1
|
Glancy E, Choy N, Eckersley-Maslin MA. Bivalent chromatin: a developmental balancing act tipped in cancer. Biochem Soc Trans 2024; 52:217-229. [PMID: 38385532 PMCID: PMC10903468 DOI: 10.1042/bst20230426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bivalent chromatin is defined by the co-occurrence of otherwise opposing H3K4me3 and H3K27me3 modifications and is typically located at unmethylated promoters of lowly transcribed genes. In embryonic stem cells, bivalent chromatin has been proposed to poise developmental genes for future activation, silencing or stable repression upon lineage commitment. Normally, bivalent chromatin is kept in tight balance in cells, in part through the activity of the MLL/COMPASS-like and Polycomb repressive complexes that deposit the H3K4me3 and H3K27me3 modifications, respectively, but also emerging novel regulators including DPPA2/4, QSER1, BEND3, TET1 and METTL14. In cancers, both the deregulation of existing domains and the creation of de novo bivalent states is associated with either the activation or silencing of transcriptional programmes. This may facilitate diverse aspects of cancer pathology including epithelial-to-mesenchymal plasticity, chemoresistance and immune evasion. Here, we review current methods for detecting bivalent chromatin and discuss the factors involved in the formation and fine-tuning of bivalent domains. Finally, we examine how the deregulation of chromatin bivalency in the context of cancer could facilitate and/or reflect cancer cell adaptation. We propose a model in which bivalent chromatin represents a dynamic balance between otherwise opposing states, where the underlying DNA sequence is primed for the future activation or repression. Shifting this balance in any direction disrupts the tight equilibrium and tips cells into an altered epigenetic and phenotypic space, facilitating both developmental and cancer processes.
Collapse
Affiliation(s)
- Eleanor Glancy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Natalie Choy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Melanie A. Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Ouyang S, Zeng Z, Liu Z, Zhang Z, Sun J, Wang X, Ma M, Ye X, Yu J, Kang W. OTUB2 regulates KRT80 stability via deubiquitination and promotes tumour proliferation in gastric cancer. Cell Death Discov 2022; 8:45. [PMID: 35110531 PMCID: PMC8810928 DOI: 10.1038/s41420-022-00839-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 12/09/2022] Open
Abstract
OTUB2 is a deubiquitinating enzyme that contributes to tumor progression. However, the expression of OTUB2 and its prognostic importance in gastric cancer remain unclear. The expression of OTUB2 and KRT80 in GC tissues was investigated using western blotting, qRT-PCR, multiple immunofluorescence staining, and immunohistochemistry. For survival studies, Kaplan-Meier analysis with the log-rank test was used. The role of OTUB2 during GC proliferation was investigated using in vivo and in vitro assays. OTUB2 was found to be overexpressed in GC tissues and to act as an oncogene, which was linked to patients' poor prognosis. Knockdown of OTUB2 inhibited the proliferative capacity of GC cells in vitro and in vivo, although the proliferative capacity was restored upon re-supplementation with KRT80. OTUB2 mechanically stabilized KRT80 by deubiquitinating and shielding it from proteasome-mediated degradation through Lys-48 and Lys-63. Furthermore, by activating the Akt signaling pathway, OTUB2 and KRT80 facilitated GC proliferation. In summary, OTUB2 regulates KRT80 stability via deubiquitination promoting proliferation in GC via activation of the Akt signaling pathway, implying that OTUB2 could be a novel prognostic marker.
