1
|
Cacace E, Tietgen M, Steinhauer M, Mateus A, Schultze TG, Eckermann M, Galardini M, Varik V, Koumoutsi A, Parzeller JJ, Corona F, Orakov A, Knopp M, Brauer-Nikonow A, Bork P, Romao CV, Zimmermann M, Cloetens P, Savitski MM, Typas A, Göttig S. Uncovering nitroxoline activity spectrum, mode of action and resistance across Gram-negative bacteria. Nat Commun 2025; 16:3783. [PMID: 40263263 PMCID: PMC12015411 DOI: 10.1038/s41467-025-58730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Nitroxoline is a bacteriostatic quinoline antibiotic, known to form complexes with metals. Its clinical indications are limited to uncomplicated urinary tract infections, with a susceptibility breakpoint only available for Escherichia coli. Here, we test > 1000 clinical isolates and demonstrate a much broader activity spectrum and species-specific bactericidal activity, including Gram-negative bacteria for which therapeutic options are limited due to multidrug resistance. By combining genetic and proteomic approaches with direct measurement of intracellular metals, we show that nitroxoline acts as a metallophore, inducing copper and zinc intoxication in bacterial cells. The compound displays additional effects on bacterial physiology, including alteration of outer membrane integrity, which underpins nitroxoline's synergies with large-scaffold antibiotics and resensitization of colistin-resistant Enterobacteriaceae in vitro and in vivo. Furthermore, we identify conserved resistance mechanisms across bacterial species, often leading to nitroxoline efflux.
Collapse
Affiliation(s)
- Elisabetta Cacace
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Manuela Tietgen
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Meike Steinhauer
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Tilman G Schultze
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Marina Eckermann
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Vallo Varik
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Alexandra Koumoutsi
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jordan J Parzeller
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Federico Corona
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Michael Knopp
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Amber Brauer-Nikonow
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Celia V Romao
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Michael Zimmermann
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Peter Cloetens
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany.
| |
Collapse
|
2
|
Chien MH, Hung WY, Lai TC, Tsai CH, Lee KL, Hsieh FK, Lee WJ, Chang JH. The off‑target effect of loratadine triggers autophagy‑mediated apoptosis in lung adenocarcinoma cells by deactivating JNK, p38, and STAT3 signaling through both PP2A‑dependent and independent pathways. Int J Mol Med 2025; 55:54. [PMID: 39886963 PMCID: PMC11819771 DOI: 10.3892/ijmm.2025.5495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a typical inflammation‑associated cancer, and anti‑inflammatory medications can be valuable in cancer therapy. Loratadine, a histamine receptor H1 (HRH1) antagonist, shows both anti‑inflammatory and anticancer properties. The present study aimed to evaluate impacts of loratadine on LUAD cells as well as in a LUAD xenograft mouse model, and explore underlying mechanisms. Mechanistic investigations were conducted through using western blotting, flow cytometry, immunohistochemistry, acridine orange staining, TUNEL assays, and in silico analyses of loratadine‑modulated genes in LUAD specimens. It was observed that loratadine inhibited LUAD cell proliferation and colony formation by inducing autophagy‑mediated apoptotic cell death independently of HRH1. In a LUAD xenograft model, loratadine decreased tumor proliferation and angiogenesis while enhancing autophagy and apoptosis. Mechanistically, loratadine induced protein phosphatase 2A (PP2A) activation to deactivate c‑Jun N‑terminal kinase (JNK)1/2 and p38 in H23 and PC9 LUAD cells. Additionally, loratadine inhibited signal transducer and activator of transcription 3 (STAT3) activation via a PP2A‑independent pathway. Furthermore, the combination of loratadine with inhibitors for JNK, p38 and STAT3 all enhanced proliferation inhibition of loratadine alone in both cell lines. In the clinic, patients with LUAD expressing high PP2A had favorable prognoses. The present study suggests that loratadine can be used as a PP2A activator for LUAD treatment, and the combination of repurposing loratadine with inhibitors of STAT3, JNK and p38 would be an effectively strategy for inhibiting LUAD growth.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan, R.O.C
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Tsung-Ching Lai
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
| | - Ching Han Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Kai-Ling Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan, R.O.C
| | - Feng-Koo Hsieh
- The Genome Engineering and Stem Cell Center, School of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Jer-Hwa Chang
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| |
Collapse
|
3
|
Karimi M, Dehdari Vais R, Karimian K, Parsaei A, Heli H. Investigation of bioavailability and anti-pancreatic cancer efficacy of a self-nanoemulsifying erlotinib delivery system. Ther Deliv 2025; 16:237-246. [PMID: 39991842 PMCID: PMC11875489 DOI: 10.1080/20415990.2025.2466412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
AIMS A new self-nanoemulsifying drug delivery system (SNEDDS) was developed for erlotinib (Ert) oral delivery. MATERIALS AND METHODS A pseudo-ternary phase diagram for olive oil, Tween 80 and polyethylene glycol (PEG) 600 mixtures, was firstly constructed. Based on the data about Ert solubility and cytotoxicity of these components, a SNEDDS composed of 10% olive oil, 20% Tween 80 and 70% (V/V) polyethylene glycol 600 was selected for Ert loading (Ert-SNEDDS). RESULTS AND CONCLUSIONS SNEDDS formed 31.2-nm droplets upon dilution in water, and Ert loading led to increment in the oil droplets to 83.9 ± 0.6 nm. Ert-SNEDDS represented a loading capacity and an entrapment efficiency of 22.7 ± 0.7 and 40.7 ± 0.5%, respectively. Ert release from Ert-SNEDDS was monitored in both a mixture of phosphate buffer saline and 0.5% Tween 80, and artificial gastric fluid. Ert-SNEDDS was orally administrated in rats, and the Ert plasma level was monitored over time to measure pharmacokinetic parameters. Ert-SNEDDS led to enhancement in the drug bioavailability and changed the release route of Ert. Ert-SNEDDS showed enhanced cytotoxicity toward ASPC-1 and PANC-1 cells, and half-maximal inhibitory concentration values were obtained and compared with free Ert. Ert-SNEDDS may be considered as an alternative route for oral Ert delivery.
Collapse
Affiliation(s)
- Maryam Karimi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Parsaei
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Gaikwad SY, More A, Seniya C, Verma K, Chandane-Tak M, Nema V, Kumar S, Mukherjee A. Synergistic inhibition of HIV-1 by Nelfinavir and Epigallocatechin Gallate: A novel nanoemulsion-based therapeutic approach. Virology 2025; 603:110391. [PMID: 39787774 DOI: 10.1016/j.virol.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity. Moreover, nanodrug platforms can target viral reservoirs, potentially reducing the emergence of drug-resistant strains-a significant challenge in anti-HIV treatment. This study evaluates the biological efficacy of a rosemary oil-based nanoemulsion loaded with Nelfinavir (NFV) and Epigallocatechin Gallate (EGCG), which demonstrated HIV-1 suppression at sub-CC₅₀ concentrations across two distinct cellular systems. The synergistic interaction between NFV and EGCG was confirmed through cellular assays, enzymatic studies, and molecular interaction analysis. In vitro experiments revealed that the NE-NFV-EGCG nanoemulsion exhibited enhanced HIV-1 inhibitory activity compared to pure NFV, highlighting a promising therapeutic synergy. The findings suggest that EGCG could be a valuable adjunct in NFV-based regimens for HIV management. Molecular interaction studies further confirmed the nanoemulsion's inhibitory potential against the HIV-1 protease enzyme. This study marks a significant advancement in HIV-1 treatment by documenting, for the first time, the synergistic inhibitory activity of NFV and EGCG. The novel nanoformulation offers improved oral bioavailability, minimal side effects, and enhanced therapeutic outcomes. Future studies are needed to optimize the formulation for clinical applications, including sustained drug release and drug transport mechanisms.
Collapse
Affiliation(s)
- Shraddha Y Gaikwad
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Ashwini More
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Chandrabhan Seniya
- Department of Biotechnology and Chemical Engineering, Manipal University Jaipur, India
| | - Kunal Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India
| | - Madhuri Chandane-Tak
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Vijay Nema
- Division of Molecular Biology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India.
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India.
| |
Collapse
|
5
|
Recinella L, Pinti M, Libero ML, Di Lodovico S, Veschi S, Piro A, Generali D, Acquaviva A, Nilofar N, Orlando G, Chiavaroli A, Ferrante C, Menghini L, Di Simone SC, Brunetti L, Di Giulio M, Leone S. Beneficial Effects Induced by a Proprietary Blend of a New Bromelain-Based Polyenzymatic Complex Plus N-Acetylcysteine in Urinary Tract Infections: Results from In Vitro and Ex Vivo Studies. Antibiotics (Basel) 2024; 13:985. [PMID: 39452251 PMCID: PMC11505172 DOI: 10.3390/antibiotics13100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Urinary tract infections (UTIs) are infections that involve the urethra, bladder, and, in much more severe cases, even kidneys. These infections represent one of the most common diseases worldwide. Various pathogens are responsible for this condition, the most common being Escherichia coli (E. coli). Bromelain is a proteolytic complex obtained from the stem and stalk of Ananas comosus (L.) Merr. showing several beneficial activities. In addition to bromelain, N-acetylcysteine (NAC) has also been used. Methods: The purpose of this experiment was to evaluate the antibacterial, anti-motility, and anti-biofilm effects of a new polyenzymatic complex (DIF17BRO®) in combination with NAC (the Formulation) on various strains of E. coli isolated from patients with UTIs. Subsequently, the anti-inflammatory and antioxidant effects of the Formulation were studied in an ex vivo model of cystitis, using bladder samples from mice exposed to E. coli lipopolysaccharide (LPS). Results: Our results showed that the Formulation significantly affects the capability of bacteria to form biofilm and reduces the bacteria amount in the mature biofilm. Moreover, it combines the interesting properties of NAC and a polyenzyme plant complex based on bromelain in a right dose to affect the E. coli adhesion capability. Finally, the Formulation exhibited protective effects, as confirmed by the inhibitory activities on multiple inflammatory and oxidative stress-related pathways on bladder specimens exposed to LPS. Conclusions: This blend of active compounds could represent a promising and versatile approach to use to overcome the limitations associated with conventional therapies.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Morena Pinti
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Silvia Di Lodovico
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Serena Veschi
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Anna Piro
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Nilofar Nilofar
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Luigi Menghini
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Mara Di Giulio
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University, 66013 Chieti, Italy; (L.R.); (M.P.); (S.D.L.); (S.V.); (A.P.); (A.A.); (N.N.); (G.O.); (A.C.); (C.F.); (L.M.); (S.C.D.S.); (L.B.); (M.D.G.); (S.L.)
