1
|
Yin J, Ding L, Yao S, Huang J, Xiao Y, Wang Y, Zhang B, Rehmutulla M, Gu L, Tong Q, Zhang Y. Y9, a Gboxin analog, displays anti-tumor effect in non-small cell lung cancer by inducing lysosomal dysfunction and apoptosis. Bioorg Chem 2024; 153:107820. [PMID: 39321714 DOI: 10.1016/j.bioorg.2024.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Non-small cell lung cancer (NSCLC) ranks among the most prevalent malignancies globally. Gboxin, a novel inhibitor of mitochondrial complex V that exerts unique anti-tumor effects via oxidative phosphorylation inhibition, but shows no efficacy against NSCLC in vivo. Through chemical structure optimization, we designed and synthesized Gboxin analog Y9, which demonstrates significantly enhanced potency over its predecessor. Specifically, Y9 inhibited NSCLC significantly more strongly than Gboxin and possessed the ability to inhibit cell cycle progression and induce oxidative stress similar to Gboxin. Further investigation revealed that unlike Gboxin, Y9 selectively acidifies lysosomes and induces lysosomal dysfunction. This leads to hyperactive autophagy with impaired substrate clearance, and ultimately resulting in apoptosis. Animal studies confirmed the efficacy of Y9 in suppressing tumor growth in a xenograft mouse model. Collectively, Y9 is a distinctive Gboxin analog that outperforms its prototype by inducing lysosomal dysfunction and apoptosis, and has the potential to be developed as a novel anti-NSCLC lead compound.
Collapse
Affiliation(s)
- Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longjie Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianzheng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biqiong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mewlude Rehmutulla
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Wang Y, Lin S, Chen L, Li M, Zhu Z, Zhuang Z, Cai M, Zhang H, Xing C, Li W, Yang R. Mitochondrial components transferred by MSC-derived exosomes promoted bone regeneration under high salt microenvironment via DRP1/Wnt signaling. NANO RESEARCH 2024; 17:8301-8315. [DOI: 10.1007/s12274-024-6758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 03/10/2025]
|
3
|
Zhang L, Wang G, Li Z, Yang J, Li H, Wang W, Li Z, Li H. Molecular pharmacology and therapeutic advances of monoterpene perillyl alcohol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155826. [PMID: 38897045 DOI: 10.1016/j.phymed.2024.155826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Perillyl alcohol (POH) is a aroma monoterpene commonly obtained from various plants' essential oil. Recently, increasing researches have demonstrated that POH may be useful, not only as flavor compound, but also as bioactive molecule because of a variety of biological activities. PURPOSE The aim of this review is to summarize the production, pharmacological activities and molecular mechanism, active derivatives, toxicity and parmacokinetics, and industrial application of POH. METHODS A systematic search of published articles up to January 2024 in Web of Science, China Knowledge Network, and PubMed databases is conducted using the following keywords: POH, POH derivatives, biological or pharmacological, production or synthesis, pharmacokinetics, toxicity and application. RESULTS Biotechnological production is considered to be a potential alternative approach to generate POH. POH provides diverse pharmacological benefits, including anticancer, antimicrobial, insecticidal, antioxidant, anti-inflammatory, hypotensive, vasorelaxant, antinociceptive, antiasthmatic, hepatoprotective effects, etc. The underlying mechanisms of action include modulation of NF-κB, JNK/c-Jun, Notch, Akt/mTOR, PI3K/Akt/eNOS, STAT3, Nrf2 and ERS response pathways, mitigation of mitochondrial dysfunction and membrane integrity damage, and inhibition of ROS accumulation, pro-inflammatory cytokines release and NLRP3 activation. What's more, the proteins or genes influenced by POH against diseases refer to Bax, Bcl-2, cyclin D1, CDK, p21, p53, HIF-1α, AP-1, caspase-3, M6P/IGF2R, PARP, VEGF, etc. Some clinical studies report that intranasal delivery of POH is a safe and effective treatment for cancer, but further clinical investigations are needed to confirm other health benefits of POH in human healthy. Depending on these health-promoting properties together with desirable flavor and safety, POH can be employed as dietary supplement, preservative and flavor additive in food and cosmetic fields, as building block in synthesis fields, as anticancer drug in medicinal fields, and as pesticides and herbicides in agricultural fields. CONCLUSION This review systematically summarizes the recent advances in POH and highlights its therapeutic effects and potential mechanisms as well as the clinical settings, which is helpful to develop POH into functional food and new candidate drug for prevention and management of diseases. Future studies are needed to conduct more biological activity studies of POH and its derivatives, and check their clinical efficacy and potential side effects.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| | - Guoguo Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zehao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China.
