miR-144-3p for identifying post-operative recurrence was higher than that of C-reactive protein (CRP) (AUC, 0.775 vs 0.639; P < 0.001). Conclusions Serum exosomal miR-144-3p is a reliable biomarker of mucosal inflammation and penetrating CD. It may identify endoscopic CD recurrence after intestinal resection with higher accuracy than CRP testing.
Collapse
Affiliation(s)
- Peng Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shanshan Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qiao Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Kang Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gaoshi Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Yang Z, OuYang X, Zheng L, Dai L, Luo W. Long intergenic noncoding RNA00265 promotes proliferation of gastric cancer via the microRNA-144-3p/Chromobox 4 axis. Bioengineered 2021; 12:1012-1025. [PMID: 33464142 PMCID: PMC8291797 DOI: 10.1080/21655979.2021.1876320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The expression and biological function of long intergenic noncoding RNA00265 (LINC00265) in gastric cancer (GC) have not yet been explored. This study aimed to detect LINC00265 expression in GC tissues and cell lines, investigate its roles in the proliferation of GC cells in vitro, and elucidate the regulatory mechanisms of LINC00265 action. It was found that LINC00265 expression was significantly upregulated in GC tissue samples and cell lines compared with their normal counterparts. Additionally, LINC00265 knockdown could inhibit GC cell proliferation in vitro. Further investigation revealed that LINC00265 acted as a competing endogenous RNA for microRNA-144-3p (miR-144-3p) and inhibition of miR-144-3p markedly counteracted LINC00265 knockdown-meditated suppression on GC cell proliferation. Additionally, Chromobox 4 (CBX4) was upregulated in GC and silencing CBX4 could reduce GC cell proliferation. Then, CBX4 mRNA was demonstrated to be a direct target of miR-144-3p in GC cells and LINC00265/miR-144-3p axis could regulate CBX4 expression. Taken together, LINC00265 may promote GC cell proliferation via the miR-144-3p/CBX4 axis.
Collapse
Affiliation(s)
- Zengxi Yang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Xi OuYang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Zheng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Lizhen Dai
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjuan Luo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Xu Q, Liao B, Hu S, Zhou Y, Xia W. Circular RNA 0081146 facilitates the progression of gastric cancer by sponging miR-144 and up-regulating HMGB1. Biotechnol Lett 2021; 43:767-779. [PMID: 33496921 DOI: 10.1007/s10529-020-03058-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Recent studies have revealed that circular RNA (circRNA) plays a pivotal role in cancer development. The study aimed to investigate the role of circ_0081146 in gastric cancer (GC). RESULTS Circ_0081146 was upregulated in GC tissues and cells. Patients with high expression of circ_0081146 had a significantly reduced 5-year overall survival rate. Circ_0081146 knockdown restrained the growth, migration and invasion of GC cells in vitro as well as tumorigenesis in vivo. Circ_0081146 targeted miR-144 and HMGB1 was targeted by miR-144. Circ_0081146 was negatively correlated with miR-144 expression, while positively correlated with HMGB1 expression in GC tissues. Moreover, the inhibitory effect of circ_0081146 knockdown on the progression of GC cells were reversed by silencing miR-144 or HMGB1 overexpression. Mechanically, circ_0081146 increased HMGB1 expression by targeting miR-144. CONCLUSION Circ_0081146 functions as an oncogene in GC to promote cell growth, migration and invasion via modulating the miR-144/HMGB1 axis.
Collapse
Affiliation(s)
- Qihua Xu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Bingling Liao
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Sheng Hu
- Department of Gastrointestinal Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Ying Zhou
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China.
| | - Wei Xia
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
5
|
Wang X, Hong Y, Wu L, Duan X, Hu Y, Sun Y, Wei Y, Dong Z, Wu C, Yu D, Xu J. Deletion of MicroRNA-144/451 Cluster Aggravated Brain Injury in Intracerebral Hemorrhage Mice by Targeting 14-3-3ζ. Front Neurol 2021; 11:551411. [PMID: 33510702 PMCID: PMC7835478 DOI: 10.3389/fneur.2020.551411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
This study aims at evaluating the importance and its underlying mechanism of the cluster of microRNA-144/451 (miR-144/451) in the models with intracerebral hemorrhage (ICH). A model of collagenase-induced mice with ICH and a model of mice with simple miR-144/451 gene knockout (KO) were used in this study. Neurodeficits and the water content of the brain of the mice in each group were detected 3 days after collagenase injection. The secretion of proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), as well as certain biomarkers of oxidative stress, was determined in this study. The results revealed that the expression of miR-451 significantly decreased in the mice with ICH, whereas miR-144 showed no significant changes. KO of the cluster of miR-144/451 exacerbated the neurological deficits and brain edema in the mice with ICH. Further analyses demonstrated that the KO of the cluster of miR-144/451 significantly promoted the secretion of TNF-α and IL-1β and the oxidative stress in the perihematomal region of the mice with ICH. In addition, the miR-144/451's depletion inhibited the regulatory axis' activities of miR-451-14-3-3ζ-FoxO3 in the mice with ICH. In conclusion, these data demonstrated that miR-144/451 might protect the mice with ICH against neuroinflammation and oxidative stress by targeting the pathway of miR-451-14-3-3ζ-FoxO3.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yin Hong
- National Center for Clinical Research of Nervous System Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China
| | - Xiaochun Duan
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yue Hu
- Department of Neurology, Zhangjiagang City First People's Hospital, Zhangjiagang, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yanqiu Wei
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Zhen Dong
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Chenghao Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China
| | - Duonan Yu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Demircan T, Sibai M, Avşaroğlu ME, Altuntaş E, Ovezmyradov G. The first report on circulating microRNAs at Pre- and Post-metamorphic stages of axolotls. Gene 2020; 768:145258. [PMID: 33131713 DOI: 10.1016/j.gene.2020.145258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are endogenously coded small RNAs, implicated in post-transcriptional gene regulation by targeting messenger RNAs (mRNAs). Circulating miRNAs are cell-free molecules, found in body fluids, such as blood and saliva, and emerged recently as potential diagnostic biomarkers. Functions of circulating miRNAs and their roles in target tissues have been extensively investigated in mammals, and the reports on circulating miRNAs in non-mammalian clades are largely missing. Salamanders display remarkable regenerative potential, and the Mexican axolotl (Ambystoma mexicanum), a critically endangered aquatic salamander, has emerged as a powerful model organism in regeneration and developmental studies. This study aimed to explore the circulating miRNA signature in axolotl blood plasma. Small RNA sequencing on plasma samples revealed 16 differentially expressed (DE) circulating miRNAs between neotenic and metamorphic stages out of identified 164 conserved miRNAs. Bioinformatics predictions provided functional annotation of detected miRNAs for both stages and enrichment of DE miRNAs in cancer-related and developmental pathways was notable. Comparison with previous reports on axolotl miRNAs unraveled common and unique members of the axolotl circulating miRNome. Overall, this work provides novel insights into non-mammalian aspects of circulating miRNA biology and expands the multi-omics toolkit for this versatile model organism.
Collapse
Affiliation(s)
- Turan Demircan
- Department of Medical Biology, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey; Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.
| | - Mustafa Sibai
- Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Mahmut Erhan Avşaroğlu
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Altuntaş
- Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Guvanch Ovezmyradov
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey; Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
7
|
Zhou M, Wu Y, Li H, Zha X. MicroRNA-144: A novel biological marker and potential therapeutic target in human solid cancers. J Cancer 2020; 11:6716-6726. [PMID: 33046994 PMCID: PMC7545670 DOI: 10.7150/jca.46293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. It has been reported that microRNA-144 (miR-144) is highly conserved and can combine complementarily with the 3'-UTRs of target gene mRNAs to inhibit mRNA translation or promote targeted mRNA degradation. MiR-144 is abnormally expressed and has been identified as a tumor suppressor in many types of solid tumors. Increasing evidence supports a crucial role for miR-144 in modulating physiopathologic processes, such as proliferation, apoptosis, invasion, migration and angiogenesis in different tumor cells. Apart from these functions, miR-144 can also affect drug sensitivity, cancer treatment and patient prognosis. In this review, we summarize the biological functions of miR-144, its direct targets and the important signal pathways through which it acts in relation to various tumors. We also discuss the role of miR-144 in tumor biology and its clinical significance in detail and offer novel insights into molecular targeting therapy for human cancers.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuncui Wu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
8
|
Abstract
Pancreatic cancer (PC) is one of the major causes of cancer mortality in developed countries. Therefore, there is an urgent need to derive biomarkers for early diagnosis of PC patients at high risk.This study was designed to identify a panel of miRNAs that might serve as biomarkers for the early diagnosis of PC.The data containing both PC and control samples were extracted from the Gene Expression Omnibus (GEO) database. EdgeR was applied to identify the differentially expressed miRNAs and genes between PC patients and healthy controls. Then a miRNA-mRNA network was constructed based on the differentially expressed miRNAs and genes. The miRNAs-based biomarker for PC was finally constructed by random forest. Finally, AUC was used to evaluate the performance of miRNAs to classify PC and control samples.A total of 33 differentially expressed miRNAs, 753 differentially expressed genes, and 8 miRNAs (hsa-mir-139, hsa-mir-31, hsa-mir-196b, hsa-mir-221, hsa-mir-203b, hsa-mir-215, hsa-mir-144, and hsa-mir-4433b) that play important roles in PC were identified. The target genes of these miRNAs were found to be mainly enriched in negative regulation of acute inflammatory response cell-substrate responses, and o-glycan processing pathways. The constructed biomarkers based on these 8 miRNAs could distinguish samples coming from PC and healthy controls.We identified a panel of eight-miRNAs that would serve as early diagnostic biomarkers for PC patients.