| |
Collapse
|
6
|
Mukherjee S, Qi C, Shaw R, Jones CM, Bridgewater JA, Radhakrishna G, Patel N, Holmes J, Virdee PS, Tranter B, Parsons P, Falk S, Wasan HS, Ajithkumar TV, Holyoake D, Roy R, Scott-Brown M, Hurt CN, O'Neill E, Sebag-Montefiore D, Maughan TS, Hawkins MA, Corrie P. Standard or high dose chemoradiotherapy, with or without the protease inhibitor nelfinavir, in patients with locally advanced pancreatic cancer: The phase 1/randomised phase 2 SCALOP-2 trial. Eur J Cancer 2024; 209:114236. [PMID: 39059185 DOI: 10.1016/j.ejca.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The multi-centre two-stage SCALOP-2 trial (ISRCTN50083238) assessed whether dose escalation of consolidative chemoradiotherapy (CRT) or concurrent sensitization using the protease inhibitor nelfinavir improve outcomes in locally advanced pancreatic cancer (LAPC) following four cycles of gemcitabine/nab-paclitaxel. METHODS In stage 1, the maximum tolerated dose (MTD) of nelfinavir concurrent with standard-dose CRT (50.4 Gy in 28 fractions) was identified from a cohort of 27 patients. In stage 2, 159 patients were enrolled in an open-label randomized controlled comparison of standard versus high dose (60 Gy in 30 fractions) CRT, with or without nelfinavir at MTD. Primary outcomes following dose escalation and nelfinavir use were respectively overall survival (OS) and progression free survival (PFS). Secondary endpoints included health-related quality of life (HRQoL). RESULTS High dose CRT did not improve OS (16.9 (60 % confidence interval, CI 16.2-17.7) vs. 15.6 (60 %CI 14.3-18.2) months; adjusted hazard ratio, HR 1.13 (60 %CI 0.91-1.40; p = 0.68)). Similarly, median PFS was not improved by nelfinavir (10.0 (60 %CI 9.9-10.2) vs. 11.1 (60 %CI 10.3-12.8) months; adjusted HR 1.71 (60 %CI 1.38-2.12; p = 0.98)). Local progression at 12 months was numerically lower with high-dose CRT than with standard dose CRT (n = 11/46 (23.9 %) vs. n = 15/45 (33.3 %)). Neither nelfinavir nor radiotherapy dose escalation impacted on treatment compliance or grade 3/4 adverse event rate. There were no sustained differences in HRQoL scores between treatment groups over 28 weeks post-treatment. CONCLUSIONS Dose-escalated CRT may improve local tumour control and is well tolerated when used as consolidative treatment in LAPC but does not impact OS. Nelfinavir use does not improve PFS.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Cathy Qi
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Rachel Shaw
- Oncology Clinical Trials Office (OCTO), Department of Oncology, University of Oxford, Oxford, UK
| | - Christopher M Jones
- Department of Oncology, University of Cambridge, Cambridge, UK; Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John A Bridgewater
- UCL Cancer Institute, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ganesh Radhakrishna
- The Christie Hospital, The Christie Hospitals NHS Foundation Trust, Manchester, UK
| | - Neel Patel
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jane Holmes
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Pradeep S Virdee
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Bethan Tranter
- Velindre Cancer Centre, Velindre University NHS Trust, Cardiff, UK
| | - Philip Parsons
- Velindre Cancer Centre, Velindre University NHS Trust, Cardiff, UK
| | - Stephen Falk
- Bristol Cancer Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Harpreet S Wasan
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Thankamma V Ajithkumar
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Daniel Holyoake
- Norfolk & Norwich University Hospital, Norfolk & Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Rajarshi Roy
- Queen's Centre for Oncology, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Martin Scott-Brown
- Coventry Cancer Centre, University Hospital Coventry & Warwickshire, Coventry, UK
| | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Tim S Maughan
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Maria A Hawkins
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Pippa Corrie
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
7
|
Libero ML, Lucarini E, Recinella L, Ciampi C, Veschi S, Piro A, Chiavaroli A, Acquaviva A, Nilofar N, Orlando G, Generali D, Ghelardini C, di Cesare Mannelli L, Montero-Hidalgo AJ, Luque RM, Ferrante C, Menghini L, di Simone SC, Brunetti L, Leone S. Anti-inflammatory and anti-hyperalgesic effects induced by an aqueous aged black garlic extract in rodent models of ulcerative colitis and colitis-associated visceral pain. Phytother Res 2024. [PMID: 38923108 DOI: 10.1002/ptr.8270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Inflammatory bowel disease (IBD) is a morbid condition characterized by relapsing-remitting inflammation of the colon, accompanied by persistent gut dysmotility and abdominal pain. Different reports demonstrated biological activities of aged black garlic (ABG), including anti-inflammatory and antioxidant effects. We aimed to investigate beneficial effects exerted by ABGE on colon inflammation by using ex vivo and in vivo experimental models. We investigated the anti-inflammatory effects of an ABG water extract (ABGE) on rat colon specimens exposed to E. coli lipopolysaccharide (LPS), a known ex vivo experimental model of ulcerative colitis. We determined gene expression of various biomarkers involved in inflammation, including interleukin (IL)-1β, IL-6, nuclear factor-kB (NF-kB), tumor necrosis factor (TNF)-α. Moreover, we studied the acute effects of ABGE on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) injection in rats. ABGE suppressed LPS-induced gene expression of IL-1β, IL-6, NF-kB, and TNF-α. In addition, the acute administration of ABGE (0.03-1 g kg-1) dose-dependently relieved post-inflammatory visceral pain, with the higher dose (1 g kg-1) able to significantly reduce both the behavioral nociceptive response and the entity of abdominal contraction (assessed by electromyography) in response to colorectal distension after the acute administration in DNBS-treated rats. Present findings showed that ABGE could represent a potential strategy for treatment of colitis-associated inflammatory process and visceral pain. The beneficial effects induced by the extract could be related to the pattern of polyphenolic composition, with particular regard to gallic acid and catechin.
Collapse
Affiliation(s)
- Maria Loreta Libero
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Serena Veschi
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Anna Piro
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | | | | | - Nilofar Nilofar
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Antonio J Montero-Hidalgo
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | | | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| |
Collapse
|
8
|
Piro A, Cufaro MC, Lanuti P, Brocco D, De Lellis L, Florio R, Pilato S, Pagotto S, De Fabritiis S, Vespa S, Catitti G, Verginelli F, Simeone P, Pieragostino D, Del Boccio P, Fontana A, Grassadonia A, Di Ianni M, Cama A, Veschi S. Exploring the Immunomodulatory Potential of Pancreatic Cancer-Derived Extracellular Vesicles through Proteomic and Functional Analyses. Cancers (Basel) 2024; 16:1795. [PMID: 38791876 PMCID: PMC11120044 DOI: 10.3390/cancers16101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer (PC) has a poor prognosis and displays resistance to immunotherapy. A better understanding of tumor-derived extracellular vesicle (EV) effects on immune responses might contribute to improved immunotherapy. EVs derived from Capan-2 and BxPC-3 PC cells isolated by ultracentrifugation were characterized by atomic force microscopy, Western blot (WB), nanoparticle tracking analysis, and label-free proteomics. Fresh PBMCs from healthy donors were treated with PC- or control-derived heterologous EVs, followed by flow cytometry analysis of CD8+ and CD4+ lymphocytes. The proteomics of lymphocytes sorted from EV-treated or untreated PBMCs was performed, and the IFN-γ concentration was measured by ELISA. Notably, most of the proteins identified in Capan-2 and BxPC-3 EVs by the proteomic analysis were connected in a single functional network (p = 1 × 10-16) and were involved in the "Immune System" (FDR: 1.10 × 10-24 and 3.69 × 10-19, respectively). Interestingly, the treatment of healthy donor-derived PBMCs with Capan-2 EVs but not with BxPC-3 EVs or heterologous control EVs induced early activation of CD8+ and CD4+ lymphocytes. The proteomics of lymphocytes sorted from EV-treated PBMCs was consistent with their activation by Capan-2 EVs, indicating IFN-γ among the major upstream regulators, as confirmed by ELISA. The proteomic and functional analyses indicate that PC-EVs have pleiotropic effects, and some may activate early immune responses, which might be relevant for the development of highly needed immunotherapeutic strategies in this immune-cold tumor.
Collapse
Affiliation(s)
- Anna Piro
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Serena Pilato
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- UdA–TechLab, Research Center, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Sara Pagotto
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone De Fabritiis
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fabio Verginelli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Odontoiatry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- UdA–TechLab, Research Center, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Antonino Grassadonia
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Odontoiatry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Hematology Unit, Department of Oncology and Hematology, Santo Spirito Hospital, 65124 Pescara, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| |
Collapse
|
9
|
Song J, Chen J, Chen Y, Wang Y, Zheng L, Yu H, Chen C. Colorectal cancer subtyping and prognostic model construction based on interleukin-related genes. Physiol Genomics 2024; 56:367-383. [PMID: 38073490 DOI: 10.1152/physiolgenomics.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 04/20/2024] Open
Abstract
Members of the interleukin (IL) family are closely linked to cancer development and progression. However, research on the prognosis of colorectal cancer (CRC) related to IL is still lacking. This study investigated new CRC prognostic markers and offered new insights for CRC prognosis and treatment. CRC-related data and IL gene data were collected from public databases. Sample clustering was done with the NMF package to divide samples into different subtypes. Differential, enrichment, survival, and immune analyses were conducted on subtypes. A prognostic model was constructed using regression analysis. Drug sensitivity analysis was performed using GDSC database. Western blot analysis was performed to assess the effect of IL-7 on the JAK/STAT signaling pathway. Flow cytometry was used to examine the impact of IL-7 on CD8+ T cell apoptosis. Two CRC subtypes based on IL-associated genes were obtained. Cluster 1 had a higher survival rate than cluster 2, and they showed differences in some immune levels. The two clusters were mainly enriched in the JAK-STAT signaling pathway, T helper 17 cell differentiation, and the IL-17 signaling pathway. An 11-gene signature was built, and risk score was an independent prognosticator for CRC. The low-risk group showed a higher sensitivity to nine common targeted anticancer drugs. Western blot and flow cytometry results demonstrated that IL-7 could phosphorylate STAT5 and promote survival of CD8+ T cells. In conclusion, this study divided CRC samples into two IL-associated subtypes and obtained an 11-gene signature. In addition, targeted drugs that may improve the prognosis of patients with CRC were identified. These findings are of paramount importance for patient prognosis and CRC treatment.NEW & NOTEWORTHY We identified two clusters with significant survival differences in colorectal cancer (CRC) based on interleukin-related genes, constructed an 11-gene risk score model that can independently predict the prognosis of CRC, and explored some targeted drugs that may improve the prognosis of patients with CRC. The results of this study have important implications for the prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Jintian Song
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Jianbin Chen
- Department of Oncology and Vascular Interventional Therapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yigui Chen
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yi Wang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Liang Zheng
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Hui Yu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Changjiang Chen
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
10
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Gu A, Li J, Wu JA, Li MY, Liu Y. Exploration of Dan-Shen-Yin against pancreatic cancer based on network pharmacology combined with molecular docking and experimental validation. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100228. [DOI: 10.1016/j.crbiot.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
|
12
|
Rohilla A, Rohilla S. Drug Repositioning: A Monetary Stratagem to Discover a New Application of Drugs. Curr Drug Discov Technol 2024; 21:e101023222023. [PMID: 38629171 DOI: 10.2174/0115701638253929230922115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 04/19/2024]
Abstract
Drug repurposing, also referred to as drug repositioning or drug reprofiling, is a scientific approach to the detection of any new application for an already approved or investigational drug. It is a useful policy for the invention and development of new pharmacological or therapeutic applications of different drugs. The strategy has been known to offer numerous advantages over developing a completely novel drug for certain problems. Drug repurposing has numerous methodologies that can be categorized as target-oriented, drug-oriented, and problem-oriented. The choice of the methodology of drug repurposing relies on the accessible information about the drug molecule and like pharmacokinetic, pharmacological, physicochemical, and toxicological profile of the drug. In addition, molecular docking studies and other computer-aided methods have been known to show application in drug repurposing. The variation in dosage for original target diseases and novel diseases presents a challenge for researchers of drug repurposing in present times. The present review critically discusses the drugs repurposed for cancer, covid-19, Alzheimer's, and other diseases, strategies, and challenges of drug repurposing. Moreover, regulatory perspectives related to different countries like the United States (US), Europe, and India have been delineated in the present review.