| | - Haoliang Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China
| | - Wanying Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zhijian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
4
|
Feng Z, Yuan L, Ma L, Yu W, Kheir F, Käsmann L, Brueckl WM, Jin K, Wang D, Shen Y, Li R, Tian H. Peptidyl-prolyl isomerase F as a prognostic biomarker associated with immune infiltrates and mitophagy in lung adenocarcinoma. Transl Lung Cancer Res 2024; 13:1346-1364. [PMID: 38973949 PMCID: PMC11225036 DOI: 10.21037/tlcr-24-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is among the most prevalent malignancies worldwide, with unfavorable treatment outcomes. Peptidyl-prolyl isomerase F (PPIF) is known to influence the malignancy traits of tumor progression by modulating the bioenergetics and mitochondrial permeability in cancer cells; however, its role in LUAD remains unclear. Our study seeks to investigate the clinical significance, tumor proliferation, and immune regulatory functions of PPIF in LUAD. METHODS The expression of PPIF in LUAD tissues and cells was assessed using bioinformatics analysis, immunohistochemistry (IHC), and Western blotting. Survival curve analysis was conducted to examine the prognostic association between PPIF expression and LUAD. The immunomodulatory role of PPIF in LUAD was assessed through the analysis of PPIF expression and immune cell infiltration. A series of gain- and loss-of-function experiments were conducted on PPIF to investigate its biological functions in LUAD both in vitro and in vivo. The mechanisms underlying PPIF's effects on LUAD were delineated through functional enrichment analysis and Western blotting assays. RESULTS PPIF exhibited overexpression in LUAD tissues compared to normal controls. Survival curve analysis revealed that patients with LUAD exhibiting higher PPIF expression demonstrated decreased overall survival and a shorter progression-free interval. PPIF was implicated in modulating immune cell infiltration, particularly in regulating the T helper 1-T helper 2 cell balance. Functionally, PPIF was discovered to promote tumor cell proliferation and advance cell-cycle progression. Furthermore, PPIF could impede mitophagy by targeting the FOXO3a/PINK1-Parkin signaling pathway. CONCLUSIONS The findings of this study indicate that the prognosis-related gene PPIF may have a significant role in the regulation of LUAD cell proliferation, tumor-associated immune cell infiltration, and mitophagy, and thus PPIF may be a promising therapeutic target of LUAD.
Collapse
Affiliation(s)
- Zitong Feng
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Yuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Luyuan Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhao Yu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Fayez Kheir
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Wolfgang M. Brueckl
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, General Hospital Nuernberg, Nuremberg, Germany
| | - Kai Jin
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Dingxin Wang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Shen
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Zhang X, Yu D, Tang P, Chen F. Insights into the role of mitophagy in lung cancer: current evidence and perspectives. Front Pharmacol 2024; 15:1420643. [PMID: 38962310 PMCID: PMC11220236 DOI: 10.3389/fphar.2024.1420643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Lung cancer, recognized globally as a leading cause of malignancy-associated morbidity and mortality, is marked by its high prevalence and lethality, garnering extensive attention within the medical community. Mitophagy is a critical cellular process that plays a crucial role in regulating metabolism and ensuring quality control within cells. Its relevance to lung cancer has garnered significant attention among researchers and scientists. Mitophagy's involvement in lung cancer encompasses its initiation, progression, metastatic dissemination and treatment. The regulatory landscape of mitophagy is complex, involving numerous signaling proteins and pathways that may exhibit aberrant alterations or mutations within the tumor environment. In the field of treatment, the regulation of mitophagy is considered key to determining cancer chemotherapy, radiation therapy, other treatment options, and drug resistance. Contemporary investigations are directed towards harnessing mitophagy modulators, both inhibitors and activators, in therapeutic strategies, with an emphasis on