Collapse
Affiliation(s)
- Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mingwei Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jianchun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
3
|
Klein RH, Knoepfler PS. DPPA2, DPPA4, and other DPPA factor epigenomic functions in cell fate and cancer. Stem Cell Reports 2021; 16:2844-2851. [PMID: 34767751 PMCID: PMC8693620 DOI: 10.1016/j.stemcr.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Many gene networks are shared between pluripotent stem cells and cancer; a concept exemplified by several DPPA factors such as DPPA2 and DPPA4, which are highly and selectively expressed in stem cells but also found to be reactivated in cancer. Despite their striking expression pattern, for many years the function of DPPA2 and DPPA4 remained a mystery; knockout of Dppa2 and Dppa4 did not affect pluripotency, but caused lung and skeletal defects late in development, long after Dppa2 and Dppa4 expression had been turned off. A number of recent papers have further clarified and defined the roles of these important factors, identifying roles in priming the chromatin and maintaining developmental competency through regulating both H3K4me3 and H3K27me3 at bivalent chromatin domains, and acting to remodel chromatin and facilitate reprogramming of somatic cells to induced pluripotency. These findings highlight an important regulatory role for DPPA2 and DPPA4 at the transitional boundary between pluripotency and differentiation and may have relevance to the functions of DPPA2 and 4 in the context of cancer cells as well.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817, USA; Genome Center, University of California, Davis, CA 95616, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817, USA; Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Keeping your options open: insights from Dppa2/4 into how epigenetic priming factors promote cell plasticity. Biochem Soc Trans 2021; 48:2891-2902. [PMID: 33336687 PMCID: PMC7752079 DOI: 10.1042/bst20200873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The concept of cellular plasticity is particularly apt in early embryonic development, where there is a tug-of-war between the stability and flexibility of cell identity. This balance is controlled in part through epigenetic mechanisms. Epigenetic plasticity dictates how malleable cells are to change by adjusting the potential to initiate new transcriptional programmes. The higher the plasticity of a cell, the more readily it can adapt and change its identity in response to external stimuli such as differentiation cues. Epigenetic plasticity is regulated in part through the action of epigenetic priming factors which establish this permissive epigenetic landscape at genomic regulatory elements to enable future transcriptional changes. Recent studies on the DNA binding proteins Developmental Pluripotency Associated 2 and 4 (Dppa2/4) support their roles as epigenetic priming factors in facilitating cell fate transitions. Here, using Dppa2/4 as a case study, the concept of epigenetic plasticity and molecular mechanism of epigenetic priming factors will be explored. Understanding how epigenetic priming factors function is key not only to improve our understanding of the tight control of development, but also to give insights into how this goes awry in diseases of cell identity, such as cancer.
Collapse
|
5
|
Effect of bovine leukemia virus (BLV) infection on bovine mammary epithelial cells RNA-seq transcriptome profile. PLoS One 2020; 15:e0234939. [PMID: 32579585 PMCID: PMC7313955 DOI: 10.1371/journal.pone.0234939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023] Open
Abstract
Bovine leukemia virus (BLV) is a δ-retrovirus responsible for Enzootic Bovine Leukosis (EBL), a lymphoproliferative disease that affects cattle. The virus causes immune system deregulation, favoring the development of secondary infections. In that context, mastitis incidence is believed to be increased in BLV infected cattle. The aim of this study was to analyze the transcriptome profile of a BLV infected mammary epithelial cell line (MAC-T). Our results show that BLV infected MAC-T cells have an altered expression of IFN I signal pathway and genes involved in defense response to virus, as well as a collagen catabolic process and some protooncogenes and tumor suppressor genes. Our results provide evidence to better understand the effect of BLV on bovine mammary epithelial cell's immune response.