Collapse
Affiliation(s)
- Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
13
|
Recinella L, Libero ML, Veschi S, Piro A, Marconi GD, Diomede F, Chiavaroli A, Orlando G, Ferrante C, Florio R, Lamolinara A, Cai R, Sha W, Schally AV, Salvatori R, Brunetti L, Leone S. Effects of GHRH Deficiency and GHRH Antagonism on Emotional Disorders in Mice. Cells 2023; 12:2615. [PMID: 37998350 PMCID: PMC10670114 DOI: 10.3390/cells12222615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Growth hormone (GH)-releasing hormone (GHRH) has been suggested to play a crucial role in brain function. We aimed to further investigate the effects of a novel GHRH antagonist of the Miami (MIA) series, MIA-602, on emotional disorders and explore the relationships between the endocrine system and mood disorders. In this context, the effects induced by MIA-602 were also analyzed in comparison to vehicle-treated mice with GH deficiency due to generalized ablation of the GHRH gene (GHRH knock out (GHRHKO)). We show that the chronic subcutaneous administration of MIA-602 to wild type (+/+) mice, as well as generalized ablation of the GHRH gene, is associated with anxiolytic and antidepressant behavior. Moreover, immunohistochemical and Western blot analyses suggested an evident activation of Nrf2, HO1, and NQO1 in the prefrontal cortex of both +/+ mice treated with MIA-602 (+/+ MIA-602) and homozygous GHRHKO (-/- control) animals. Finally, we also found significantly decreased COX-2, iNOS, NFkB, and TNF-α gene expressions, as well as increased P-AKT and AKT levels in +/+ MIA-602 and -/- control animals compared to +/+ mice treated with vehicle (+/+ control). We hypothesize that the generalized ablation of the GHRH gene leads to a dysregulation of neural pathways, which is mimicked by GHRH antagonist treatment.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | - Serena Veschi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Anna Piro
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Rosalba Florio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Alessia Lamolinara
- Department of Neuroscience Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy;
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Andrew V. Schally
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| |
Collapse
|
14
|
Elebo N, Abdel-Shafy EA, Cacciatore S, Nweke EE. Exploiting the molecular subtypes and genetic landscape in pancreatic cancer: the quest to find effective drugs. Front Genet 2023; 14:1170571. [PMID: 37790705 PMCID: PMC10544984 DOI: 10.3389/fgene.2023.1170571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a very lethal disease that typically presents at an advanced stage and is non-compliant with most treatments. Recent technologies have helped delineate associated molecular subtypes and genetic variations yielding important insights into the pathophysiology of this disease and having implications for the identification of new therapeutic targets. Drug repurposing has been evaluated as a new paradigm in oncology to accelerate the application of approved or failed target-specific molecules for the treatment of cancer patients. This review focuses on the impact of molecular subtypes on key genomic alterations in PDAC, and the progress made thus far. Importantly, these alterations are discussed in light of the potential role of drug repurposing in PDAC.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ebtesam A. Abdel-Shafy
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- National Research Centre, Cairo, Egypt
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
15
|
Falcão SI, Duarte D, Diallo M, Santos J, Ribeiro E, Vale N, Vilas-Boas M. Improvement of the In Vitro Cytotoxic Effect on HT-29 Colon Cancer Cells by Combining 5-Fluorouacil and Fluphenazine with Green, Red or Brown Propolis. Molecules 2023; 28:molecules28083393. [PMID: 37110626 PMCID: PMC10145548 DOI: 10.3390/molecules28083393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is regard as one of the key factors of mortality and morbidity in the world. Treatment is mainly based on chemotherapeutic drugs that, when used in targeted therapies, have serious side effects. 5-fluorouracil (5-FU) is a drug commonly used against colorectal cancer (CRC), despite its side effects. Combination of this compound with natural products is a promising source in cancer treatment research. In recent years, propolis has become the subject of intense pharmacological and chemical studies linked to its diverse biological properties. With a complex composition rich in phenolic compounds, propolis is described as showing positive or synergistic interactions with several chemotherapeutic drugs. The present work evaluated the in vitro cytotoxic activity of the most representative propolis types, such as green, red and brown propolis, in combination with chemotherapeutic or CNS drugs on HT-29 colon cancer cell lines. The phenolic composition of the propolis samples was evaluated by LC-DAD-ESI/MSn analysis. According to the type of propolis, the composition varied; green propolis was rich in terpenic phenolic acids and red propolis in polyprenylated benzophenones and isoflavonoids, while brown propolis was composed mainly of flavonoids and phenylpropanoids. Generally, for all propolis types, the results demonstrated that combing propolis with 5-FU and fluphenazine successfully enhances the in vitro cytotoxic activity. For green propolis, the combination demonstrated an enhancement of the in vitro cytotoxic effect compared to green propolis alone, at all concentrations, while for brown propolis, the combination in the concentration of 100 μg/mL gave a lower number of viable cells, even when compared with 5-FU or fluphenazine alone. The same was observed for the red propolis combination, but with a higher reduction in cell viability. The combination index, calculated based on the Chou-Talalay method, suggested that the combination of 5-FU and propolis extracts had a synergic growth inhibitory effect in HT-29 cells, while with fluphenazine, only green and red propolis, at a concentration of 100 μg/mL, presented synergism.
Collapse
Affiliation(s)
- Soraia I Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Moustapha Diallo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Joana Santos
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
16
|
Recinella L, De Filippis B, Libero ML, Ammazzalorso A, Chiavaroli A, Orlando G, Ferrante C, Giampietro L, Veschi S, Cama A, Mannino F, Gasparo I, Bitto A, Amoroso R, Brunetti L, Leone S. Anti-Inflammatory, Antioxidant, and WAT/BAT-Conversion Stimulation Induced by Novel PPAR Ligands: Results from Ex Vivo and In Vitro Studies. Pharmaceuticals (Basel) 2023; 16:346. [PMID: 36986448 PMCID: PMC10056895 DOI: 10.3390/ph16030346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Activation of peroxisome proliferator-activated receptors (PPARs) not only regulates multiple metabolic pathways, but mediates various biological effects related to inflammation and oxidative stress. We investigated the effects of four new PPAR ligands containing a fibrate scaffold-the PPAR agonists (1a (αEC50 1.0 μM) and 1b (γEC50 0.012 μM)) and antagonists (2a (αIC50 6.5 μM) and 2b (αIC50 0.98 μM, with a weak antagonist activity on γ isoform))-on proinflammatory and oxidative stress biomarkers. The PPAR ligands 1a-b and 2a-b (0.1-10 μM) were tested on isolated liver specimens treated with lipopolysaccharide (LPS), and the levels of lactate dehydrogenase (LDH), prostaglandin (PG) E2, and 8-iso-PGF2α were measured. The effects of these compounds on the gene expression of the adipose tissue markers of browning, PPARα, and PPARγ, in white adipocytes, were evaluated as well. We found a significant reduction in LPS-induced LDH, PGE2, and 8-iso-PGF2α levels after 1a treatment. On the other hand, 1b decreased LPS-induced LDH activity. Compared to the control, 1a stimulated uncoupling protein 1 (UCP1), PR-(PRD1-BF1-RIZ1 homologous) domain containing 16 (PRDM16), deiodinase type II (DIO2), and PPARα and PPARγ gene expression, in 3T3-L1 cells. Similarly, 1b increased UCP1, DIO2, and PPARγ gene expression. 2a-b caused a reduction in the gene expression of UCP1, PRDM16, and DIO2 when tested at 10 μM. In addition, 2a-b significantly decreased PPARα gene expression. A significant reduction in PPARγ gene expression was also found after 2b treatment. The novel PPARα agonist 1a might be a promising lead compound and represents a valuable pharmacological tool for further assessment. The PPARγ agonist 1b could play a minor role in the regulation of inflammatory pathways.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | | | | | | | | | - Giustino Orlando
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | | | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Irene Gasparo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| |
Collapse
|
17
|
Florio R, De Filippis B, Veschi S, di Giacomo V, Lanuti P, Catitti G, Brocco D, di Rienzo A, Cataldi A, Cacciatore I, Amoroso R, Cama A, De Lellis L. Resveratrol Derivative Exhibits Marked Antiproliferative Actions, Affecting Stemness in Pancreatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24031977. [PMID: 36768301 PMCID: PMC9916441 DOI: 10.3390/ijms24031977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies, with an increasing incidence and limited response to current therapeutic options. Therefore, more effective and low-toxic agents are needed to improve PC patients' outcomes. Resveratrol (RSV) is a natural polyphenol with multiple biological properties, including anticancer effects. In this study, we explored the antiproliferative activities of newly synthetized RSV analogues in a panel of PC cell lines and evaluated the physicochemical properties of the most active compound. This derivative exhibited marked antiproliferative effects in PC cells through mechanisms involving DNA damage, apoptosis induction, and interference in cell cycle progression, as assessed using flow cytometry and immunoblot analysis of cell cycle proteins, PARP cleavage, and H2AX phosphorylation. Notably, the compound induced a consistent reduction in the PC cell subpopulation with a CD133+EpCAM+ stem-like phenotype, paralleled by dramatic effects on cell clonogenicity. Moreover, the RSV derivative had negligible toxicity against normal HFF-1 cells and, thus, good selectivity index values toward PC cell lines. Remarkably, its higher lipophilicity and stability in human plasma, as compared to RSV, might ensure a better permeation along the gastrointestinal tract. Our results provide insights into the mechanisms of action contributing to the antiproliferative activity of a synthetic RSV analogue, supporting its potential value in the search for effective and safe agents in PC treatment.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa di Rienzo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| | - Laura De Lellis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| |
Collapse
|
18
|
Catitti G, De Fabritiis S, Brocco D, Simeone P, De Bellis D, Vespa S, Veschi S, De Lellis L, Tinari N, Verginelli F, Marchisio M, Cama A, Patruno A, Lanuti P. Flow Cytometry Detection of Anthracycline-Treated Breast Cancer Cells: An Optimized Protocol. Curr Issues Mol Biol 2022; 45:164-174. [PMID: 36661499 PMCID: PMC9857732 DOI: 10.3390/cimb45010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The use of anthracycline derivatives was approved for the treatment of a broad spectrum of human tumors (i.e., breast cancer). The need to test these drugs on cancer models has pushed the basic research to apply many types of in vitro assays, and, among them, the study of anthracycline-induced apoptosis was mainly based on the application of flow cytometry protocols. However, the chemical structure of anthracycline derivatives gives them a strong autofluorescence effect that must be considered when flow cytometry is used. Unfortunately, the guidelines on the analysis of anthracycline effects through flow cytometry are lacking. Therefore, in this study, we optimized the flow cytometry detection of doxorubicin and epirubicin-treated breast cancer cells. Their autofluorescence was assessed both by using conventional and imaging flow cytometry; we found that all the channels excited by the 488 nm laser were affected. Anthracycline-induced apoptosis was then measured via flow cytometry using the optimized setting. Consequently, we established a set of recommendations that enable the development of optimized flow cytometry settings when the in vitro assays of anthracycline effects are analyzed, with the final aim to reveal a new perspective on the use of those in vitro tests for the further implementation of precision medicine strategies in cancer.