achieving specificity to minimize collateral damage to healthy cellular populations. Furthermore, molecular constituents and pathways affiliated with mitophagy, serving as potential biomarkers, offer promising avenues for enhancing diagnostic accuracy, prognostic assessment, and prediction of therapeutic responses in lung cancer. Future endeavors will also involve investigating the impact of mitophagy on the composition and function of immune cells within the tumor microenvironment, aiming to enhance our understanding of how mitophagy modulates the immune response to lung cancer. This review aims to comprehensively overview recent advancements about the role of mitophagy in the tumor genesis, progenesis and metastasis, and the impact of mitophagy on the treatment of lung cancer. We also discussed the future research direction of mitophagy in the field of lung cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongzhi Yu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peng Tang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Bajinka O, Ouedraogo SY, Golubnitschaja O, Li N, Zhan X. Energy metabolism as the hub of advanced non-small cell lung cancer management: a comprehensive view in the framework of predictive, preventive, and personalized medicine. EPMA J 2024; 15:289-319. [PMID: 38841622 PMCID: PMC11147999 DOI: 10.1007/s13167-024-00357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/07/2024]
Abstract
Energy metabolism is a hub of governing all processes at cellular and organismal levels such as, on one hand, reparable vs. irreparable cell damage, cell fate (proliferation, survival, apoptosis, malignant transformation etc.), and, on the other hand, carcinogenesis, tumor development, progression and metastazing versus anti-cancer protection and cure. The orchestrator is the mitochondria who produce, store and invest energy, conduct intracellular and systemically relevant signals decisive for internal and environmental stress adaptation, and coordinate corresponding processes at cellular and organismal levels. Consequently, the quality of mitochondrial health and homeostasis is a reliable target for health risk assessment at the stage of reversible damage to the health followed by cost-effective personalized protection against health-to-disease transition as well as for targeted protection against the disease progression (secondary care of cancer patients against growing primary tumors and metastatic disease). The energy reprogramming of non-small cell lung cancer (NSCLC) attracts particular attention as clinically relevant and instrumental for the paradigm change from reactive medical services to predictive, preventive and personalized medicine (3PM). This article provides a detailed overview towards mechanisms and biological pathways involving metabolic reprogramming (MR) with respect to inhibiting the synthesis of biomolecules and blocking common NSCLC metabolic pathways as anti-NSCLC therapeutic strategies. For instance, mitophagy recycles macromolecules to yield mitochondrial substrates for energy homeostasis and nucleotide synthesis. Histone modification and DNA methylation can predict the onset of diseases, and plasma C7 analysis is an efficient medical service potentially resulting in an optimized healthcare economy in corresponding areas. The MEMP scoring provides the guidance for immunotherapy, prognostic assessment, and anti-cancer drug development. Metabolite sensing mechanisms of nutrients and their derivatives are potential MR-related therapy in NSCLC. Moreover, miR-495-3p reprogramming of sphingolipid rheostat by targeting Sphk1, 22/FOXM1 axis regulation, and A2 receptor antagonist are highly promising therapy strategies. TFEB as a biomarker in predicting immune checkpoint blockade and redox-related lncRNA prognostic signature (redox-LPS) are considered reliable predictive approaches. Finally, exemplified in this article metabolic phenotyping is instrumental for innovative population screening, health risk assessment, predictive multi-level diagnostics, targeted prevention, and treatment algorithms tailored to personalized patient profiles-all are essential pillars in the paradigm change from reactive medical services to 3PM approach in overall management of lung cancers. This article highlights the 3PM relevant innovation focused on energy metabolism as the hub to advance NSCLC management benefiting vulnerable subpopulations, affected patients, and healthcare at large. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00357-5.