Collapse
Affiliation(s)
- Benyuan Deng
- Department of General Surgery, West China Health care Hospital of Sichuan University
| | - Ming Wang
- Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | - Zhongwu Liu
- Department of General Surgery, West China Health care Hospital of Sichuan University
| |
Collapse
|
9
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, Derakhshani A, Brunetti O, Baghbanzadeh A, Mansoori B, Silvestris N, Baradaran B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. Int J Mol Sci 2020; 21:ijms21072578. [PMID: 32276343 PMCID: PMC7177921 DOI: 10.3390/ijms21072578] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and non-coding RNAs that display aberrant expression in the tissue and plasma of cancer patients when tested in comparison to healthy individuals. In past decades, research data proposed that miRNAs could be diagnostic and prognostic biomarkers in cancer patients. It has been confirmed that miRNAs can act either as oncogenes by silencing tumor inhibitors or as tumor suppressors by targeting oncoproteins. MiR-144s are located in the chromosomal region 17q11.2, which is subject to significant damage in many types of cancers. In this review, we assess the involvement of miR-144s in several cancer types by illustrating the possible target genes that are related to each cancer, and we also briefly describe the clinical applications of miR-144s as a diagnostic and prognostic tool in cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Zohre Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Biology, University of Sistan and Baluchestan, Zahedan 9816745845, Iran
| | - Meysam Rahmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 5165665931, Iran;
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology DIMO—University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| |
Collapse
|
11
|
Zhan H, Tu S, Zhang F, Shao A, Lin J. MicroRNAs and Long Non-coding RNAs in c-Met-Regulated Cancers. Front Cell Dev Biol 2020; 8:145. [PMID: 32219093 PMCID: PMC7078111 DOI: 10.3389/fcell.2020.00145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are components of many signaling pathways associated with tumor aggressiveness and cancer metastasis. Some lncRNAs are classified as competitive endogenous RNAs (ceRNAs) that bind to specific miRNAs to prevent interaction with target mRNAs. Studies have shown that the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/c-Met) pathway is involved in physiological and pathological processes such as cell growth, angiogenesis, and embryogenesis. Overexpression of c-Met can lead to sustained activation of downstream signals, resulting in carcinogenesis, metastasis, and resistance to targeted therapies. In this review, we evaluated the effects of anti-oncogenic and oncogenic non-coding RNAs (ncRNAs) on c-Met, and the interactions among lncRNAs, miRNAs, and c-Met in cancer using clinical and tissue chromatin immunoprecipition (ChIP) analysis data. We summarized current knowledge of the mechanisms and effects of the lncRNAs/miR-34a/c-Met axis in various tumor types, and evaluated the potential therapeutic value of lncRNAs and/or miRNAs targeted to c-Met on drug-resistance. Furthermore, we discussed the functions of lncRNAs and miRNAs in c-Met-related carcinogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Hong Zhan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- School of Medicine, Zhejiang University Hangzhou, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Fu W, Liu Z, Zhang J, Shi Y, Zhao R, Zhao H. Effect of miR-144-5p on the proliferation, migration, invasion and apoptosis of human umbilical vein endothelial cells by targeting RICTOR and its related mechanisms. Exp Ther Med 2020; 19:1817-1823. [PMID: 32104237 PMCID: PMC7027162 DOI: 10.3892/etm.2019.8369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study was to investigate the effect of microRNA (miR)-144-5p on human umbilical vein endothelial cells (HUVECs) to explore the role of miR-144-5p in atherosclerosis. miR-144-5p expression was upregulated in HUVECs using miR-144-5p mimics. The relative expression level of miR-144-5p in HUVECs was detected using reverse transcription-quantitative PCR (RT-qPCR). Cell proliferation was detected by performing an MTT assay. Apoptosis was determined via flow cytometry. Cell migration ability was detected by a wound-healing assay. Cell invasion was determined by a transwell assay. The protein levels of phosphorylated (p)-PI3K, p-Akt and endothelial nitric oxide synthase (eNOS) were detected using western blot analysis. The binding sites between miR-144-5p and 3'-untranslated region of rapamycin-insensitive companion of mTOR (RICTOR) mRNA were predicted by TargetScan and confirmed by a dual luciferase reporter assay. The present study showed that miR-144-5p mimics significantly inhibited cell proliferation and induced apoptosis in HUVECs. In addition, miR-144-5p mimics could suppress migration and invasion of HUVECs. Further analysis identified that RICTOR was a direct target gene of miR-144-5p. Moreover, miR-144-5p upregulation decreased the protein level of p-PI3K, p-Akt and eNOS. In conclusion, miR-144-5p regulated HUVEC proliferation, migration, invasion, and apoptosis through affecting the PI3K-Akt-eNOS signaling pathway by altering the expression of RICTOR. These results indicated that miR-144-5p may be a potential target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Fu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zidong Liu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yuxue Shi
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ruiyao Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Heng Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
13
|
Liu X, Sun R, Chen J, Liu L, Cui X, Shen S, Cui G, Ren Z, Yu Z. Crosstalk Mechanisms Between HGF/c-Met Axis and ncRNAs in Malignancy. Front Cell Dev Biol 2020; 8:23. [PMID: 32083078 PMCID: PMC7004951 DOI: 10.3389/fcell.2020.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence have confirmed the magnitude of crosstalk between HGF/c-Met axis (hepatocyte growth factor and its high-affinity receptor c-mesenchymal-epithelial transition factor) and non-coding RNAs (ncRNAs) in tumorigenesis. Through activating canonical or non-canonical signaling pathways, the HGF/c-Met axis mediates a range of oncogenic processes such as cell proliferation, invasion, apoptosis, and angiogenesis and is increasingly becoming a promising target for cancer therapy. Meanwhile, ncRNAs are a cluster of functional RNA molecules that perform their biological roles at the RNA level and are essential regulators of gene expression. The expression of ncRNAs is cell/tissue/tumor-specific, which makes them excellent candidates for cancer research. Many studies have revealed that ncRNAs play a crucial role in cancer initiation and progression by regulating different downstream genes or signal transduction pathways, including HGF/c-Met axis. In this review, we discuss the regulatory association between ncRNAs and the HGF/c-Met axis by providing a comprehensive understanding of their potential mechanisms and roles in cancer development. These findings could reveal their possible clinical applications as biomarkers for therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianan Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xichun Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Li H, Yao G, Zhai J, Hu D, Fan Y. LncRNA FTX Promotes Proliferation and Invasion of Gastric Cancer via miR-144/ZFX Axis. Onco Targets Ther 2019; 12:11701-11713. [PMID: 32021248 PMCID: PMC6942532 DOI: 10.2147/ott.s220998] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs are important regulators in cancer cell tumorigenesis. We have demonstrated in a prior study that lncRNA FTX is dysregulated in gastric cancer (GC). In this study, we aim to report gastric cancer-related lncRNA FTX as a main regulator in GC development and progression. METHODS In vitro and in vivo assays of FTX alterations have been performed to reveal a complex integrated phenotype affecting cell growth, migration, and invasion. lncRNA FTX expression levels in gastric cancer cells and normal cells were measured by RT-PCR. Luciferase reporter assays, Western blotting, and many immune, microscopy technologies were utilized to investigate the expressions of FTX- related proteins and RNAs. The functional role of FTX in cell growth, migration, and invasion were observed in vitro and in vivo. RESULTS We explored the underlying mechanisms of FTX in GC development, and the microRNAs' relationship with FTX. We found that FTX promoted cell proliferation, migration, and invasion, as well as tumor growth, and this effect could latterly be attenuated by miR-144. ZFX attenuated the effects of FTX/miR-144 axis by sponging with miR-144. CONCLUSION In summary, the above results support a model in which the FTX/miR-144/ZFX act as important effectors in GC tumorigenesis and progression, indicating new therapeutic methods in GC.