Collapse
|
6
|
Voutsadakis IA. The pluripotency network in colorectal cancer pathogenesis and prognosis: an update. Biomark Med 2019; 12:653-665. [PMID: 29944017 DOI: 10.2217/bmm-2017-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stemness characteristics are defining properties of cancer initiating cells and are associated with the ability to metastasize and survive in hostile environments. Establishment of the stem cell network depends on the action of a set of core transcription factors that work in concert with other ancillary proteins that are also important during embryonic development. New data consolidate the role of core pluripotency transcription factors OCT4, SOX2 and NANOG as adverse prognostic factors in colorectal cancer. mRNA-binding proteins LIN28 and Musashi, that are associated with stemness, and epigenetic modifiers such as de-acetylase SIRT1 may also have prognostic value in colorectal cancer. This paper provides an update of the stem cell factors in the pathogenesis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada.,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
7
|
Li L, Wang Y, Wang Q, Qu J, Wei X, Xu J, Wang Y, Suo F, Zhang Y. High developmental pluripotency‑associated 4 expression promotes cell proliferation and glycolysis, and predicts poor prognosis in non‑small‑cell lung cancer. Mol Med Rep 2019; 20:445-454. [PMID: 31180527 PMCID: PMC6580026 DOI: 10.3892/mmr.2019.10272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
The developmental pluripotency‑associated 4 (Dppa4) gene serves critical roles in cell self‑renewal, as well as in cancer development and progression. However, the regulatory role of Dppa4 in non‑small‑cell lung cancer (NSCLC) and its underlying mechanisms remain elusive. The aim of the present study was to investigate the biological function of Dppa4 in NSCLC and its underlying mechanism of action. Dppa4 expression was measured in NSCLC tissue samples and cell lines, and its effect on cell proliferation and the expression of glycolytic enzymes was determined. In addition, the underlying mechanisms of Dppa4‑induced alterations in glycolysis were analyzed. Univariate and multivariate analyses were also performed to analyze the prognostic significance of clinicopathological characteristics. Dppa4 was found to be highly expressed in NSCLC tissues and cell lines. Furthermore, it was observed that Dppa4 was correlated with the degree of tumor differentiation and TNM stage. Univariate and multivariate analyses identified Dppa4 expression and clinical stage as prognostic factors for NSCLC patients. Kaplan‑Meier analysis further revealed that patients with lower Dppa4 expression exhibited a better prognosis. In NSCLC cells, Dppa4 knockdown inhibited cell proliferation, while Dppa4 overexpression enhanced cell proliferation, which was likely mediated by glycolysis promotion. Dppa4 knockdown had no evident effect on the majority of enzymes examined; however, glucose transporter type 4 (GLUT‑4) and pyruvate kinase isozyme M2 were significantly upregulated, and hexokinase II (HK‑II) and lactate dehydrogenase B (LDHB) were downregulated following Dppa4 knockdown. By contrast, Dppa4 overexpression resulted in downregulation of GLUT‑4, and upregulation of HK‑II, enolase and LDHB, whereas it had no effect on other enzymes. Since the most evident effect was observed on LDHB, further functional experiments demonstrated that this enzyme reversed the promoting effects of Dppa4 in NSCLC. In conclusion, Dppa4 promotes NSCLC progression, partly through glycolysis by LDHB. Thus, the Dppa4‑LDHB axis critically contributes to glycolysis in NSCLC cells, thereby promoting NSCLC development and progression.
Collapse
Affiliation(s)
- Longfei Li
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yufeng Wang
- Department of Nuclear Medicine, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Qiang Wang
- Department of Radiotherapy and Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Jingming Qu
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiangju Wei
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Jilei Xu
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yuanjin Wang
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Feng Suo
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yangjie Zhang
- Department of Orthopedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
8
|