Collapse
Affiliation(s)
- Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, 53127 Bonn, Germany
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
7
|
NEAT1 Confers Radioresistance to Hepatocellular Carcinoma Cells by Inducing PINK1/Parkin-Mediated Mitophagy. Int J Mol Sci 2022; 23:ijms232214397. [PMID: 36430876 PMCID: PMC9692527 DOI: 10.3390/ijms232214397] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A long noncoding RNA, nuclear paraspeckle assembly transcript 1 (NEAT1) variant 1 (NEAT1v1), confers radioresistance to hepatocellular carcinoma (HCC) cells by inducing autophagy via γ-aminobutyric acid A receptor-associated protein (GABARAP). Radiation induces oxidative stress to damage cellular components and organelles, but it remains unclear how NEAT1v1 protects HCC cells from radiation-induced oxidative stress via autophagy. To address this, we precisely investigated NEAT1v1-induced autophagy in irradiated HCC cell lines. X-ray irradiation significantly increased cellular and mitochondrial oxidative stress and mitochondrial DNA content in HCC cells while NEAT1v1 suppressed them. NEAT1v1 concomitantly induced the phosphatase and tensin homolog-induced kinase 1 (PINK1)/parkin-mediated mitophagy. Interestingly, parkin expression was constitutively upregulated in NEAT1v1-overexpressing HCC cells, leading to increased mitochondrial parkin levels. Superoxide dismutase 2 (SOD2) was also upregulated by NEAT1v1, and GABARAP or SOD2 knockdown in NEAT1v1-overexpressing cells increased mitochondrial oxidative stress and mitochondrial DNA content after irradiation. Moreover, it was suggested that SOD2 was involved in NEAT1v1-induced parkin expression, and that GABARAP promoted parkin degradation via mitophagy. This study highlights the unprecedented roles of NEAT1v1 in connecting radioresistance and mitophagy in HCC.
Collapse
|
8
|
Jatyan R, Singh P, Sahel DK, Karthik YG, Mittal A, Chitkara D. Polymeric and small molecule-conjugates of temozolomide as improved therapeutic agents for glioblastoma multiforme. J Control Release 2022; 350:494-513. [PMID: 35985493 DOI: 10.1016/j.jconrel.2022.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Y G Karthik
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
9
|
Yang H, Guo Q, Wu J, Zhong L, Sun L, Liu W, Wang J, Lin L. Deciphering the Effects and Mechanisms of Yi-Fei-San-Jie-pill on Non-Small Cell Lung Cancer With Integrating Network Target Analysis and Experimental Validation. Front Pharmacol 2022; 13:851554. [PMID: 35645820 PMCID: PMC9130494 DOI: 10.3389/fphar.2022.851554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases, calls for better therapy. Yi-Fei-San-Jie-pill (YFSJ), a well-applicated traditional Chinese medicine formula, was reported to be effective in the treatment of NSCLC. However, its anti-tumor mechanism still needs to be fully elucidated. Herein, a reliable preclinical orthotopic but not subcutaneous model of NSCLC in mice was established to evaluate the anti-cancer properties and further validate the mechanisms of YFSJ. A bioinformatic analysis was executed to identify the potential targets and key pathways of YFSJ on NSCLC. In detail, the anti-tumor effect of YFSJ and the autophagy inhibitor 3-MA was evaluated according to the tumor fluorescence value and comparison of different groups' survival times. As a result, YFSJ markedly decreased tumor size and prolonged survival time in contrast with those in the orthotopic model group (p < 0.05), and it also significantly regulated the protein expression levels of apoptosis- and autophagy-related proteins. In conclusion, this study provides convincing evidence that YFSJ could inhibit the growth of tumors and prolong the survival time of tumor-bearing mice based on the NSCLC orthotopic model, and its anti-tumor effect was closely associated with the promotion of apoptosis and interference of autophagy coupled with regulation of immune infiltration.
Collapse
Affiliation(s)
- Hongxing Yang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianbin Wu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixia Zhong
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Ionizing Radiation Upregulates Glutamine Metabolism and Induces Cell Death via Accumulation of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5826932. [PMID: 35028001 PMCID: PMC8749225 DOI: 10.1155/2021/5826932] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 01/21/2023]
Abstract
Glutamine metabolism provides energy to tumor cells and also produces reactive oxygen species (ROS). Excessive accumulation of ROS can damage mitochondria and eventually lead to cell death. xCT (SLC7A11) is responsible for the synthesis of glutathione in order to neutralize ROS. In addition, mitophagy can remove damaged mitochondria to keep the cell alive. Ionizing radiation kills tumor cells by causing the accumulation of ROS, which subsequently induces nuclear DNA damage. With this in mind, we explored the mechanism of intracellular ROS accumulation induced by ionizing radiation and hypothesized new methods to enhance the effect of radiotherapy. We used MCF-7 breast cancer cells and HCT116 colorectal cancer cells in our study. The above-mentioned cells were irradiated with different doses of X-rays or carbon ions. Clone formation assays were used to detect cell proliferation, enzyme-linked immunosorbent assay (ELISA) detected ATP, and glutathione (GSH) production, while the expression of proteins was detected by Western blot and quantitative real-time PCR analysis. The production of ROS was detected by flow cytometry, and immunofluorescence was used to track mitophagy-related processes. Finally, BALB/C tumor-bearing nude mice were irradiated with X-rays in order to further explore the protein expression found in tumors with the use of immunohistochemistry. Ionizing radiation increased the protein expressions of ASCT2, GLS, and GLUD in order to upregulate the glutamine metabolic flux in tumor cells. This caused an increase in ATP secretion. Meanwhile, ionizing radiation inhibited the expression of the xCT (SLC7A11) protein and reduced the generation of glutathione, leading to excessive accumulation of intracellular ROS. The mitophagy inhibitor, or knockdown Parkin gene, is able to enhance the ionizing radiation-induced ROS production and increase nucleus DNA damage. This combined treatment can significantly improve the killing effect of radiation on tumor cells. We concluded that ionizing radiation could upregulate the glutamine metabolic flux and enhance ROS accumulation in mitochondria. Ionizing radiation also decreased the SLC7A11 expression, resulting in reduced GSH generation. Therefore, inhibition of mitophagy can increase ionizing radiation-induced cell death.