Collapse
Affiliation(s)
- Hongbo Li
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province471003, People’s Republic of China
| | - Guoliang Yao
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province471000, People’s Republic of China
| | - Jingming Zhai
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province471000, People’s Republic of China
| | - Dingwen Hu
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province471000, People’s Republic of China
| | - Yonggang Fan
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province471000, People’s Republic of China
| |
Collapse
|
15
|
Liu WL, Wang HX, Shi CX, Shi FY, Zhao LY, Zhao W, Wang GH. MicroRNA-1269 promotes cell proliferation via the AKT signaling pathway by targeting RASSF9 in human gastric cancer. Cancer Cell Int 2019; 19:308. [PMID: 31768130 PMCID: PMC6873743 DOI: 10.1186/s12935-019-1026-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) play key roles in tumorigenesis and progression of gastric cancer (GC). miR-1269 has been reported to be upregulated in several cancers and plays a crucial role in carcinogenesis and cancer progression. However, the biological function of miR-1269 in human GC and its mechanism remain unclear and need to be further elucidated. Methods The expression of miR-1269 in GC tissues and cell lines was detected by quantitative real-time PCR (qRT-PCR). Target prediction programs (TargetScanHuman 7.2 and miRBase) and a dual-luciferase reporter assay were used to confirm that Ras-association domain family 9 (RASSF9) is a target gene of miR-1269. The expression of RASSF9 was measured by qRT-PCR and Western blotting in GC tissues. MTT and cell counting assays were used to explore the effect of miR-1269 on GC cell proliferation. The cell cycle and apoptosis were measured by flow cytometry. RASSF9 knockdown and overexpression were used to further verify the function of the target gene. Results We found that miR-1269 expression was upregulated in human GC tissues and cell lines. The overexpression of miR-1269 promoted GC cell proliferation and cell cycle G1-S transition and suppressed apoptosis. The inhibition of miR-1269 inhibited cell growth and G1-S transition and induced apoptosis. miR-1269 expression was inversely correlated with RASSF9 expression in GC tissues. RASSF9 was verified to be a direct target of miR-1269 by using a luciferase reporter assay. The overexpression of miR-1269 decreased RASSF9 expression at both the mRNA and protein levels, and the inhibition of miR-1269 increased RASSF9 expression. Importantly, silencing RASSF9 resulted in the same biological effects in GC cells as those induced by overexpression of miR-1269. Overexpression of RASSF9 reversed the effects of miR-1269 overexpression on GC cells. Both miR-1269 overexpression and RASSF9 silencing activated the AKT signaling pathway, which modulated cell cycle regulators (Cyclin D1 and CDK2). In contrast, inhibition of miR-1269 and RASSF9 overexpression inhibited the AKT signaling pathway. Moreover, miR-1269 and RASSF9 also regulated the Bax/Bcl-2 signaling pathway. Conclusions Our results demonstrate that miR-1269 promotes GC cell proliferation and cell cycle G1-S transition by activating the AKT signaling pathway and inhibiting cell apoptosis via regulation of the Bax/Bcl-2 signaling pathway by targeting RASSF9. Our findings indicate an oncogenic role of miR-1269 in GC pathogenesis and the potential use of miR-1269 in GC therapy.
Collapse
Affiliation(s)
- Wen-Li Liu
- 1Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Hu-Xia Wang
- 2Mammary Department, Shaanxi Provincial Tumor Hospital, Xi'an, 710061 Shaanxi China
| | - Cheng-Xin Shi
- 3Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Fei-Yu Shi
- 3Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Ling-Yu Zhao
- 4Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi China
| | - Wei Zhao
- 3Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Guang-Hui Wang
- 3Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| |
Collapse
|
16
|
Mushtaq F, Zhang J, Li J. miR-144 suppresses cell proliferation and invasion in gastric cancer through downregulation of activating enhancer-binding protein 4. Oncol Lett 2019; 17:5686-5692. [PMID: 31186793 DOI: 10.3892/ol.2019.10214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is the most common malignant disease and its incidence rate is increasing rapidly worldwide. The molecular mechanisms underlying GC tumorigenesis require further investigation. The expression and physiological roles of microRNA-144 (miR-144) have been investigated in numerous types of tumor. However, its biological function in GC remains largely unknown. The reverse transcription- quantitative polymerase chain reaction was used to determine the expression of miR-144 in GC cells and normal gastric epithelial cells. An miR-144 mimic was transfected into HGC-27 cells. In addition, bioinformatics analysis was performed to identify the potential targets of miR-144. Protein expression, luciferase and rescue assays were used to confirm the target of miR-144. It was identified that the expression of miR-144 was significantly downregulated in GC cells compared with in normal gastric epithelial cells. Furthermore, overexpression of miR-144 suppressed HGC-27 cell proliferation, migration and invasion. Additionally, bioinformatics analysis suggested that the activating enhancer-binding protein 4 (AP4) is a target gene of miR-144. In addition, it was determined that miR-144 suppresses the expression of AP4 by binding directly to its 3'-untranslated regions. Furthermore, restoration of AP4 partially attenuated miR-144-induced inhibition of cell proliferation, migration and invasion. Therefore, the results of the present study suggest that miR-144 serves an important role in GC progression.
Collapse
Affiliation(s)
- Faheim Mushtaq
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiansheng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
17
|
Song L, Chen L, Luan Q, Kong Q. miR-144-3p facilitates nasopharyngeal carcinoma via crosstalk with PTEN. J Cell Physiol 2019; 234:17912-17924. [PMID: 30834525 DOI: 10.1002/jcp.28424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
AIMS This study aims to investigate the role of miR-144-3p and phosphatase and tensin homolog (PTEN) in nasopharyngeal carcinoma (NPC), along with their crosstalk with the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) pathway. METHODS Quantitative reverse transcription polymerase chain reaction and western blot were used to measure the gene expression at the transcriptional and translational levels. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and colony formation assay were used to examine cell proliferation via standard protocol. Transwell assay was conducted to examine cell invasiveness. A flow cytometer was used to determine cell apoptosis. Dual-Luciferase Reporter Gene Assay (SLDL-100) was used to confirm the target relationship between miR-144-3p and PTEN. Xenografts were used to detect the in vivo effects of the molecules of interest. RESULTS miR-144-3p was significantly overexpressed, whereas PTEN was more underexpressed in tumor tissues than in adjacent tissues. miR-144-3p promoted the proliferation and invasion of NPC cells and inhibited apoptosis by directly targeting PTEN, which improves PI3K-Akt signaling. miR-144-3p forced epithelial-mesenchymal transition in NPC. CONCLUSION miR-144-3p promotes the progression of NPC by directly targeting PTEN via crosstalk with PI3K-Akt signaling.
Collapse
Affiliation(s)
- Li Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Lijie Chen
- Department of Otolaryngology, Shandong Energy Zibo Mining Group Co, Ltd General Hospital, Zibo, Shandong, China
| | - Qiang Luan
- Department of Otolaryngology, Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, Shandong, China
| | - Qingdong Kong
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
18
|
Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol 2019; 234:1099-1110. [PMID: 30070704 DOI: 10.1002/jcp.27051] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs, miRs) are small (21-25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3'-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation.
Collapse
Affiliation(s)
- Nasser H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejad Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Gao Z, Zhang P, Xie M, Gao H, Yin L, Liu R. miR-144/451 cluster plays an oncogenic role in esophageal cancer by inhibiting cell invasion. Cancer Cell Int 2018; 18:184. [PMID: 30479563 PMCID: PMC6238332 DOI: 10.1186/s12935-018-0679-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Background miRNA clusters are widely expressed across species, accumulating evidence has illustrated that miRNA cluster functioned more efficiently than single miRNA in cancer oncogenesis. It is likely that miRNA clusters are more stable and reliable than individual miRNA to be biomarkers for diagnosis and therapy. We previously found low expression of miR-144/451 was closely related with the risk for esophageal cancer. Researches on miR-144/451 cluster were mostly focused on individual miRNA but not the whole cluster, the regulatory mechanism of miRNA cluster were largely unknown. Methods In present study, we firstly analysed biological functions of individual miRNAs of miR-144/451 in ECa9706 transfected with miRNA mimics. We further analysed the biological function of the whole cluster in stable transgenic cell overexpressing miR-144/451. We then performed genome-wide mRNA microarray to detect differentially expressed gene profiles in stable transgenic cells. Results Overexpression of miR-144-3p promoted early apoptosis of ECa9706 and inhibited cell migration, cell invasion and cell proliferation. miR-144-5p and miR-451a inhibited cell proliferation, at the same time, miR-451a inhibited cell migration. Overexpression of miR-144/451 leads to the arrest cell cycle from S to G2 and G2 to M,while the invasion ability was obviously inhibited. We further observed c-Myc, p-ERK were downregulated in cells overexpressing miR-144/451, while p53 was up-regulated. The downstream effectors of c-Myc, MMP9 and p-cdc2 were downregulated in miR-144/451 stable transgenic cell. miR-144/451 may or partly inhibited cell cycles and invasion of ECa9706 through inhibiting ERK/c-Myc signaling pathway. Conclusion Collectively, we analysed the function of miR-144/451 cluster from individual to overall level. miR-144/451 cluster played proto oncogene role in esophageal cancer by inhibiting cell invasion. Electronic supplementary material The online version of this article (10.1186/s12935-018-0679-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhikui Gao
- 1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000 China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu, 062552 China
| | - Han Gao
- 1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| | - Lihong Yin
- 1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| | - Ran Liu
- 1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| |
Collapse
|
20
|
Li RD, Shen CH, Tao YF, Zhang XF, Zhang QB, Ma ZY, Wang ZX. MicroRNA-144 suppresses the expression of cytokines through targeting RANKL in the matured immune cells. Cytokine 2018; 108:197-204. [DOI: 10.1016/j.cyto.2018.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022]
|
21
|
Liu S, Suo J, Wang C, Sun X, Wang D, He L, Zhang Y, Li W. Prognostic significance of low miR-144 expression in gastric cancer. Cancer Biomark 2018; 20:547-552. [PMID: 28800316 DOI: 10.3233/cbm-170351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An overwhelming amount of evidence has emerged suggesting that dysregulated microRNAs (miRNAs) play crucial roles in tumorigenesis. OBJECTIVE The study was to analyze tissue/serum miR-144 expression in gastric cancer and then evaluate their potential to predict the prognosis of gastric cancer. METHODS We examined miR-144 levels in tissues and peripheral blood samples from 96 gastric cancer patients using real-time PCR. Then the association between tissue/serum miR-144 levels and clinicopathological parameters was determined. RESULTS The expression levels of miR-144 were significantly down-regulated in the cancerous tissue and serum samples from gastric cancer patients. Serum miR-144 was able to differentiate the gastric cancer patients from healthy controls with high accuracy. In addition, tissue and serum miR-144 levels were both associated with clinical stage and lymph node metastasis. Moreover, patients with lower tissue or serum miR-144 suffered worse 5 year overall survival and disease free survival. CONCLUSIONS Taken together, our data support the potential clinical value of tissue and serum miR-144 as prognostic biomarkers in gastric cancer.