Collapse
Affiliation(s)
- Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Simone De Fabritiis
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico De Bellis
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral & Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Fabio Verginelli
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
19
|
Recinella L, Chiavaroli A, Veschi S, Cama A, Acquaviva A, Libero ML, Leone S, Di Simone SC, Pagano E, Zengin G, Menghini L, Brunetti L, Izzo AA, Orlando G, Ferrante C. A grape (Vitis vinifera L.) pomace water extract modulates inflammatory and immune response in SW-480 cells and isolated mouse colon. Phytother Res 2022; 36:4620-4630. [PMID: 36069605 PMCID: PMC10087928 DOI: 10.1002/ptr.7581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022]
Abstract
Grape (Vitis vinifera L.) pomace is a residue derived from the winemaking process, which contains bioactive compounds displaying noteworthy health-promoting properties. The aim of the present study was to investigate the phenolic composition and protective effects of a water extract of grape pomace (WEGP) in colorectal cancer cell line SW480 and in isolated mouse colon exposed to Escherichia coli lipopolysaccharide (LPS). The extract decreased SW-480 cell viability, as well as vascular endothelial factor A (VEGFA), hypoxia-induced factor 1α (HIF1α), and transient receptor potential M8 (TRPM8) LPS-induced gene expression. Moreover, the extract inhibited mRNA levels of nuclear factor kB (NFkB), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)α, interleukin (IL)-6, IL-1β, IL-10, inducible nitric oxide synthase (iNOS), and interferon (IFN)γ, in isolated colon. Conversely, WEGP increased the gene expression of antioxidant catalase (CAT) and superoxide dismutase (SOD), in the same model. The modulatory effects exerted by WEGP could be related, at least in part, to the phenolic composition, with particular regards to the catechin level. Docking calculations also predicted the interactions of catechin toward TRPM8 receptor, deeply involved in colon cancer; thus further suggesting the grape pomace as a valuable source of bioactive extracts and phytochemicals with protective effects in the colon.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Veridia Italia Srl, Pescara, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | - Ester Pagano
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Luigi Menghini
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Angelo Antonio Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
20
|
Anti-Inflammatory and Antioxidant Effects Induced by Allium sativum L. Extracts on an Ex Vivo Experimental Model of Ulcerative Colitis. Foods 2022; 11:foods11223559. [PMID: 36429152 PMCID: PMC9689397 DOI: 10.3390/foods11223559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic and multifactorial inflammatory conditions of the colonic mucosa (ulcerative colitis), characterized by increased and unbalanced immune response to external stimuli. Garlic and its bioactive constituents were reported to exert various biological effects, including anti-inflammatory, antioxidant and immunomodulatory activities. We aimed to evaluate the protective effects of a hydroalcoholic (GHE) and a water (GWE) extract from a Sicilian variety of garlic, known as Nubia red garlic, on an ex vivo experimental model of ulcerative colitis, involving isolated LPS-treated mouse colon specimens. Both extracts were able to counteract LPS-induced cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, nuclear factor-kB (NF-kB), and interleukin (IL)-6 gene expression in mouse colon. Moreover, the same extracts inhibited prostaglandin (PG)E2, 8-iso-PGF2α, and increased the 5-hydroxyindoleacetic acid/serotonin ratio following treatment with LPS. In particular, GHE showed a better anti-inflammatory profile. The anti-inflammatory and antioxidant effects induced by both extracts could be related, at least partially, to their polyphenolic composition, with particular regards to catechin. Concluding, our results showed that GHE and GWE exhibited protective effects in colon, thus suggesting their potential use in the prevention and management of ulcerative colitis.
Collapse
|
21
|
Hu J, Cao J, Jin R, Zhang B, Topatana W, Juengpanich S, Li S, Chen T, Lu Z, Cai X, Chen M. Inhibition of AMPK/PFKFB3 mediated glycolysis synergizes with penfluridol to suppress gallbladder cancer growth. Cell Commun Signal 2022; 20:105. [PMID: 35842652 PMCID: PMC9288071 DOI: 10.1186/s12964-022-00882-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Penfluridol (PF) is an FDA-approved antipsychotic drug that has recently been shown to have anticancer activity. However, the anticancer effects and underlying mechanisms of PF are not well-established in gallbladder cancer (GBC). METHODS The anticancer efficacy of PF on GBC was investigated via a series of cell functions experiments, including cell viability, colony formation, apoptosis assays, and so on. The corresponding signaling changes after PF treatment were explored by western blotting. Then, nude mice were utilized to study and test the anticancer activity of PF in vivo. Besides, glucose consumption and lactic production assays were used to detect the glycolysis alteration. RESULTS In this study, we discovered that PF greatly inhibited the proliferation and invasion ability of GBC cells (GBCs). The glucose consumption and lactic generation ability of GBCs were dramatically elevated following PF treatment. Additionally, we discovered that inhibiting glycolysis could improve PF's anticancer efficacy. Further studies established that the activation of the AMPK/PFKFB3 signaling pathway medicated glycolysis after PF treatment. We proved mechanistically that inhibition of AMPK/PFKFB3 singling pathway mediated glycolysis was a potential synergetic strategy to improve the anticancer efficacy of PF on GBC. CONCLUSIONS By inhibiting AMPK, the anticancer effects of PF on GBCs were amplified. As a result, our investigations shed new light on the possibility of repurposing PF as an anticancer drug for GBC, and AMPK inhibition in combination with PF may represent a novel therapeutic strategy for GBC. Video abstract.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Ren'an Jin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Tian'en Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Ziyi Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China. .,Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China. .,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
22
|
Mello ALDN, Zancan P. Isoquinolines alkaloids and cancer metabolism: Pathways and targets to novel chemotherapy. Chem Biol Drug Des 2022; 99:944-956. [PMID: 35322534 DOI: 10.1111/cbdd.14043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 12/24/2022]
Abstract
Cancer is one of the main causes of death in the world. This is a complex disease where the development of resistance to chemotherapy is frequent driving the search for new anticancer compounds. In this sense, isoquinolines have gained attention in the past few years. This review aims to highlight the new advances related to the use of isoquinolines compounds against cancer cells, and we point out targets for their anti-tumor action. Isoquinolines are compounds found in plants that are important for their protection. In cancer, many representatives of this class of compounds have demonstrated their efficacy against cancer by acting on cancer metabolism, such as triggering cell death, reducing pro-survival protein expression, inducing ROS production, inhibiting pro-survival cell signaling pathways, among other effects. The mechanisms triggered by isoquinolines in cancer cells represent robust anticancer strategies, which support that this class of compounds are strong candidates for cancer treatment.