Liu TT, Liu XS, Zhang M, Liu XN, Zhu FX, Zhu FM, Ouyang SW, Li SB, Song CL, Sun HM, Lu S, Zhang Y, Lin J, Tang HM, Peng ZH. Cartilage oligomeric matrix protein is a prognostic factor and biomarker of colon cancer and promotes cell proliferation by activating the Akt pathway. J Cancer Res Clin Oncol 2018; 144:1049-1063. [PMID: 29560517 DOI: 10.1007/s00432-018-2626-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Recent studies have determined that cartilage oligomeric matrix protein (COMP) plays a vital role in carcinogenesis. We sought to clarify the role of COMP in colon cancer. METHODS We investigated gene expression data from The Cancer Genome Atlas (TCGA) dataset. Tissue microarrays (TMA) containing paired samples from 253 patients with colon cancer were subjected to immunostaining. COMP levels in serum of colon cancer patients and healthy donors were measured with ELISA. We established COMP-knockout cells using the CRISPR/Cas9 system and COMP-overexpressing cells using lentiviral vectors to detect the effects of COMP on colon cancer cells using Cell Counting Kit-8 (CCK8), colony formation, apoptosis detection kit, and tumorigenesis assays in nude mice. RESULTS The analysis of TCGA dataset and the results of the TMA suggested that COMP expression levels were significantly higher in cancer tissues than in adjacent normal tissues. Moreover, high COMP expression was correlated with the poor outcome of colon cancer patients. COMP levels in the sera of preoperative patients with colon cancer were much higher than those in healthy donors and were significantly reduced after colectomy. Colon cancer cells without COMP were defective with respect to the ability to proliferate, colony formation, the ability to resist 5-Fluorouracil-induced apoptosis and the growth of xenograft tumors in mice. Contrasting results were observed in COMP overexpressed cells. COMP promoted colon cancer cell proliferation partially through the activation of PI3K/ Akt/ mTOR/ p70S6K pathway. CONCLUSIONS COMP may be a novel prognostic indicator and biomarker and also a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Xi-Sheng Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue-Ni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Fu-Xiang Zhu
- CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200025, China
| | - Fang-Ming Zhu
- Shanghai Key laboratory of Bio-energy Crops, School of Life Science, Shanghai University, Shanghai, 200025, China
| | - Si-Wen Ouyang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Shan-Bao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Chen-Long Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Hui-Min Sun
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Yu Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Hua-Mei Tang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
- Department of Pathology, Xiang'an Hospital, Xiamen University Medical College, Xiamen, 361101, Fujian, China.
| | - Zhi-Hai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
9
|
Jostes S, Nettersheim D, Fellermeyer M, Schneider S, Hafezi F, Honecker F, Schumacher V, Geyer M, Kristiansen G, Schorle H. The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med 2016; 21:1300-1314. [PMID: 28026145 PMCID: PMC5487916 DOI: 10.1111/jcmm.13059] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022] Open
Abstract
Type II testicular germ cell cancers (TGCT) are the most frequently diagnosed tumours in young men (20–40 years) and are classified as seminoma or non‐seminoma. TGCTs are commonly treated by orchiectomy and chemo‐ or radiotherapy. However, a subset of metastatic non‐seminomas (embryonal carcinomas) displays only incomplete remission or relapse and requires novel treatment options. Recent studies have shown effective application of the small‐molecule inhibitor JQ1 in tumour therapy, which interferes with the function of ‘bromodomain and extraterminal (BET)’ proteins. JQ1‐treated TGCT cell lines display up‐regulation of genes indicative for DNA damage and cellular stress response and induce cell cycle arrest. Embryonal carcinoma (EC) cell lines, which presented as JQ1 sensitive, display down‐regulation of pluripotency factors and induction of mesodermal differentiation. In contrast, seminoma‐like TCam‐2 cells tolerated higher JQ1 concentrations and were resistant to differentiation. ECs xenografted in vivo showed a reduction in tumour size, proliferation rate and angiogenesis in response to JQ1. Finally, the combination of JQ1 and the histone deacetylase inhibitor romidepsin allowed for lower doses and less frequent application, compared with monotherapy. Thus, we propose that JQ1 in combination with romidepsin may serve as a novel therapeutic option for (mixed) TGCTs.