Collapse
Affiliation(s)
- Suoning Liu
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jian Suo
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xuan Sun
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Daguang Wang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Liang He
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Zhang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
22
|
Lario S, Brunet-Vega A, Quílez ME, Ramírez-Lázaro MJ, Lozano JJ, García-Martínez L, Pericay C, Miquel M, Junquera F, Campo R, Calvet X. Expression profile of circulating microRNAs in the Correa pathway of progression to gastric cancer. United European Gastroenterol J 2018; 6:691-701. [PMID: 30083331 DOI: 10.1177/2050640618759433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
Background Helicobacter pylori infection causes long-term chronic active gastritis, a risk factor for the intestinal and diffuse forms of gastric cancer. Most gastric cancers develop in a stepwise progression from chronic active gastritis to precursor lesions of gastric cancer. The early detection of gastric cancer improves survival. Studies with recent evidence have proposed circulating-microRNAs as biomarkers of cancer. Objective The purpose of this study was to explore the circulating-microRNA profile from H. pylori infection to gastric adenocarcinoma. Methods One hundred and twenty-three patients were enrolled and assigned to the discovery or the validation sets. In the discovery phase, circulating-microRNAs were measured by dye-based quantitative polymerase chain reaction and a selection of circulating-microRNAs was validated by probe-based quantitative polymerase chain reaction. A quality control protocol was used. Results One hundred and sixty-seven circulating-microRNAs were detected. Precursor lesions of gastric cancer and gastric cancer patients showed the downregulation of eight and five circulating-microRNAs, respectively. We further validated the deregulation of miR-196a-5p in precursor lesions of gastric cancer and the deregulation of miR-134-5p, miR-144-3p and miR-451a in gastric cancer. However, circulating-microRNAs exhibited moderate diagnostic performance due to the overlap of circulating-microRNA expression between non-cancer and cancer patients. miR-144-3p/miR-451a expression levels were correlated. Interestingly, these microRNAs are in 17q11.2, a site of rearrangements associated with gastric cancer. Conclusion Circulating-microRNAs are deregulated in precancerous and gastric cancer patients but efforts are needed to improve their diagnostic accuracy.
Collapse
Affiliation(s)
- Sergio Lario
- Fundació Parc Taulí, Spain.,Digestive Diseases Service, Hospital de Sabadell, Sabadell, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Anna Brunet-Vega
- Fundació Parc Taulí, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain.,Oncology Service, Hospital de Sabadell, Sabadell, Spain
| | - María E Quílez
- Fundació Parc Taulí, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain.,Oncology Service, Hospital de Sabadell, Sabadell, Spain
| | - María J Ramírez-Lázaro
- Digestive Diseases Service, Hospital de Sabadell, Sabadell, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Juan J Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Bioinformatics Platform, CIBEREHD, Madrid, Spain
| | - Lorena García-Martínez
- Fundació Parc Taulí, Spain.,Digestive Diseases Service, Hospital de Sabadell, Sabadell, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Carles Pericay
- Institut Universitari Parc Taulí-UAB, Sabadell, Spain.,Oncology Service, Hospital de Sabadell, Sabadell, Spain
| | - Mireia Miquel
- Digestive Diseases Service, Hospital de Sabadell, Sabadell, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Félix Junquera
- Digestive Diseases Service, Hospital de Sabadell, Sabadell, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Rafael Campo
- Digestive Diseases Service, Hospital de Sabadell, Sabadell, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Xavier Calvet
- Digestive Diseases Service, Hospital de Sabadell, Sabadell, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Institut Universitari Parc Taulí-UAB, Sabadell, Spain.,Departament de Medicina, UAB, Sabadell, Spain
| |
Collapse
|
23
|
Han S, Zhu J, Zhang Y. miR-144 Potentially Suppresses Proliferation and Migration of Ovarian Cancer Cells by Targeting RUNX1. Med Sci Monit Basic Res 2018; 24:40-46. [PMID: 29445078 PMCID: PMC5822934 DOI: 10.12659/msmbr.907333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Ovarian cancer (OC) is one of the most common malignant diseases of the female reproductive system worldwide. Evidence has shown that microRNAs are involved in the development of ovarian cancer. miR-144, one of these microRNAs, has been found have upregulated expression in various human malignancies. The present study aimed to investigate the role miR-144 in ovarian cancer cell lines and to elucidate the mechanism involved. Material/Methods Human ovarian cancer cell lines (SKOV3/OVCAR3) and a normal ovarian cell line (IOSE80) were used to identify the miR-144 expression though qRT-PCR method. SKOV3/OVCAR3 cells were transfected with miR-144 mimics by Lipofectamine, and the proliferation, migration, and invasion ability of these cells were detected by MTT assay, wound healing assay, and Transwell assays, respectively. MMP2 and MMP9 expression were detected at mRNA and protein levels. The results of dual luciferase reporter assay confirmed that miR-144 could down-regulate RUNX1 expression level. Finally, the expression of runt-related transcription factor 1 (RUNX1) was examined using qRT-PCR and Western blot analysis. Results Our results demonstrate that the expression level of miR-144 was downregulated in SKOV3/OVCAR3 compared to IOSE80, and we found that miR-144 suppresses the proliferation and migration of ovarian cancer cells. Moreover, RUNX1 was predicted and confirmed to be a target of miRNA-144. Additionally, after 48-h transfection with miR-144 mimics, the expression of RUNX1 was downregulated in OC cells. Conclusions miR-144 mimics can inhibit the proliferation and migration of ovarian cancer cells though regulating the expression of RUNX1.
Collapse
Affiliation(s)
- Shichao Han
- Department of Gynecology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Jinming Zhu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, MD Anderson, Houston, TX, USA
| |
Collapse
|
24
|
Zhang C, Song G, Ye W, Xu B. MicroRNA-302a inhibits osteosarcoma cell migration and invasion by directly targeting IGF-1R. Oncol Lett 2018; 15:5577-5583. [PMID: 29563995 PMCID: PMC5858113 DOI: 10.3892/ol.2018.8049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is one of the most frequent types of primary malignant bone neoplasm in children and adolescents. Despite advancements developed in therapeutic modalities, the 5-year overall survival rates for patients with metastatic osteosarcoma disease remain poor. The present study aimed to investigate the expression level of microRNA-302a (miR-302a) in osteosarcoma tissues and cell lines, and the biological roles of miR-302a in osteosarcoma cells. In addition, the molecular mechanism underlying its tumor suppressive roles was evaluated. miR-302a expression in osteosarcoma tissues and cell lines was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Following transfection of miR-302a mimics or IGF-1R siRNA, transwell migration and invasion, luciferase reporter assay RT-qPCR and western blot assays were conducted in osteosarcoma cells. In the present study, the data demonstrated that miR-302a was frequently reduced in osteosarcoma tissue and cell lines. In addition, the expression of miR-302a was correlated with metastatic features of patients with osteosarcoma. Restoration of miR-302a expression significantly inhibited the migration and invasion capacity of osteosarcoma cells. Mechanistic studies indicated that insulin-like growth factor 1 receptor (IGF-1R) was a direct target gene of miR-302a. Overexpression of miR-302a resulted in decreased expression of IGF-1R at the mRNA and protein levels. Furthermore, the knockdown IGF-1R mimicked the functions of miR-302a overexpression on osteosarcoma cell migration and invasion. Collectively, the results of the current study indicate that miR-302a acts as a metastasis suppressing miRNA and could be investigated as a therapeutic target for the treatment of patients with osteosarcoma to prevent metastasis.