Collapse
Affiliation(s)
- Angélica Lauria do Nascimento Mello
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Synergistic Tumor Inhibition via Energy Elimination by Repurposing Penfluridol and 2-Deoxy-D-Glucose in Lung Cancer. Cancers (Basel) 2022; 14:cancers14112750. [PMID: 35681729 PMCID: PMC9179427 DOI: 10.3390/cancers14112750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Drug repurposing has been effective for discovering novel treatments for cancer. The antipsychotic agent penfluridol was reported to suppress lung cancer growth via ATP energy deprivation. The aim of our study was to investigate how penfluridol influences energy metabolism in lung cancer cells. We observed that penfluridol inhibited mitochondrial oxidative phosphorylation (OXPHOS), but induced glycolysis to compensate for the loss of ATP caused by suppression of mitochondrial OXPHOS. We also confirmed that inhibition of glycolysis by 2-deoxy-D-glucose (2DG) significantly augmented the antitumor effects caused by penfluridol in vitro and in vivo. Our studies provide novel insights into repurposing penfluridol combined with 2-DG for lung cancer treatment. Abstract Energy metabolism is the basis for cell growth, and cancer cells in particular, are more energy-dependent cells because of rapid cell proliferation. Previously, we found that penfluridol, an antipsychotic drug, has the ability to trigger cell growth inhibition of lung cancer cells via inducing ATP energy deprivation. The toxic effect of penfluridol is related to energy metabolism, but the underlying mechanisms remain unclear. Herein, we discovered that treatment of A549 and HCC827 lung cancer cells with penfluridol caused a decrease in the total amount of ATP, especially in A549 cells. An Agilent Seahorse ATP real-time rate assay revealed that ATP production rates from mitochondrial respiration and glycolysis were, respectively, decreased and increased after penfluridol treatment. Moreover, the amount and membrane integrity of mitochondria decreased, but glycolysis-related proteins increased after penfluridol treatment. Furthermore, we observed that suppression of glycolysis by reducing glucose supplementation or using 2-deoxy-D-glucose (2DG) synergistically enhanced the inhibitory effect of penfluridol on cancer cell growth and the total amount of mitochondria. A mechanistic study showed that the penfluridol-mediated energy reduction was due to inhibition of critical regulators of mitochondrial biogenesis, the sirtuin 1 (SIRT1)/peroxisome-proliferator-activated receptor co-activator-1α (PGC-1α) axis. Upregulation of the SIRT1/PGC-1α axis reversed the inhibitory effect of penfluridol on mitochondrial biogenesis and cell viability. Clinical lung cancer samples revealed a positive correlation between PGC-1α (PPARGC1A) and SIRT1 expression. In an orthotopic lung cancer mouse model, the anticancer activities of penfluridol, including growth and metastasis inhibition, were also enhanced by combined treatment with 2DG. Our study results strongly support that a combination of repurposing penfluridol and a glycolysis inhibitor would be a good strategy for enhancing the anticancer activities of penfluridol in lung cancer.
Collapse
|
24
|
Honeybee Venom Synergistically Enhances the Cytotoxic Effect of CNS Drugs in HT-29 Colon and MCF-7 Breast Cancer Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14030511. [PMID: 35335887 PMCID: PMC8952811 DOI: 10.3390/pharmaceutics14030511] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
5-fluorouracil (5-FU) and doxorubicin (DOX) are potent anti-tumour agents commonly used for colon and breast cancer therapy, respectively. However, their clinical application is limited by their side effects and the development of drug resistance. Honeybee venom is a complex mixture of substances that has been reported to be effective against different cancer cells. Its active compound is melittin, a positively charged amphipathic peptide that interacts with the phospholipids of the cell membrane, forming pores that enable the internalization of small molecules with cytotoxic activities,. and consequently, causing cell death. Some central nervous system (CNS) drugs have recently demonstrated great anti-cancer potential, both in vitro, in vivo and in clinical trials, being promising candidates for drug repurposing in oncology. The present work evaluated the anti-cancer efficacy of honeybee venom in combination with chemotherapeutic or CNS drugs in HT-29 colon and MCF-7 breast cancer cell lines. The chemical characterization of a Portuguese sample of honeybee venom was done by LC-DAD-ESI/MSn analysis. For single treatments, cells were incubated with increasing concentrations of bee venom. For combination treatments, increasing concentrations of bee venom were first combined with the half-maximal inhibitory concentration (IC50) of 5-FU and DOX, in HT-29 and MCF-7 cells, respectively. Cells were also treated with increasing concentrations of bee venom in combination with the IC50 value of four CNS drugs (fluphenazine, fluoxetine, sertraline and thioridazine). Cytotoxicity was evaluated by MTT and SRB assays. The combination index (CI) value was calculated using CompuSyn software, based on the Chou–Talalay method. Synergy scores of different reference models (HSA, Loewe, ZIP and Bliss) were also calculated using SynergyFinder. The results demonstrate that honeybee venom is active against HT-29 colon and MCF-7 breast cancer cells, having better anti-tumour activity in MCF-7 cells. It was found that bee venom combined with 5-FU and fluphenazine in HT-29 cells resulted in less cytotoxic effects compared to the co-treatment of fluoxetine, sertraline and thioridazine plus bee venom, which resulted in less than 15% of viable cells for the whole range of concentrations. The combination of MCF-7 cells with repurposed drugs plus honeybee venom resulted in better anti-cancer efficacies than with DOX, notably for lower concentrations. A combination of fluoxetine and thioridazine plus honeybee venom resulted in less than 40% of viable cells for all ranges of concentrations. These results support that the combination of honeybee venom with repurposed drugs and chemotherapeutic agents can help improve their anti-cancer activity, especially for lower concentrations, in both cell lines. Overall, the present study corroborates the enormous bioactive potential of honeybee venom for colon and breast cancer treatments, both alone and in combination with chemotherapy or repurposed drugs.
Collapse
|
25
|
Recinella L, Chiavaroli A, Orlando G, Ferrante C, Veschi S, Cama A, Marconi GD, Diomede F, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Effects of growth hormone-releasing hormone receptor antagonist MIA-602 in mice with emotional disorders: a potential treatment for PTSD. Mol Psychiatry 2021; 26:7465-7474. [PMID: 34331008 DOI: 10.1038/s41380-021-01228-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Anxiety and depression have been suggested to increase the risk for post-traumatic stress disorders (PTSD). A link between all these mental illnesses, inflammation and oxidative stress is also well established. Recent behavior studies by our group clearly demonstrate a powerful anxiolytic and antidepressant-like effects of a novel growth hormone releasing hormone (GHRH) antagonist of MIAMI class, MIA-690, probably related to modulatory effects on the inflammatory and oxidative status. In the present work we investigated the potential beneficial effects of MIA-602, another recently developed GHRH antagonist, in mood disorders, as anxiety and depression, and the possible brain pathways involved in its protective activity, in adult mice. MIA-602 exhibited antinflammatory and antioxidant effects in ex vivo and in vivo experimental models, inducing anxiolytic and antidepressant-like behavior in mice subcutaneously treated for 4 weeks. The beneficial effect of MIA-602 on inflammatory and oxidative status and synaptogenesis resulting in anxiolytic and antidepressant-like effects could be related by increases of nuclear factor erythroid 2-related factor 2 (Nrf2) and of brain-derived neurotrophic factor (BDNF) signaling pathways in the hippocampus and prefrontal cortex. These results strongly suggest that GHRH analogs should be tried clinically for the treatment of mood disorders including PTSD.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
26
|
Yoon S, Kim HS. Drug Repositioning With an Anticancer Effect: Contributions to Reduced Cancer Incidence in Susceptible Individuals. In Vivo 2021; 35:3039-3044. [PMID: 34697135 DOI: 10.21873/invivo.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022]
Abstract
Certain diseases and age groups are associated with a higher incidence of cancer. Cancer prevention can be achieved using repositioned drugs that have anticancer ability, thereby reducing the incidence of cancer in susceptible individuals. This implies that the selection of repositioned drugs can have dual benefits: controlling pre-existing diseases and facilitating cancer prevention. This report outlines the rationale underlying drug repositioning for medications with an anticancer effect and discusses its advantages. We discuss repositioned drugs with anticancer effects that may contribute to cancer prevention in susceptible individuals and the general population with temporary, treatable conditions. The discussion of drug repositioning in this review should facilitate the initiation of clinical trials and lead to therapeutic application of such drugs to reduce the incidence of cancer in susceptible individuals.
Collapse
Affiliation(s)
- Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
27
|
Lin W, Sun J, Sadahira T, Xu N, Wada K, Liu C, Araki M, Xu A, Watanabe M, Nasu Y, Huang P. Discovery and Validation of Nitroxoline as a Novel STAT3 Inhibitor in Drug-resistant Urothelial Bladder Cancer. Int J Biol Sci 2021; 17:3255-3267. [PMID: 34421363 PMCID: PMC8375225 DOI: 10.7150/ijbs.63125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/06/2021] [Indexed: 01/11/2023] Open
Abstract
Repeated cycles of first-line chemotherapy drugs such as doxorubicin (DOX) and cisplatin (CIS) trigger frequent chemoresistance in recurrent urothelial bladder cancer (UBC). Nitroxoline (NTX), an antibiotic to treat urinary tract infections, has been recently repurposed for cancer treatment. Here we aimed to investigate whether NTX suppresses drug-resistant UBC and its molecular mechanism. The drug-resistant cell lines T24/DOX and T24/CIS were established by continual exposure of parental cell line T24 to DOX and CIS, respectively. T24/DOX and T24/CIS cells were resistant to DOX and CIS, respectively, but they were sensitive to NTX time- and dose-dependently. Overexpressions of STAT3 and P-glycoprotein (P-gp) were identified in T24/DOX and T24/CIS, which could be reversed by NTX. Western blot revealed that NTX downregulated p-STAT3, c-Myc, Cyclin D1, CDK4, CDK6, Bcl-xL, Mcl-1, and Survivin, which were further confirmed by Stattic, a selective STAT3 inhibitor. In vivo, NTX exhibited the significant anti-tumor effect in T24/DOX and T24/CIS tumor-bearing mice. These results suggested that NTX-induced P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC were mediated by inhibition of STAT3 signaling. Our findings repurpose NTX as a novel STAT3 inhibitor to induce P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC.
Collapse
Affiliation(s)
- Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jingkai Sun
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naijin Xu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Koichiro Wada
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Okayama Medical Innovation Center, Okayama University, Okayama, Japan
| |
Collapse
|
28
|
De Lellis L, Veschi S, Tinari N, Mokini Z, Carradori S, Brocco D, Florio R, Grassadonia A, Cama A. Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates. Cancers (Basel) 2021; 13:3946. [PMID: 34439102 PMCID: PMC8394389 DOI: 10.3390/cancers13163946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, since patients rarely display symptoms until an advanced and unresectable stage of the disease. Current chemotherapy options are unsatisfactory and there is an urgent need for more effective and less toxic drugs to improve the dismal PC therapy. Repurposing of non-oncology drugs in PC treatment represents a very promising therapeutic option and different compounds are currently being considered as candidates for repurposing in the treatment of this tumor. In this review, we provide an update on some of the most promising FDA-approved, non-oncology, repurposed drug candidates that show prominent clinical and preclinical data in pancreatic cancer. We also focus on proposed mechanisms of action and known molecular targets that they modulate in PC. Furthermore, we provide an explorative bioinformatic analysis, which suggests that some of the PC repurposed drug candidates have additional, unexplored, oncology-relevant targets. Finally, we discuss recent developments regarding the immunomodulatory role displayed by some of these drugs, which may expand their potential application in synergy with approved anticancer immunomodulatory agents that are mostly ineffective as single agents in PC.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Zhirajr Mokini
- European Society of Anaesthesiology and Intensive Care (ESAIC) Mentorship Programme, ESAIC, 24 Rue des Comédiens, BE-1000 Brussels, Belgium;
| | - Simone Carradori
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Davide Brocco
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
29
|
Florio R, Carradori S, Veschi S, Brocco D, Di Genni T, Cirilli R, Casulli A, Cama A, De Lellis L. Screening of Benzimidazole-Based Anthelmintics and Their Enantiomers as Repurposed Drug Candidates in Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14040372. [PMID: 33920661 PMCID: PMC8072969 DOI: 10.3390/ph14040372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Repurposing of approved non-antitumor drugs represents a promising and affordable strategy that may help to increase the repertoire of effective anticancer drugs. Benzimidazole-based anthelmintics are antiparasitic drugs commonly employed both in human and veterinary medicine. Benzimidazole compounds are being considered for drug repurposing due to antitumor activities displayed by some members of the family. In this study, we explored the effects of a large series of benzimidazole-based anthelmintics (and some enantiomerically pure forms of those containing a stereogenic center) on the viability of different tumor cell lines derived from paraganglioma, pancreatic and colorectal cancer. Flubendazole, parbendazole, oxibendazole, mebendazole, albendazole and fenbendazole showed the most consistent antiproliferative effects, displaying IC50 values in the low micromolar range, or even in the nanomolar range. In silico evaluation of their physicochemical, pharmacokinetics and medicinal chemistry properties also provided useful information related to the chemical structures and potential of these compounds. Furthermore, in view of the potential repurposing of these drugs in cancer therapy and considering that pharmaceutically active compounds may have different mechanisms of action, we performed an in silico target prediction to assess the polypharmacology of these benzimidazoles, which highlighted previously unknown cancer-relevant molecular targets.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (D.B.); (T.D.G.); (L.D.L.)