Collapse
Affiliation(s)
- Sina Jostes
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Daniel Nettersheim
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Martin Fellermeyer
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Simon Schneider
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - François Hafezi
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | | | - Valerie Schumacher
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Matthias Geyer
- Institute of Innate Immunity, Department of Structural Immunology, University Medical School, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Medical School, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| |
Collapse
|
10
|
Zhang Z, Bu X, Chen H, Wang Q, Sha W. Bmi-1 promotes the invasion and migration of colon cancer stem cells through the downregulation of E-cadherin. Int J Mol Med 2016; 38:1199-207. [PMID: 27600678 PMCID: PMC5029956 DOI: 10.3892/ijmm.2016.2730] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/01/2016] [Indexed: 02/05/2023] Open
Abstract
Metastasis and recurrence are the challenges of cancer therapy. Recently, mounting evidence has suggested that cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) are critical factors in tumor metastasis and recurrence. The oncogene, Bmi-1, promotes the development of hematologic malignancies and many solid tumors. The aim of the present study was to elucidate the mechanisms through which Bmi-1 promotes the invasion and migration of colon CSCs (CCSCs) using the HCT116 colon cancer cell line. Sphere formation medium and magnetic‑activated cell sorting were used to enrich and screen the CCSCs. CD133 and CD44 were regarded as markers of CCSCs and they were found to be co-expressed in the HCT116 colon cancer cell line. Colony formation assay, cell proliferation assay and viability assay using the Cell Counting Kit-8, and transplantation assay using nude mice injected with CCSCs were used to examine the CCSCs. The CD133+CD44+ HCT116 cells exhibited greater cloning efficiency, an enhanced proliferative ability, increased cell viability and stronger tumorigenicity; these cells were used as the CCSCs for subsequent experiments. In addition, the invasive and migratory abilities of the CD133+CD44+ HCT116 cells were markedly decreased when Bmi-1 was silenced by small interfering RNA (siRNA). The results of RT-qPCR and western blot analysis suggested that Bmi-1 had a negative effect on E-cadherin expression. On the whole, our findings suggest that Bmi-1 promotes the invasion and migration of CCSCs through the downregulation of E-cadherin, possibly by inducing EMT. Our findings thus indicate that Bmi-1 may be a novel therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Zefeng Zhang
- Shantou University Medical College, Shantou, Guangdong 515041
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoling Bu
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hao Chen
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Qiyi Wang
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Qiyi Wang or Dr Weihong Sha, Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| | - Weihong Sha
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Qiyi Wang or Dr Weihong Sha, Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| |
Collapse
|
11
|
Sun HM, Mi YS, Yu FD, Han Y, Liu XS, Lu S, Zhang Y, Zhao SL, Ye L, Liu TT, Yang DH, Sun XF, Qin XB, Zhou ZG, Tang HM, Peng ZH. SERPINA4 is a novel independent prognostic indicator and a potential therapeutic target for colorectal cancer. Am J Cancer Res 2016; 6:1636-1649. [PMID: 27648355 PMCID: PMC5004069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023] Open
Abstract
Serpina family A member 4 (SERPINA4), also known as kallistatin, exerts important effects in inhibiting tumor growth and angiogenesis in many malignancies. However, the precise role of SERPINA4 in CRC has not been fully elucidated. The present study aimed to investigate the expression of SERPINA4 and its clinical significance in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses showed that the mRNA and protein expression of SERPINA4 in colorectal cancer (CRC) specimens was significantly decreased than that in adjacent normal mucosa. Immunohistochemistry (IHC) was conducted to characterize the expression pattern of SERPINA4 by using a tissue microarray (TMA) containing 327 archived paraffin-embedded CRC specimens. Statistical analyses revealed that decreased SERPINA4 expression was significantly associated with invasion depth, nodal involvement, distant metastasis, American Joint Committee on Cancer (AJCC) stage, and tumor differentiation. SERPINA4 was also an independent prognostic indicator of disease-free survival and overall survival in patients with CRC. Furthermore, the impact of altered SERPINA4 expression on CRC cells was analyzed with a series of in vitro and in vivo assays. The results demonstrated that SERPINA4 significantly inhibits malignant tumor progression and serves as a novel prognostic indicator and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Hui-Min Sun
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Yu-Shuai Mi
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Fu-Dong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Yang Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Xi-Sheng Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Yu Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Sen-Lin Zhao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Ling Ye
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Ting-Ting Liu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Dao-Hua Yang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Xiao-Feng Sun
- Departments of Oncology, Clinical and Experimental Medicine, Linköping UniversitySweden
| | - Xue-Bin Qin
- Department of Neuroscience, Temple University School of MedicinePhiladelphia, USA
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Hua-Mei Tang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| | - Zhi-Hai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, P. R. China
| |
Collapse
|