Collapse
Affiliation(s)
- Chunhong Zhang
- Department of Spinal Surgery, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| | - Guomin Song
- Department of Nursing, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| | - Weisheng Ye
- Department of Research Office, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| | - Baoshan Xu
- Department of Spinal Surgery, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| |
Collapse
|
25
|
Yao Q, Gu A, Wang Z, Xue Y. MicroRNA-144 functions as a tumor suppressor in gastric cancer by targeting cyclooxygenase-2. Exp Ther Med 2018; 15:3088-3095. [PMID: 29456712 DOI: 10.3892/etm.2018.5763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) poses a serious public health threat and the 5-year survival rate of patients with GC is low. MicroRNAs (miRNAs/miRs) may serve oncogenic or tumor suppressor functions during tumorigenesis by regulating cell proliferation, apoptosis, migration and invasion and it has been demonstrated that they may be dysregulated in various types of cancer. The present study demonstrated that miR-144 and GATA4 were downregulated in GC tissues and cell lines and suggested that this may be due to hypermethylation. Additionally, miR-144 and GATA4 had synergistic effects on GC cells by repressing cell proliferation and inducing cell cycle arrest and apoptosis. The results of bioinformatics and a luciferase reporter assay indicated that cyclooxygenase-2 (COX-2) is a direct target of miR-144 and that miR-144 negatively regulated the expression of COX-2, which inhibits the viability of GC cells. GATA4 also induced a similar effect on COX-2. Taken together, the results of the present study may improve understanding of the underlying mechanism of miR-144 and GATA4 in GC.
Collapse
Affiliation(s)
- Qiang Yao
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Anxin Gu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Zhuozhong Wang
- Department of Statistics, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yingwei Xue
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
26
|
Qiao W, Cao N, Yang L. MicroRNA-154 inhibits the growth and metastasis of gastric cancer cells by directly targeting MTDH. Oncol Lett 2017; 14:3268-3274. [PMID: 28927076 PMCID: PMC5588056 DOI: 10.3892/ol.2017.6558] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of non-protein-coding, highly conserved single-stranded RNA molecules. The abnormal expression of miRNAs has been demonstrated to have an important function in the carcinogenesis and progression of gastric cancer. microRNA-154 (miR-154) has been reported to be downregulated in non-small cell lung, colorectal and prostate cancer. However, the expression and roles of miR-154 in gastric cancer remain to be established. The present study measured the expression levels of miR-154 in gastric cancer tissues and cell lines. miR-154 was found to be significantly downregulated in gastric cancer tissues and cell lines. In addition, functional studies indicated that the overexpression of miR-154 inhibited the proliferation, migration and invasion of gastric cancer cells. Using TargetScan, a dual luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction and western blot analysis, metadherin (MTDH) was revealed as a novel miR-154 target. In addition, knocking down MTDH lead to a similar effect as overexpressing-154 in gastric cells. The present findings indicate that miR-154 was downregulated in gastric cancer, and inhibited tumor behaviors of gastric cancer cells partially through the downregulation of MTDH. Therefore, the miR-154/MTDH axis may be a novel therapeutic to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Wenhui Qiao
- Department of General Surgery, The First Hospital of Lanzhou University, Chengguan, Lanzhou, Gansu 730000, P.R. China,Correspondence to: Professor Wenhui Qiao, Department of General Surgery, The First Hospital of Lanzhou University. 1 Donggang Dong Road, Chengguan, Lanzhou, Gansu 730000, P.R. China, E-mail:
| | - Nong Cao
- Department of General Surgery, The First Hospital of Lanzhou University, Chengguan, Lanzhou, Gansu 730000, P.R. China
| | - Lei Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Chengguan, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
27
|
Gallach S, Jantus-Lewintre E, Calabuig-Fariñas S, Montaner D, Alonso S, Sirera R, Blasco A, Usó M, Guijarro R, Martorell M, Camps C. MicroRNA profiling associated with non-small cell lung cancer: next generation sequencing detection, experimental validation, and prognostic value. Oncotarget 2017; 8:56143-56157. [PMID: 28915579 PMCID: PMC5593550 DOI: 10.18632/oncotarget.18603] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Background The average five-year survival for non-small cell lung cancer (NSCLC) patients is approximately 15%. Emerging evidence indicates that microRNAs (miRNAs) constitute a new class of gene regulators in humans that may play an important role in tumorigenesis. Hence, there is growing interest in studying their role as possible new biomarkers whose expression is aberrant in cancer. Therefore, in this study we identified dysregulated miRNAs by next generation sequencing (NGS) and analyzed their prognostic value. Methods Sequencing by oligo ligation detection technology was used to identify dysregulated miRNAs in a training cohort comprising paired tumor/normal tissue samples (N = 32). We validated 22 randomly selected differentially-expressed miRNAs by quantitative real time PCR in tumor and adjacent normal tissue samples (N = 178). Kaplan-Meier survival analysis and Cox regression were used in multivariate analysis to identify independent prognostic biomarkers. Results NGS analysis revealed that 39 miRNAs were dysregulated in NSCLC: 28 were upregulated and 11 were downregulated. Twenty-two miRNAs were validated in an independent cohort. Interestingly, the group of patients with high expression of both miRNAs (miR-21high and miR-188high) showed shorter relapse-free survival (RFS) and overall survival (OS) times. Multivariate analysis confirmed that this combined signature is an independent prognostic marker for RFS and OS (p = 0.001 and p < 0.0001, respectively). Conclusions NGS technology can specifically identify dysregulated miRNA profiles in resectable NSCLC samples. MiR-21 or miR-188 overexpression correlated with a negative prognosis, and their combined signature may represent a new independent prognostic biomarker for RFS and OS.
Collapse
Affiliation(s)
- Sandra Gallach
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Pathology, Universitat de València, Valencia, Spain
| | - David Montaner
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Institut de Reserca Germans Trias i Pujol (PMPPC-IGTP), Badalona, Spain
| | - Rafael Sirera
- Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Ana Blasco
- Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Marta Usó
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain
| | - Ricardo Guijarro
- Department of Surgery, Universitat de València, Valencia, Spain.,Department of Thoracic Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Miguel Martorell
- Department of Pathology, Universitat de València, Valencia, Spain.,Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
28
|
Ning T, Peng Z, Li S, Qu Y, Zhang H, Duan J, Wang X, Yang H, Liu R, Deng T, Bai M, Wang Y, Si Y, Zhang L, Wang X, Ge S, Zhou L, Ying G, Ba Y. miR-455 inhibits cell proliferation and migration via negative regulation of EGFR in human gastric cancer. Oncol Rep 2017; 38:175-182. [DOI: 10.3892/or.2017.5657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/24/2016] [Indexed: 11/05/2022] Open
|
29
|
Zhao Y, Xie Z, Lin J, Liu P. MiR-144-3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am J Transl Res 2017; 9:2437-2446. [PMID: 28559994 PMCID: PMC5446526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
MicroRNA-144-3p (miR-144-3p) has been implicated in the development of many types of cancer. However, its role in multiple myeloma (MM) remains largely unknown. In this study, we found that miR-144-3p was downregulated in both MM cell lines and plasma from patients with MM. In vitro studies further showed that transfection of an miR-144-3p mimic into MM cells inhibited their proliferation and colony formation, and promoted cell cycle arrest at the G0/G1 phase and apoptosis. In addition, we found that miR-144-3p could directly target the 3'-untranslated region of cellular-mesenchymal to epithelial transition factor (c-MET) and suppress c-MET expression and its downstream signaling pathway (PI3K/AKT). Rescue experiments revealed that overexpression of c-MET partially reversed the inhibition effect of miR-144-3p in MM cells. In vivo studies confirmed that restoration of miR-144-3p suppressed tumor growth in xenograft nude mice by repressing c-MET. Overall, these findings demonstrate that miR-144-3p functions as a tumor suppressor in MM by targeting c-MET, suggesting that miR-144-3p might serve as a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Vascular Surgery, The China Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Zhongshi Xie
- Department of Gastrointestinal Colorectal and Anal Surgery, The China Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Jie Lin
- Department of Vascular Surgery, The China Japan Union Hospital of Jilin UniversityChangchun 130033, China
| | - Peng Liu
- Department of Orthopaedics, The China Japan Union Hospital of Jilin UniversityChangchun 130033, China
| |
Collapse
|
30
|
Fang Z, Zhang L, Liao Q, Wang Y, Yu F, Feng M, Xiang X, Xiong J. Regulation of TRIM24 by miR-511 modulates cell proliferation in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:17. [PMID: 28114950 PMCID: PMC5259882 DOI: 10.1186/s13046-017-0489-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Background Increasing evidence highlights the important roles of tripartite motif containing 24 (TRIM24) in tumor initiation and malignant progression in many tumors, including gastric cancer (GC). Although TRIM24 expression is remarkably upregulated during GC carcinogenesis, the molecular mechanisms underlying TRIM24 dysregulation remain unexplored. Methods In this study, miRNA target prediction tools were applied to explore miRNAs that potentially target TRIM24. Western blot and quantitative reverse-transcriptase PCR (qRT-PCR) were performed to detected TRIM24 and miR-511 expression in GC tissues and cell lines. Dual-luciferase reporter assay was utilized to validate if TRIM24 is a direct target gene of miR-511. CCK-8 assay, cell colony formation assay, EdU incorporation assay and cell cycle analysis were performed to determine whether miR-511-mediated regulation of TRIM24 could affect GC progression. Results In our study, miR-511 was found to be downregulated in GC and an inverse correlation was observed between TRIM24 and miR-511 expression in primary GC tissues and cell lines. Dual-luciferase reporter assay further verified TRIM24 is a direct target of miR-511. Functional assays showed miR-511 overexpression inhibited cell growth, colony formation ability and cell cycle progression. Conversely, inhibition of endogenous miR-511 promoted these phenotypes in GC cells. Moreover, reintroduction of TRIM24 rescued miR-511-induced inhibitory effects on GC cells. Furthermore, miR-511 elicits tumor-suppressive effects through inactivating PI3K/AKT and Wnt/β-catenin pathways by suppressing TRIM24. Conclusions Our results provide the new evidence supporting the tumor-suppressive role of miR-511 in GC by suppressing TRIM24, suggesting that this novel miR-511/TRIM24 axis is critical in the control of gastric cancer tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziling Fang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Ling Zhang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Quan Liao
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Yi Wang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Feng Yu
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Miao Feng
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Xiaojun Xiang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China.