| | - Simone Carradori
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (D.B.); (T.D.G.); (L.D.L.)
- Correspondence: (S.C.); (A.C.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (D.B.); (T.D.G.); (L.D.L.)
| | - Davide Brocco
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (D.B.); (T.D.G.); (L.D.L.)
| | - Teresa Di Genni
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (D.B.); (T.D.G.); (L.D.L.)
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis (in Animals and Humans), Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (D.B.); (T.D.G.); (L.D.L.)
- Center for Advanced Studies and Technology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (S.C.); (A.C.)
| | - Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (D.B.); (T.D.G.); (L.D.L.)
| |
Collapse
|
30
|
Rebelo R, Polónia B, Santos LL, Vasconcelos MH, Xavier CPR. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2021; 14:280. [PMID: 33804613 PMCID: PMC8003696 DOI: 10.3390/ph14030280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Rita Rebelo
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, 4200-072 Porto, Portugal;
- ICBAS—Biomedical Sciences Institute Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
31
|
Exosomes as Pleiotropic Players in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030275. [PMID: 33803470 PMCID: PMC8002012 DOI: 10.3390/biomedicines9030275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) incidence is rising and due to late diagnosis, combined with unsatisfactory response to current therapeutic approaches, this tumor has an extremely high mortality rate. A better understanding of the mechanisms underlying pancreatic carcinogenesis is of paramount importance for rational diagnostic and therapeutic approaches. Multiple lines of evidence have showed that exosomes are actively involved in intercellular communication by transferring their cargos of bioactive molecules to recipient cells within the tumor microenvironment and systemically. Intriguingly, exosomes may exert both protumor and antitumor effects, supporting or hampering processes that play a role in the pathogenesis and progression of PC, including shifts in tumor metabolism, proliferation, invasion, metastasis, and chemoresistance. They also have a dual role in PC immunomodulation, exerting immunosuppressive or immune enhancement effects through several mechanisms. PC-derived exosomes also induce systemic metabolic alterations, leading to the onset of diabetes and weight loss. Moreover, exosomes have been described as promising diagnostic and prognostic biomarkers for PC. Their potential application in PC therapy as drug carriers and therapeutic targets is under investigation. In this review, we provide an overview of the multiple roles played by exosomes in PC biology through their specific cargo biomolecules and of their potential exploitation in early diagnosis and treatment of PC.
Collapse
|
32
|
Liu A, Zhou J, Bi X, Hou G, Li SS, Chen Q, Xu H, Cao X. Aptamer-SH2 superbinder-based targeted therapy for pancreatic ductal adenocarcinoma. Clin Transl Med 2021; 11:e337. [PMID: 33783993 PMCID: PMC7908048 DOI: 10.1002/ctm2.337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) exhibits the poorest prognosis of all solid tumors with a 5-year survival rate of less than 10% and a median survival of 6 months after diagnosis. Numerous targeted agents have been developed and evaluated to improve the survival benefit in patients with PDAC. Unfortunately, most agents have been proven futile mainly owing to the dense stroma and the sophisticated signaling pathways of PDAC. Here, we show the potent effectiveness of Aptamer-SH2 superbinder-(Arg)9 conjugate on the treatment of PDAC. In this conjugate, DNA aptamer selected against PDAC cell line confers the function of specifically recognizing and binding to the PDAC cells and activated pancreatic stellate cells (PSCs) in stroma; cell penetrating peptide (Arg)9 facilitates the intracellular delivery of fused proteins; SH2 superbinder conducts the drastic blockade of multiple phosphotyrosines (pY)-based signaling pathways in tumor cells. METHODS PDAC-associated pY were reanalyzed by bioinformatics screen. XQ-2d and SH2 superbinder-(Arg)9 were crosslinked with BMH to form XQ-2d-SH2 CM-(Arg)9 conjugate. Immunofluorescence was utilized to assess the potency of the conjugate entering cells. MTT and wound healing assays were performed to evaluate the proliferation or migration of PANC-1 and BxPC-3 cells, respectively. Western blot and Pulldown assays revealed that conjugate influenced several pY-based signaling pathways. Tumor-bearing mice were used to validate XQ-2d-SH2 CM-(Arg)9, which restrained the growth and metastasis of cancer cells. RESULTS XQ-2d-His-SH2 CM-(Arg)9 conjugate restrained proliferation, invasion, and metastasis of PDAC cells with potent efficacy via blocking the activity of several pY-related signaling cascades. XQ-2d-His-SH2 CM-(Arg)9 could eliminate the dense stroma of PDAC and then arrive at tumor tissues. CONCLUSIONS XQ-2d-SH2 CM-(Arg)9 conjugate may efficiently destroy the pancreatic stroma and show potent antitumor efficacy with minimal toxic effect by regulating tumor cell proliferation and metastasis in vitro and in vivo, which makes it to be a promising targeted therapy of PDAC.
Collapse
Affiliation(s)
- An‐Dong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Xiao‐Yang Bi
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Guo‐Qing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Shawn Shun‐Cheng Li
- Department of Biochemistry, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Qing Chen
- Department of Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Hui Xu
- Ultrastructural Pathology Laboratory, Department of Pathology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| |
Collapse
|
33
|
Veschi S, Carradori S, De Lellis L, Florio R, Brocco D, Secci D, Guglielmi P, Spano M, Sobolev AP, Cama A. Synthesis and evaluation of a large library of nitroxoline derivatives as pancreatic cancer antiproliferative agents. J Enzyme Inhib Med Chem 2021; 35:1331-1344. [PMID: 32588672 PMCID: PMC7470072 DOI: 10.1080/14756366.2020.1780228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest carcinomas and in most cases, which are diagnosed with locally advanced or metastatic disease, current therapeutic options are highly unsatisfactory. Based on the anti-proliferative effects shown by nitroxoline, an old urinary antibacterial agent, we explored a large library of newly synthesised derivatives to unravel the importance of the OH moiety and pyridine ring of the parent compound. The new derivatives showed a valuable anti-proliferative effect and some displayed a greater effect as compared to nitroxoline against three pancreatic cancer cell lines with different genetic profiles. In particular, in silico pharmacokinetic data, clonogenicity assays and selectivity indexes of the most promising compounds showed several advantages for such derivatives, as compared to nitroxoline. Moreover, some of these novel compounds had stronger effects on cell viability and/or clonogenic capacity in PC cells as compared to erlotinib, a targeted agent approved for PC treatment.
Collapse
Affiliation(s)
- Serena Veschi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rosalba Florio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Mattia Spano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Anatoly P Sobolev
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Segre-Capitani", CNR, Monterotondo (Rome), Italy
| | - Alessandro Cama
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
34
|
Martinez-Escobar A, Luna-Callejas B, Ramón-Gallegos E. CRISPR-dCas9-Based Artificial Transcription Factors to Improve Efficacy of Cancer Treatment With Drug Repurposing: Proposal for Future Research. Front Oncol 2021; 10:604948. [PMID: 33614489 PMCID: PMC7887379 DOI: 10.3389/fonc.2020.604948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Due to the high resistance that cancer has shown to conventional therapies, it is difficult to treat this disease, particularly in advanced stages. In recent decades, treatments have been improved, being more specific according to the characteristics of the tumor, becoming more effective, less toxic, and invasive. Cancer can be treated by the combination of surgery, radiation therapy, and/or drug administration, but therapies based on anticancer drugs are the main cancer treatment. Cancer drug development requires long-time preclinical and clinical studies and is not cost-effective. Drug repurposing is an alternative for cancer therapies development since it is faster, safer, easier, cheaper, and repurposed drugs do not have serious side effects. However, cancer is a complex, heterogeneous, and highly dynamic disease with multiple evolving molecular constituents. This tumor heterogeneity causes several resistance mechanisms in cancer therapies, mainly the target mutation. The CRISPR-dCas9-based artificial transcription factors (ATFs) could be used in cancer therapy due to their possibility to manipulate DNA to modify target genes, activate tumor suppressor genes, silence oncogenes, and tumor resistance mechanisms for targeted therapy. In addition, drug repurposing combined with the use of CRISPR-dCas9-based ATFs could be an alternative cancer treatment to reduce cancer mortality. The aim of this review is to describe the potential of the repurposed drugs combined with CRISPR-dCas9-based ATFs to improve the efficacy of cancer treatment, discussing the possible advantages and disadvantages.