| | - Jianping Xiong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
31
|
Li B, Zhang S, Shen H, Li C. MicroRNA-144-3p suppresses gastric cancer progression by inhibiting epithelial-to-mesenchymal transition through targeting PBX3. Biochem Biophys Res Commun 2017; 484:241-247. [PMID: 28111340 DOI: 10.1016/j.bbrc.2017.01.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
MicroRNAs are aberrantly expressed in a wide variety of human cancers. The present study aims to elucidate the effects and molecular mechanisms of miR-144-3p that underlie gastric cancer (GC) development. It was observed that miR-144-3p expression was significantly decreased in GC tissues compared to that in paired non-tumor tissues; moreover, its expression was lower in tissues of advanced stage and larger tumor size, as well as in lymph node metastasis tissues compared to that in control groups. miR-144-3p expression was associated with depth of invasion (P = 0.030), tumor size (P = 0.047), lymph node metastasis (P = 0.047), and TNM stage (P = 0.048). Additionally, miR-144-3p significantly inhibited proliferation, migration, and invasion in GC cells. It also reduced F-actin expression and suppressed epithelial-to-mesenchymal transition (EMT) in GC cells. Furthermore, pre-leukemia transcription factor 3 (PBX3) was a direct target gene of miR-144-3p. PBX3 was overexpressed in GC tissues and promoted EMT in GC cells. The effects of miR-144-3p mimics or inhibitors on cell migration, invasion, and proliferation were reversed by PBX3 overexpression or downregulation respectively. These results suggest that miR-144-3p suppresses GC progression by inhibiting EMT through targeting PBX3.
Collapse
Affiliation(s)
- Butian Li
- Department of General Surgery, Jing'an District Centre Hospital of Shanghai of Fudan University, Huashan Hospital Jing'an Branch of Fudan University, Shanghai, China
| | - Shengping Zhang
- Department of General Surgery, Jing'an District Centre Hospital of Shanghai of Fudan University, Huashan Hospital Jing'an Branch of Fudan University, Shanghai, China
| | - Hao Shen
- Department of General Surgery, Jing'an District Centre Hospital of Shanghai of Fudan University, Huashan Hospital Jing'an Branch of Fudan University, Shanghai, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
32
|
Yuan X, Wang S, Liu M, Lu Z, Zhan Y, Wang W, Xu AM. Histological and Pathological Assessment of miR-204 and SOX4 Levels in Gastric Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6894675. [PMID: 28133610 PMCID: PMC5241485 DOI: 10.1155/2017/6894675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023]
Abstract
Gastric cancer is one of the most common cancers and the efficient therapeutic methods are limited. Further study of the exact molecular mechanism of gastric cancer to develop novel targeted therapies is necessary and urgent. We herein systematically examined that miR-204 suppressed both proliferation and metastasis of gastric cancer AGS cells. miR-204 directly targeted SOX4. In clinical tissue research, we determined that miR-204 was expressed much lower and SOX4 expressed much higher in gastric cancer tissues compared with normal gastric tissues. Associated analysis with clinicopathological parameters in gastric cancer patients showed miR-204 was associated with no lymph node metastasis and early tumor stages whereas SOX4 was associated with lymph node metastasis and advanced tumor stages. In addition, miR-204 and SOX4 were negatively correlated in tissues from gastric cancer patients. Our findings examined the important role of miR-204 and SOX4 played in gastric cancer, and they could be used as candidate therapeutic targets for gastric cancer therapy.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Zhen Lu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanqing Zhan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - A-Man Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
33
|
Yu J, Wang L, Yang H, Ding D, Zhang L, Wang J, Chen Q, Zou Q, Jin Y, Liu X. Rab14 Suppression Mediated by MiR-320a Inhibits Cell Proliferation, Migration and Invasion in Breast Cancer. J Cancer 2016; 7:2317-2326. [PMID: 27994670 PMCID: PMC5166543 DOI: 10.7150/jca.15737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022] Open
Abstract
We found that microRNA-320a (miR-320a) was an attractive prognostic biomarker in breast cancer (BC) previously, whereas its regulatory mechanism in BC was not well understood. Our aim was to identify miR-320a target gene, examine the clinical relationship between miR-320a and its target, and further explore the functions of its target in BC. In this study, miR-320a downstream target gene was determined in HEK-293T cells by dual luciferase reporter assay. Then western blotting and immunohistochemistry were used to assess miR-320a target gene expression in fresh frozen (n=19, breast cancer and matched non-malignant adjacent tissue samples) and formalin-fixed paraffin-embedded (FFPE) (n=130, invasive BC tissues, the same panel detected for miR-320a expression previously) breast tissues, respectively. The results suggested that miR-320a could significantly suppressed Rab14 3'-untranslated region luciferase-reporter activity, and thus Rab14 was first identified as miR-320a target in BC. In 19 matched breast tissues, 12 (63%) breast cancer tissues showed high expression of Rab14 compared with the corresponding normal tissues. Rab14 immunoreactivity was mainly detected in the cytoplasm, 77/130 (59.2%) showed high expression. Furthermore, Rab14 expression was found to be inversely correlated with miR-320a expression in fresh-frozen breast tissues as well as in FFPE invasive breast cancer samples. In addition, Rab14 expression levels were positively related to tumor size (P = 0.034), lymph node metastasis (P < 0.001), distant metastasis (P = 0.001), histological grade (P = 0.035) and clinical tumor lymph-node metastasis stage (P = 0.001). Patients with higher Rab14 expression showed shorter overall survival time. Moreover, silencing of Rab14 could suppress proliferation, migration and invasion in breast cancer cell lines. Collectively, our results indicate that miR-320a could target Rab14 and that they could interact biologically in BC.
Collapse
Affiliation(s)
- Juan Yu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiping Yang
- Department of Pathology, People's Hospital, Linzi District, Zibo City, Shandong 255400, China
| | - Di Ding
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jigang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qi Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Zou
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiting Jin
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiuping Liu
- Department of Pathology, the Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
34
|
Pan Y, Zhang J, Fu H, Shen L. miR-144 functions as a tumor suppressor in breast cancer through inhibiting ZEB1/2-mediated epithelial mesenchymal transition process. Onco Targets Ther 2016; 9:6247-6255. [PMID: 27785072 PMCID: PMC5067005 DOI: 10.2147/ott.s103650] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Local invasion, metastasis, and chemotherapy resistance are the obstacles for treatment of breast cancer. In this study, we aim to investigate the role of miR-144 in breast cancer. We demonstrate that the expression of miR-144 is downregulated in breast cancer and cell lines, and lower miR-144 expression is associated with poor differentiation, higher clinical stage, and lymph node metastasis in patients with breast cancer. The rescue of miR-144 expression is able to inhibit the cell proliferation and the ability of cell migration and invasion. In addition, we show that miR-144 can directly target at 3′-untranslation region of zinc finger E-box-binding homeobox 1 and 2, that is, ZEB1 and ZEB2, and regulate their expression at transcriptional and translational levels. Moreover, we also demonstrate that ectopic expression of miR-144 can inhibit the process of epithelial mesenchymal transition in MCF-7 and MDA-MB-231 cells. Thus, we here demonstrate that miR-144 functions as a tumor suppressor in breast cancer at least partly through inhibiting ZEB1/2-mediated epithelial mesenchymal transition process. Our findings indicate that the miR-144-ZEB1/2 signaling could represent a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Yuliang Pan
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Huiqun Fu
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Liangfang Shen
- Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
35
|
Ji TT, Huang X, Jin J, Pan SH, Zhuge XJ. Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and invasion through regulating and controlling the expression of miR-144/c-Met axis. ASIAN PAC J TROP MED 2016; 9:508-12. [DOI: 10.1016/j.apjtm.2016.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022] Open
|
36
|
MiR-144 inhibits cell proliferation of renal cell carcinoma by targeting MTOR. ACTA ACUST UNITED AC 2016; 36:186-192. [PMID: 27072960 DOI: 10.1007/s11596-016-1564-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/26/2016] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) modulate the expression of tumorigenesis-related genes and play important roles in the development of various types of cancers. It has been reported that miR-144 is dysregulated and involved in multiple malignant tumors, but its role in renal cell carcinoma (RCC) remains elusive. In this study, we demonstrated miR-144 was significantly downregulated in human RCC. The decreased miR-144 correlated with tumor size and TNM stage. Moreover, overexpression of miR-144 in vitro suppressed RCC cell proliferation and G2 transition, which were reversed by inhibition of miR-144. Bioinformatic analysis predicted that mTOR was a potential target of miR-144, which was further confirmed by dual luciferase reporter assay. Additionally, the examination of clinical RCC specimens revealed that miR-144 was inversely related to mTOR. Furthermore, knocking down mTOR with siRNA had the same biological effects as those of miR-144 overexpression in RCC cells, including cell proliferation inhibition and S/G2 cell cycle arrest. In conclusion, our results indicate that miR-144 affects RCC progression by inhibiting mTOR expression, and targeting miR-144 may act as a novel strategy for RCC treatment.