Collapse
Affiliation(s)
- Alejandro Martinez-Escobar
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Benjamín Luna-Callejas
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Environmental Cytopathology Laboratory, Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
35
|
Khan R, Khan H, Abdullah Y, Dou QP. Feasibility of Repurposing Clioquinol for Cancer Therapy. Recent Pat Anticancer Drug Discov 2021; 15:14-31. [PMID: 32106803 DOI: 10.2174/1574892815666200227090259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer is a prevalent disease in the world and is becoming more widespread as time goes on. Advanced and more effective chemotherapeutics need to be developed for the treatment of cancer to keep up with this prevalence. Repurposing drugs is an alternative to discover new chemotherapeutics. Clioquinol is currently being studied for reposition as an anti-cancer drug. OBJECTIVE This study aimed to summarize the anti-cancer effects of clioquinol and its derivatives through a detailed literature and patent review and to review their potential re-uses in cancer treatment. METHODS Research articles were collected through a PubMed database search using the keywords "Clioquinol" and "Cancer." The keywords "Clioquinol Derivatives" and "Clioquinol Analogues" were also used on a PubMed database search to gather research articles on clioquinol derivatives. Patents were gathered through a Google Patents database search using the keywords "Clioquinol" and "Cancer." RESULTS Clioquinol acts as a copper and zinc ionophore, a proteasome inhibitor, an anti-angiogenesis agent, and is an inhibitor of key signal transduction pathways responsible for its growth-inhibitory activity and cytotoxicity in cancer cells preclinically. A clinical trial conducted by Schimmer et al., resulted in poor outcomes that prompted studies on alternative clioquinol-based applications, such as new combinations, new delivery methods, or new clioquinol-derived analogues. In addition, numerous patents claim alternative uses of clioquinol for cancer therapy. CONCLUSION Clioquinol exhibits anti-cancer activities in many cancer types, preclinically. Low therapeutic efficacy in a clinical trial has prompted new studies that aim to discover more effective clioquinol- based cancer therapies.
Collapse
Affiliation(s)
- Raheel Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Harras Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Yassen Abdullah
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Q Ping Dou
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
36
|
The Anti-Cancer Properties of the HIV Protease Inhibitor Nelfinavir. Cancers (Basel) 2020; 12:cancers12113437. [PMID: 33228205 PMCID: PMC7699465 DOI: 10.3390/cancers12113437] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary To this day, cancer remains a medical challenge despite the development of cutting-edge diagnostic methods and therapeutics. Thus, there is a continual demand for improved therapeutic options for managing cancer patients. However, novel drug development requires decade-long time commitment and financial investments. Repurposing approved and market-available drugs for cancer therapy is a way to reduce cost and the timeframe for developing new therapies. Nelfinavir is an anti-infective agent that has extensively been used to treat acquired immunodeficiency syndrome (AIDS) in adult and pediatric patients. In addition to its anti-infective properties, nelfinavir has demonstrated potent off-target anti-cancer effects, suggesting that it could be a suitable candidate for drug repurposing for cancer. In this review, we systematically compiled the therapeutic benefits of nelfinavir against cancer as a single drug or in combination with chemoradiotherapy, and outlined the possible underlying mechanistic pathways contributing to the anti-cancer effects. Abstract Traditional cancer treatments may lose efficacy following the emergence of novel mutations or the development of chemoradiotherapy resistance. Late diagnosis, high-cost of treatment, and the requirement of highly efficient infrastructure to dispense cancer therapies hinder the availability of adequate treatment in low-income and resource-limited settings. Repositioning approved drugs as cancer therapeutics may reduce the cost and timeline for novel drug development and expedite the availability of newer, efficacious options for patients in need. Nelfinavir is a human immunodeficiency virus (HIV) protease inhibitor that has been approved and is extensively used as an anti-infective agent to treat acquired immunodeficiency syndrome (AIDS). Yet nelfinavir has also shown anti-cancer effects in in vitro and in vivo studies. The anti-cancer mechanism of nelfinavir includes modulation of different cellular conditions, such as unfolded protein response, cell cycle, apoptosis, autophagy, the proteasome pathway, oxidative stress, the tumor microenvironment, and multidrug efflux pumps. Multiple clinical trials indicated tolerable and reversible toxicities during nelfinavir treatment in cancer patients, either as a monotherapy or in combination with chemo- or radiotherapy. Since orally available nelfinavir has been a safe drug of choice for both adult and pediatric HIV-infected patients for over two decades, exploiting its anti-cancer off-target effects will enable fast-tracking this newer option into the existing repertoire of cancer chemotherapeutics.
Collapse
|
37
|
Xu N, Lin W, Sun J, Sadahira T, Xu A, Watanabe M, Guo K, Araki M, Li G, Liu C, Nasu Y, Huang P. Nitroxoline inhibits bladder cancer progression by reversing EMT process and enhancing anti-tumor immunity. J Cancer 2020; 11:6633-6641. [PMID: 33046984 PMCID: PMC7545671 DOI: 10.7150/jca.47025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Nitroxoline is considered to be an effective treatment for the urinary tract infections. Recently, it has been found to be effective against several cancers. However, few studies have examined the anti-tumor activity of nitroxoline in bladder cancer. The purpose of the study was to reveal the possible mechanisms how nitroxoline inhibited bladder cancer progression. In vitro assay, we demonstrated that nitroxoline inhibited bladder cancer cell growth and migration in a concentration-related manner. Western blot analysis demonstrated that nitroxoline downregulated the expressions of epithelial mesenchymal transition (EMT)-related proteins. Furthermore, treatment with nitroxoline in the C3H/He mice bladder cancer subcutaneous model resulted in significant inhibition of tumor growth. Moreover, the percentage of myeloid-derived suppressor cells (MDSC) in peripheral blood cells significantly decreased after treatment of nitroxoline. Taken together, our results suggested that nitroxoline may be used as a potential drug for bladder cancer.
Collapse
Affiliation(s)
- Naijin Xu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jingkai Sun
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital
| | - Kai Guo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Okayama Medical Innovation Center, Okayama University, Okayama, Japan
| |
Collapse
|
38
|
Generation and characterization of Japanese encephalitis virus expressing GFP reporter gene for high throughput drug screening. Antiviral Res 2020; 182:104884. [PMID: 32750466 PMCID: PMC7395821 DOI: 10.1016/j.antiviral.2020.104884] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Japanese encephalitis virus (JEV), a major cause of Japanese encephalitisis, is an arbovirus that belongs to the genus Flavivirus of the family Flaviviridae. Currently, there is no effective drugs available for the treatment of JEV infection. Therefore, it is important to establish efficient antiviral screening system for the development of antiviral drugs. In this study, we constructed a full-length infectious clone of eGFP-JEV reporter virus by inserting the eGFP gene into the capsid-coding region of the viral genome. The reporter virus RNA transfected-BHK-21 cells generated robust eGFP fluorescence signals that were correlated well with viral replication. The reporter virus displayed growth kinetics similar to wild type (WT) virus although replicated a little slower. Using a known JEV inhibitor, NITD008, we demonstrated that the reporter virus could be used to identify inhibitors against JEV. Furthermore, an eGFP-JEV-based high throughput screening (HTS) assay was established in a 96-well format and used for screening of 1443 FDA-approved drugs. Sixteen hit drugs were identified to be active against JEV. Among them, five compounds which are lonafarnib, cetylpyridinium chlorid, cetrimonium bromide, nitroxoline and hexachlorophene, are newly discovered inhibitors of JEV, providing potential new therapies for treatment of JEV infection.
Collapse
|
39
|
Jun E, Park Y, Lee W, Kwon J, Lee S, Kim MB, Lee JS, Song KB, Hwang DW, Lee JH, Hoffman RM, Kim SC. The identification of candidate effective combination regimens for pancreatic cancer using the histoculture drug response assay. Sci Rep 2020; 10:12004. [PMID: 32686712 PMCID: PMC7371642 DOI: 10.1038/s41598-020-68703-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
The prognosis for patients with pancreatic cancer is extremely poor, as they are resistant to first line chemotherapy. The long-term goal of this study was to identify effective combination chemotherapy for pancreatic cancer using pancreatic cancer surgical specimens in the histoculture drug response assay (HDRA) based on three-dimensional culture of tumour fragments, which maintains nature tumour histology in vitro. From 2015 to 2017, the HDRA was performed with tumour specimens from 52 pancreatic cancer patients from Asan Medical Hospital. First, combination drug regimens showed higher drug efficacy and less patient variation than single drugs. Initially, 5-Fluorouracil(5-FU)/Belotecan/Oxaliplatinum and Tegafur/Gimeracil (TS-1)/Oxaliplatinum/Irinotecan were found to be effective. Second, we were able to correlate the efficacy of some drugs with tumour stage. Third, when designing new combination regimens containing 5-FU or gemcitabine, we could identify more effective drug combinations. This is the first study to demonstrate usefulness of the HDRA for pancreatic cancer. Using this technique, we could identify novel candidate combination drug regimens that should be effective in treating pancreatic cancer.
Collapse
Affiliation(s)
- Eunsung Jun
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul, 05505, South Korea
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yejong Park
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul, 05505, South Korea
| | - Woohyung Lee
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul, 05505, South Korea
| | - Jaewoo Kwon
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul, 05505, South Korea
| | - Song Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, 05505, Korea
| | - Moon Bo Kim
- MetaBio, Inc., Gangdong-gu, Seoul, 05327, Korea
| | - Ji Sun Lee
- MetaBio, Inc., Gangdong-gu, Seoul, 05327, Korea
| | - Ki Byung Song
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul, 05505, South Korea
| | - Dae Wook Hwang
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul, 05505, South Korea
| | - Jae Hoon Lee
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul, 05505, South Korea
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego 92103-8220, CA, 92111, USA.
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA.
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
40
|
Sinan KI, Chiavaroli A, Orlando G, Bene K, Zengin G, Cziáky Z, Jekő J, Fawzi Mahomoodally M, Picot-Allain MCN, Menghini L, Recinella L, Brunetti L, Leone S, Ciferri MC, Di Simone S, Ferrante C. Evaluation of Pharmacological and Phytochemical Profiles Piptadeniastrum africanum (Hook.f.) Brenan Stem Bark Extracts. Biomolecules 2020; 10:biom10040516. [PMID: 32231150 PMCID: PMC7226170 DOI: 10.3390/biom10040516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
The stem bark (SB) of Piptadeniastrum africanum (PA) has been extensively used in African traditional medicinal systems. However, there is a dearth of scientific information regarding its possible activity in the management of type II diabetes, Alzheimer’s disease, and skin hyperpigmentation disorders. This study therefore attempted to elucidate the in vitro inhibitory action of ethyl acetate, methanol, and water extracts of P. africanum stem bark (PA-SB) on α-amylase, α-glucosidase, acetylcholinesterase, butyrylcholinesterase, and tyrosinase. Cell viability, catecholamine, and 3-hydroxykynurenine levels of hypothalamic HypoE22 cells exposed to PA-SB extracts were also investigated. The phytochemical profiles of the extracts were determined by high performance liquid chromatography (HPLC) and antioxidant properties were investigated. Saponin (867.42 mg quillaja equivalent/g) and tannin (33.81 mg catechin equivalent/g) contents were higher in the methanol extract. Multiple dihydroxy-trimethoxy(iso)flavone isomers, loliolide, eriodictyol, naringenin, luteolin, chrysoeriol, apigenin, and liquiritigenin, were characterized from PA-SB extracts using HPLC. The methanol extract of PA-SB showed highest inhibitory activity against acetylcholinesterase (4.88 mg galantamine equivalent (GALAE)/g extract), butyrylcholinesterase (5.37 mg GALAE/g extract), and tyrosinase (154.86 mg kojic acid equivalent/g extract) while α-glucosidase was effectively inhibited by the ethyl acetate extract (15.22 mmol acarbose equivalent/g extract). The methanol extract of PA-SB also showed potent antioxidant properties (493.87, 818.12, 953.07, and 732.19 mg Trolox equivalent/g extract, for 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), cupric reducing antioxidant capacity (CUPRAC), and ferric reducing antioxidant power (FRAP) assays, respectively). PA-SB extracts exhibited antioxidant activity and promising inhibition against key enzymes related to type II diabetes, Alzheimer’s disease, and skin hyperpigmentation disorders. Additionally, all extracts were able to contrast hydrogen peroxide-induced oxidative stress, in HypoE22 cells, thus restoring basal catecholamine and 3-hydroxykinurenine levels, whereas only methanol and water extracts stimulated basal dopamine release. Overall, data from the present study contribute to the biological assessment of P. africanum that appears to be a promising source of natural compounds with protective and neuromodulatory effects.