Collapse
|
37
|
Chu SJ, Wang G, Zhang PF, Zhang R, Huang YX, Lu YM, Da W, Sun Q, Zhang J, Zhu JS. MicroRNA-203 suppresses gastric cancer growth by targeting PIBF1/Akt signaling. J Exp Clin Cancer Res 2016; 35:47. [PMID: 26980572 PMCID: PMC4791790 DOI: 10.1186/s13046-016-0323-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/08/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been proved involved in many tumorigenic behaviors including tumor growth. But, the clinical significance and functions of miRNA-203 in gastric cancer (GC) remain elusive. RESULTS Decreased expression of miRNA-203 was correlated with tumor size, poor prognosis and recurrence in GC patients. Overexpression of miR-203 or knockdown of its target progesterone immunomodulatory binding factor 1 (PIBF1) inhibited GC growth in vitro and in vivo, while miR-203 knockdown promoted GC proliferation. In addition, PIBF1 overexpression attenuated the inhibitory effects of miR-203 on GC growth and enhanced that effect on p-Akt expression. CONCLUSIONS MiR-203 as a tumor biomarker suppresses GC growth through targeting the PIBF1/Akt signaling, suggesting that it may have the important therapeutic potential for the treatment of GC.
Collapse
Affiliation(s)
- Shao-Jun Chu
- />Department of Gerontology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Shanghai, 200233 China
| | - Ge Wang
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| | - Peng-Fei Zhang
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| | - Rui Zhang
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| | - Yan-Xia Huang
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| | - Yun-Min Lu
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| | - Wei Da
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| | - Qun Sun
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| | - Jing Zhang
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| | - Jin-Shui Zhu
- />Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Yishan Road No. 600, Shanghai, 200233 China
| |
Collapse
|
38
|
Apoptosis of human prostate cancer cells induced by marine actinomycin X2 through the mTOR pathway compounded by MiRNA144. Anticancer Drugs 2016; 27:156-63. [DOI: 10.1097/cad.0000000000000309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Wang F, Lu J, Peng X, Wang J, Liu X, Chen X, Jiang Y, Li X, Zhang B. Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:17. [PMID: 26795575 PMCID: PMC4722718 DOI: 10.1186/s13046-016-0292-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
Background MicroRNAs (miRNAs) have been shown to play a critical role in the development and progression of nasopharyngeal carcinoma (NPC). Although accumulating studies have been performed on the molecular mechanisms of NPC, the miRNA regulatory networks in cancer progression remain largely unknown. Laser capture microdissection (LCM) and deep sequencing are powerful tools that can help us to detect the integrated view of miRNA-target network. Methods Illumina Hiseq2000 deep sequencing was used to screen differentially expressed miRNAs in laser-microdessected biopsies between 12 NPC and 8 chronic nasopharyngitis patients. The result was validated by real-time PCR on 201 NPC and 25 chronic nasopharyngitis patients. The potential candidate target genes of the miRNAs were predicted using published target prediction softwares (RNAhybrid, TargetScan, Miranda, PITA), and the overlay part was analyzed in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological process. The miRNA regulatory network analysis was performed using the Ingenuity Pathway Analysis (IPA) software. Results Eight differentially expressed miRNAs were identified between NPC and chronic nasopharyngitis patients by deep sequencing. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-34c-5p, miR-375 and miR-449c-5p), 4 up-regulated miRNAs (miR-205-5p, miR-92a-3p, miR-193b-3p and miR-27a-5p). Additionally, the low level of miR-34c-5p (miR-34c) was significantly correlated with advanced TNM stage. GO and KEGG enrichment analyses showed that 914 target genes were involved in cell cycle, cytokine secretion and tumor immunology, and so on. IPA revealed that cancer was the top disease associated with those dysregulated miRNAs, and the genes regulated by miR-34c were in the center of miRNA-mRNA regulatory network, including TP53, CCND1, CDK6, MET and BCL2, and the PI3K/AKT/ mTOR signaling was regarded as a significant function pathway in this network. Conclusion Our study presents the current knowledge of miRNA regulatory network in NPC with combination of bioinformatics analysis and literature research. The hypothesis of miR-34c regulatory pathway may be beneficial in guiding further studies on the molecular mechanism of NPC tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0292-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Wang
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Juan Lu
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohong Peng
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jie Wang
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiong Liu
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaomei Chen
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yiqi Jiang
- Department of Guangdong No.2 District, BGI Genomics Co., Ltd, Shenzhen, 518083, China.
| | - Xiangping Li
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bao Zhang
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
40
|
Chen Y, Tang Q, Wu J, Zheng F, Yang L, Hann SS. Inactivation of PI3-K/Akt and reduction of SP1 and p65 expression increase the effect of solamargine on suppressing EP4 expression in human lung cancer cells. J Exp Clin Cancer Res 2015; 34:154. [PMID: 26689593 PMCID: PMC4687355 DOI: 10.1186/s13046-015-0272-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related deaths worldwide. Natural phytochemicals from traditional medicinal plants such as solamargine have been shown to have anticancer properties. The prostaglandin E2 receptor EP4 is highly expressed in human cancer, however, the functional role of EP4 in the occurrence and progression of non small cell lung cancer (NSCLC) remained to be elucidated. METHODS Cell viability was measured by MTT assays. Western blot was performed to measure the phosphorylation and protein expression of PI3-K downstream effector Akt, transcription factors SP1, p65, and EP4. Quantitative real-time PCR (qRT-PCR) was used to examine the mRNA levels of EP4 gene. Exogenous expression of SP1, p65, and EP4 genes was carried out by transient transfection assays. EP4 promoter activity was measured by Dual Luciferase Reporter Kit. RESULTS We showed that solamargine inhibited the growth of lung cancer cells. Mechanistically, we found that solamargine decreased the phosphorylation of Akt, the protein, mRNA expression, and promoter activity of EP4. Moreover, solamargine inhibited protein expression of SP1 and NF-κB subunit p65, all of which were abrogated in cells transfected with exogenous expressed Akt. Intriguingly, exogenous expressed SP1 overcame the effect of solamargine on inhibition of p65 protein expression, and EP4 protein expression and promoter activity. Finally, exogenous expressed EP4 feedback reversed the effect of solamargine on phosphorylation of Akt and cell growth inhibition. CONCLUSION Our results show that solamargine inhibits the growth of human lung cancer cells through inactivation of Akt signaling, followed by reduction of SP1 and p65 protein expression. This results in the inhibition of EP4 gene expression. The cross-talk between SP1 and p65, and the positive feedback regulatory loop of PI3-K/Akt signaling by EP4 contribute to the overall responses of solamargine in this process. This study unveils a novel mechanism by which solamargine inhibits growth of human lung cancer cells.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Oncogene Protein v-akt/biosynthesis
- Oncogene Protein v-akt/genetics
- Phosphatidylinositol 3-Kinases/biosynthesis
- Phosphatidylinositol 3-Kinases/genetics
- Phosphorylation/drug effects
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Receptors, Prostaglandin E, EP4 Subtype/biosynthesis
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Signal Transduction/drug effects
- Solanaceous Alkaloids/administration & dosage
- Sp1 Transcription Factor/biosynthesis
- Sp1 Transcription Factor/genetics
- Transcription Factor RelA/biosynthesis
- Transcription Factor RelA/genetics
Collapse
Affiliation(s)
- YuQing Chen
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - JingJing Wu
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Fang Zheng
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - LiJun Yang
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
- Higher Education Mega Center, No. 55, Neihuan West Road, Panyu District, Guangzhou, Guangdong Province, 510006, PR China.
| |
Collapse
|
41
|
MicroRNA-144 mediates metabolic shift in ovarian cancer cells by directly targeting Glut1. Tumour Biol 2015; 37:6855-60. [PMID: 26662316 DOI: 10.1007/s13277-015-4558-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022] Open
Abstract
Warburg effect is characterized by an increased utilization of glucose via glycolysis in cancer cells, even when enough oxygen is present to properly respire. Recent studies demonstrate that deregulation of microRNAs contributes to the Warburg effect. In the present study, we show that miR-144 is downregulated while glucose transporter 1 (Glut1) is upregulated in ovarian cancers. In vitro studies further showed that miR-144 inhibits Glut1 expression through targeting its 3'-untranslated region. As a result, cells overexpressing miR-144 exhibited a metabolic shift, including enhanced glucose uptake and lactate production. The altered glucose metabolism induced by miR-144 also leads to a rapid growth of ovarian cancer cells. Taken together, our results indicate that miR-144 may serve as a molecular switch to regulate glycolysis in ovarian cancer by targeting the expression of Glut1.