Collapse
Affiliation(s)
- Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Konya 42130, Turkey;
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
- Correspondence: (G.O.); (G.Z.)
| | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, 02 BP 801 Abidjan 02, Université Nangui Abrogoua, Abidjan 00225, Ivory Coast;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Konya 42130, Turkey;
- Correspondence: (G.O.); (G.Z.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit 230, Mauritius;
| | | | - Luigi Menghini
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
| | - Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
| | - Maria Chiara Ciferri
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
| | - Simonetta Di Simone
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (M.C.C.); (S.D.S.); (C.F.)
| |
Collapse
|
41
|
Veschi S, Ronci M, Lanuti P, De Lellis L, Florio R, Bologna G, Scotti L, Carletti E, Brugnoli F, Di Bella MC, Bertagnolo V, Marchisio M, Cama A. Integrative proteomic and functional analyses provide novel insights into the action of the repurposed drug candidate nitroxoline in AsPC-1 cells. Sci Rep 2020; 10:2574. [PMID: 32054977 PMCID: PMC7018951 DOI: 10.1038/s41598-020-59492-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
We recently identified nitroxoline as a repurposed drug candidate in pancreatic cancer (PC) showing a dose-dependent antiproliferative activity in different PC cell lines. This antibiotic is effective in several in vitro and animal cancer models. To date, the mechanisms of nitroxoline anticancer action are largely unknown. Using shotgun proteomics we identified 363 proteins affected by nitroxoline treatment in AsPC-1 pancreatic cancer cells, including 81 consistently deregulated at both 24- and 48-hour treatment. These proteins previously unknown to be affected by nitroxoline were mostly downregulated and interconnected in a single highly-enriched network of protein-protein interactions. Integrative proteomic and functional analyses revealed nitroxoline-induced downregulation of Na/K-ATPase pump and β-catenin, which associated with drastic impairment in cell growth, migration, invasion, increased ROS production and induction of DNA damage response. Remarkably, nitroxoline induced a previously unknown deregulation of molecules with a critical role in cell bioenergetics, which resulted in mitochondrial depolarization. Our study also suggests that deregulation of cytosolic iron homeostasis and of co-translational targeting to membrane contribute to nitroxoline anticancer action. This study broadens our understanding of the mechanisms of nitroxoline action, showing that the drug modulates multiple proteins crucial in cancer biology and previously unknown to be affected by nitroxoline.
Collapse
Affiliation(s)
- Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Rosalba Florio
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Federica Brugnoli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | - Valeria Bertagnolo
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Marchisio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
42
|
Mahomoodally MF, Sinan KI, Bene K, Zengin G, Orlando G, Menghini L, Veschi S, Chiavaroli A, Recinella L, Brunetti L, Leone S, Angelini P, Hubka V, Covino S, Venanzoni R, Picot-Allain MCN, De Lellis L, Cama A, Cziáky Z, Jekő J, Ferrante C. Bridelia speciosa Müll.Arg. Stem bark Extracts as a Potential Biomedicine: From Tropical Western Africa to the Pharmacy Shelf. Antioxidants (Basel) 2020; 9:antiox9020128. [PMID: 32024319 PMCID: PMC7070247 DOI: 10.3390/antiox9020128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Bridelia species have been used in traditional African medicine for the management of diverse human ailments. In the current work, the detailed phytochemical profiles of the extracts of the stem bark of B. speciosa were evaluated and the antioxidant and enzyme inhibitory properties of the extracts were assessed. The anti-bacterial and anti-mycotic effects of the extracts were evaluated against selected pathogen strains. Additionally, the anti-proliferative effects were studied on the liver cancer HepG2 cell line. Finally, the putative protective effects were assessed on isolated rat liver that was challenged with lipopolysaccharide (LPS). The results revealed the presence of 36 compounds in the ethyl acetate extract, 44 in the methanol extract, and 38 in the water extract. Overall, the methanol extract showed the highest antioxidant activity, particularly in LPS-stimulated rat liver. Additionally, this extract exerted the highest antimycotic effect on C. albicans, whereas the water extract showed a promising anti-proliferative effect on liver cancer HepG2 cells. The methanol extract was also the most active as enzyme inhibitor, against acetylcholinesterase and butyrylcholinesterase. The current study appraises the antioxidant and enzyme inhibition properties of B. speciosa methanol extract and showed that this specie could be a promising source of biologically active phytochemicals, with potential health uses.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam or
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit 230, Mauritius;
| | | | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, 02 BP 801 Abidjan 02, Université Nangui Abrogoua, 00225 Abidjan, Cote D’Ivoire;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk Universtiy, Campus, 42130 Konya, Turkey;
- Correspondence: (G.Z.); (G.O.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
- Correspondence: (G.Z.); (G.O.)
| | - Luigi Menghini
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
| | - Serena Veschi
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
| | - Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy; (P.A.); (S.C.)
| | - Vit Hubka
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy; (P.A.); (S.C.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy; (P.A.); (S.C.)
| | | | - Laura De Lellis
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
| | - Alessandro Cama
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (S.V.); (A.C.); (L.R.); (L.B.); (S.L.); (L.D.L.); (A.C.); (C.F.)
| |
Collapse
|
43
|
Florio R, Veschi S, di Giacomo V, Pagotto S, Carradori S, Verginelli F, Cirilli R, Casulli A, Grassadonia A, Tinari N, Cataldi A, Amoroso R, Cama A, De Lellis L. The Benzimidazole-Based Anthelmintic Parbendazole: A Repurposed Drug Candidate That Synergizes with Gemcitabine in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11122042. [PMID: 31861153 PMCID: PMC6966614 DOI: 10.3390/cancers11122042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal, chemoresistant malignancies and it is of paramount importance to find more effective therapeutic agents. Repurposing of non-anticancer drugs may expand the repertoire of effective molecules. Studies on repurposing of benzimidazole-based anthelmintics in PC and on their interaction with agents approved for PC therapy are lacking. We analyzed the effects of four Food and Drug Administration (FDA)-approved benzimidazoles on AsPC-1 and Capan-2 pancreatic cancer cell line viability. Notably, parbendazole was the most potent benzimidazole affecting PC cell viability, with half maximal inhibitory concentration (IC50) values in the nanomolar range. The drug markedly inhibited proliferation, clonogenicity and migration of PC cell lines through mechanisms involving alteration of microtubule organization and formation of irregular mitotic spindles. Moreover, parbendazole interfered with cell cycle progression promoting G2/M arrest, followed by the emergence of enlarged, polyploid cells. These abnormalities, suggesting a mitotic catastrophe, culminated in PC cell apoptosis, are also associated with DNA damage in PC cell lines. Remarkably, combinations of parbendazole with gemcitabine, a drug employed as first-line treatment in PC, synergistically decreased PC cell viability. In conclusion, this is the first study providing evidence that parbendazole as a single agent, or in combination with gemcitabine, is a repurposing candidate in the currently dismal PC therapy.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
| | - Viviana di Giacomo
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
| | - Sara Pagotto
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (A.G.); (N.T.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
- Correspondence: (S.C.); (A.C.); Tel.: +39-0871-3554583 (S.C.); +39-0871-3554559 (A.C.)
| | - Fabio Verginelli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Roberto Cirilli
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis (in Animals and Humans), Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (A.G.); (N.T.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (A.G.); (N.T.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
| | - Rosa Amoroso
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (S.C.); (A.C.); Tel.: +39-0871-3554583 (S.C.); +39-0871-3554559 (A.C.)
| | - Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.F.); (S.V.); (V.d.G.); (F.V.); (A.C.); (R.A.); (L.D.L.)
| |
Collapse
|
44
|
Sapalidis K, Kosmidis C, Funtanidou V, Katsaounis A, Barmpas A, Koimtzis G, Mantalobas S, Alexandrou V, Aidoni Z, Koulouris C, Pavlidis E, Giannakidis D, Surlin V, Pantea S, Strambu V, Constantina RO, Amaniti A, Zarogoulidis P, Mogoantă S, Kesisoglou I, Sardeli C. Update on current pancreatic treatments: from molecular pathways to treatment. J Cancer 2019; 10:5162-5172. [PMID: 31602269 PMCID: PMC6775621 DOI: 10.7150/jca.36300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is still diagnosed at a late stage although we have novel diagnostic tools. Pancreatic cancer chemotherapy treatment resistance is observed and therefore novel treatments are in need. Anti-cancer stem cell therapy, combination of chemotherapy and/or radiotherapy with immunotherapy, proteins/enzymes and gene therapy are currently under evaluation. Targeted treatment with tyrosine kinase inhibitors is also administered and novel inhibitors are also under evaluation. In the current review we present recent data from our search within the year 2018.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Christoforos Kosmidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Varvara Funtanidou
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Amastasios Barmpas
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Georgios Koimtzis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stylianos Mantalobas
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Vyron Alexandrou
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Zoi Aidoni
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Charilaos Koulouris
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Efstathios Pavlidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Valeriu Surlin
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | | | - Victor Strambu
- General Surgery Department, "Dr Carol Davila", University of Medicine and Pharmacy, Bucuresti, Romania
| | | | - Aikaterini Amaniti
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Paul Zarogoulidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stelian Mogoantă
- Department of Pharmacology and Department of Surgery, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Isaak Kesisoglou
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
45
|
|