Collapse
|
42
|
Xiong D, Liu Z, Bian T, Li J, Huang W, Jing P, Liu L, Wang Y, Zhong Z. GX1-mediated anionic liposomes carrying adenoviral vectors for enhanced inhibition of gastric cancer vascular endothelial cells. Int J Pharm 2015; 496:699-708. [DOI: 10.1016/j.ijpharm.2015.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
|
43
|
miR-27b-3p suppresses cell proliferation through targeting receptor tyrosine kinase like orphan receptor 1 in gastric cancer. J Exp Clin Cancer Res 2015; 34:139. [PMID: 26576539 PMCID: PMC4650850 DOI: 10.1186/s13046-015-0253-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The receptor tyrosine kinase-like orphan receptors (ROR) family contains the atypical member ROR1, which plays an oncogenic role in several malignant tumors. However, the clinical potentials and underlying mechanisms of ROR1 in gastric cancer progression remain largely unknown. In this study, we validated the microRNA-mediated gene repression mechanism involved in the role of ROR1. METHODS Bioinformatic prediction, luciferase reporter assay, quantitative real-time PCR (qRT-PCR) and western blotting were used to reveal the regulatory relationship between miR-27b-3p and ROR1. The expression patterns of miR-27b-3p and ROR1 in human gastric cancer (GC) specimens and cell lines were determined by microRNA RT-PCR and western blotting. Cell proliferation, colony formation assay in soft agar in vitro and tumorigenicity in vivo were performed to observe the effects of downregulation and upregulation miR-27b-3p expression on GC cell phenotypes. RESULTS miR-27b-3p suppressed ROR1 expression by binding to the 3'UTR of ROR1 mRNA in GC cells. miR-27b-3p was significantly downregulated and reversely correlated with ROR1 protein levels in clinical samples. Analysis of the clinicopathological significance showed that miR-27b-3p and ROR1 were closely correlated with GC characteristics. Ectopic miR-27b-3p expression suppressed cell proliferation, colony formation in soft agar, xenograft tumors of GC cells. By contrast, miR-27b-3p knockdown enhanced these malignant behaviors. Our studies further revealed that the c-Src/STAT3 signaling pathway was involved in miR-27b-3p-ROR1-mediated cell proliferation regulation. CONCLUSIONS These results show that miR-27b-3p suppresses ROR1 expression through the binding site in the 3'UTR inhibiting the cell proliferation. These findings indicate that miR-27b-3p exerts tumor-suppressive effects in GC through the suppression of oncogene ROR1 expression and suggest a therapeutic application of miR-27b-3p in GC.
Collapse
|
44
|
Genome-wide analysis of microRNA and mRNA expression signatures in cancer. Acta Pharmacol Sin 2015; 36:1200-11. [PMID: 26299954 DOI: 10.1038/aps.2015.67] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles.
Collapse
|
45
|
Ansari MH, Irani S, Edalat H, Amin R, Mohammadi Roushandeh A. Deregulation of miR-93 and miR-143 in human esophageal cancer. Tumour Biol 2015; 37:3097-103. [PMID: 26427659 DOI: 10.1007/s13277-015-3987-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the second and third most common malignancy in Iranian males and females, respectively. Treatment of ESCC is largely ineffective due to lack of detection at early stages of the disease. In recent years, miRNA, a small RNA molecule, has drawn much attention to researchers as a potential biomarker for esophageal cancer. miR-93 and miR-143 are two miRNA molecules reported to be frequently deregulated in various cancers, including prostate, stomach, cervix, and etc. The purpose of this study was to investigate the expression levels of these miRNAs and evaluate their diagnostic and therapeutic potential in esophageal squamous cell carcinoma. In this study, total RNA was extracted from 30 tumor tissues and 30 nontumor tissues of esophageal tumor margins, using RNX-plus solution. After validating the quality and quantity of total RNA, cDNAs of interest were synthesized using microRNA-specific cDNA Synthesis Kit. The expression level of miR-93 and miR-143 was evaluated using quantitative real-time PCR with miRNA-specific primers. Finally, the obtained data was analyzed by SPSS ver.20 software and paired t test was performed to observe the significance of difference between groups. The expression level of miR-93 was significantly increased and of miR-143 was significantly decreased in most of the examined tumor tissues, compared to nontumor tissues. Also, our findings did not detect correlation between mir-93 and mir-143 expressions in regard to stage and grade of the samples. These findings suggest that the deregulation of these miRNAs may play an important role in esophageal squamous cell carcinoma. Both miR-93 and miR-143 might be used as potential biomarkers in esophageal squamous cell carcinoma. However, more studies with large population of samples are necessary.
Collapse
Affiliation(s)
- Mohammad Hossein Ansari
- Research Center for Molecular Medicine, Medicine Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Houri Edalat
- Research Center for Molecular Medicine, Medicine Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ruhul Amin
- Department of Project Program, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Amaneh Mohammadi Roushandeh
- Research Center for Molecular Medicine, Medicine Faculty, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Anatomical Sciences, Medicine Faculty, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
46
|
Fang Z, Tang J, Bai Y, Lin H, You H, Jin H, Lin L, You P, Li J, Dai Z, Liang X, Su Y, Hu Q, Wang F, Zhang ZY. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:86. [PMID: 26297223 PMCID: PMC4546358 DOI: 10.1186/s13046-015-0198-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/29/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs are stable and easy to detect in plasma. The plasma levels of microRNAs are often changed in disease conditions, including cancer. This makes circulating microRNAs a novel class of biomarkers for cancer diagnosis. Analyses of online microRNA data base revealed that expression level of three microRNAs, microRNA-24 (miR-24), microRNA-320a (miR-320a), and microRNA-423-5p (miR-423-5p) were down-regulated in colorectal cancer (CRC). However, whether the plasma level of these three microRNAs can serve as biomarkers for CRC diagnosis and prognosis is not determined. METHODS Plasma samples from 223 patients with colorectal related diseases (111 cancer carcinoma, 59 adenoma, 24 colorectal polyps and 29 inflammatory bowel disease) and 130 healthy controls were collected and subjected to reverse transcription-quantitative real time PCR (RT-qPCR) analyses for the three microRNAs. In addition, plasma samples from 43 patients were collected before and after surgical treatment for the same RT-qPCR analyses. RESULTS The concentrations of plasma miR-24, miR-320a and miR-423-5p were all decreased in patients with CRC and benign lesions (polyps and adenoma) compared with healthy controls, but increased in inflammatory bowel disease (IBD). The sensitivity of miR-24, miR-320a and miR-423-5p for early stage of CRC were 77.78 %, 90.74 %, and 88.89 %, respectively. Moreover, the plasma concentration of the three microRNAs was increased in patients after the surgery who had clinical improvement. CONCLUSIONS The plasma levels of miR-24, miR-320a, and miR-423-5p have promising potential to serve as novel biomarkers for CRC detection, especially for early stage of CRC, which are superior to the currently used clinical biomarkers for CRC detection, such as CEA and CA19-9. Further efforts to develop the three microRNAs as biomarkers for early CRC diagnosis and prediction of surgical treatment outcomes are warrant.
Collapse
Affiliation(s)
- Zanxi Fang
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Jing Tang
- General Hospital of the Yangtze River Shipping, Wuhan, China.
| | - Yongying Bai
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Huayue Lin
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Hanyu You
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Hongwei Jin
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Lingqing Lin
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Pan You
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Juan Li
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Zhang Dai
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Xianming Liang
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Yuanhui Su
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Qing Hu
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.
| | - Zhong-Ying Zhang
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, China. .,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
47
|
Butrym A, Rybka J, Baczyńska D, Tukiendorf A, Kuliczkowski K, Mazur G. Low expression of microRNA-204 (miR-204) is associated with poor clinical outcome of acute myeloid leukemia (AML) patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:68. [PMID: 26126974 PMCID: PMC4508825 DOI: 10.1186/s13046-015-0184-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous neoplasm of the bone marrow with poor prognosis. In clinical practice new prognostic factors are still needed. MicroRNAs (miRs), small endogenous noncoding RNAs, play an essential role in the development and progression of acute leukemia. The aim of the study was to evaluate miR-204 expression in patients with AML at diagnosis and after induction chemotherapy, in comparison to healthy controls. We also investigated, if miR-204 expression correlates with clinical features of AML patients. METHODS miR-204 expression has been analyzed using RT-PCR in 95 bone marrow specimens from newly diagnosed AML patients in comparison to 20 healthy subject. RESULTS We showed down-regulated miR-204 expression in AML patients, which was associated with shorter patients' survival. Higher expression of miR-204 in patients after induction therapy was correlated with complete remission achieving. CONCLUSIONS We showed low miR-204 expression in AML and found it to be an independent prognostic factor in this patient population.
Collapse
Affiliation(s)
- Aleksandra Butrym
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteur 4 Str, 50-367, Wroclaw, Poland. .,Department of Physiology, Wroclaw Medical University, Wroclaw, Poland.
| | - Justyna Rybka
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteur 4 Str, 50-367, Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Forensic Medicine, Molecular Techniques Unit, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Tukiendorf
- Department of Epidemiology, Cancer Center-Institute of Oncology, Gliwice, Poland
| | - Kazimierz Kuliczkowski
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteur 4 Str, 50-367, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|