Collapse
|
11
|
Li Y, Li W, Hoffman AR, Cui J, Hu JF. The Nucleus/Mitochondria-Shuttling LncRNAs Function as New Epigenetic Regulators of Mitophagy in Cancer. Front Cell Dev Biol 2021; 9:699621. [PMID: 34568319 PMCID: PMC8455849 DOI: 10.3389/fcell.2021.699621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitophagy is a specialized autophagic pathway responsible for the selective removal of damaged or dysfunctional mitochondria by targeting them to the autophagosome in order to maintain mitochondria quality. The role of mitophagy in tumorigenesis has been conflicting, with the process both supporting tumor cell survival and promoting cell death. Cancer cells may utilize the mitophagy pathway to augment their metabolic requirements and resistance to cell death, thereby leading to increased cell proliferation and invasiveness. This review highlights major regulatory pathways of mitophagy involved in cancer. In particular, we summarize recent progress regarding how nuclear-encoded long non-coding RNAs (lncRNAs) function as novel epigenetic players in the mitochondria of cancer cells, affecting the malignant behavior of tumors by regulating mitophagy. Finally, we discuss the potential application of regulating mitophagy as a new target for cancer therapy.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
12
|
Cho HY, Swenson S, Thein TZ, Wang W, Wijeratne NR, Marín-Ramos NI, Katz JE, Hofman FM, Schönthal AH, Chen TC. Pharmacokinetic properties of the temozolomide perillyl alcohol conjugate (NEO212) in mice. Neurooncol Adv 2020; 2:vdaa160. [PMID: 33392507 PMCID: PMC7764505 DOI: 10.1093/noajnl/vdaa160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background NEO212 is a novel small-molecule anticancer agent that was generated by covalent conjugation of the natural monoterpene perillyl alcohol (POH) to the alkylating agent temozolomide (TMZ). It is undergoing preclinical development as a therapeutic for brain-localized malignancies. The aim of this study was to characterize metabolism and pharmacokinetic (PK) properties of NEO212 in preclinical models. Methods We used mass spectrometry (MS) and modified high-performance liquid chromatography to identify and quantitate NEO212 and its metabolites in cultured glioblastoma cells, in mouse plasma, brain, and excreta after oral gavage. Results Our methods allowed identification and quantitation of NEO212, POH, TMZ, as well as primary metabolites 5-aminoimidazole-4-carboxamide (AIC) and perillic acid (PA). Intracellular concentrations of TMZ were greater after treatment of U251TR cells with NEO212 than after treatment with TMZ. The half-life of NEO212 in mouse plasma was 94 min. In mice harboring syngeneic GL261 brain tumors, the amount of NEO212 was greater in the tumor-bearing hemisphere than in the contralateral normal hemisphere. The brain:plasma ratio of NEO212 was greater than that of TMZ. Excretion of unaltered NEO212 was through feces, whereas its AIC metabolite was excreted via urine. Conclusions NEO212 preferentially concentrates in brain tumor tissue over normal brain tissue, and compared to TMZ has a higher brain:plasma ratio, altogether revealing favorable features to encourage its further development as a brain-targeted therapeutic. Its breakdown into well-characterized, long-lived metabolites, in particular AIC and PA, will provide useful equivalents for PK studies during further drug development and clinical trials with NEO212.
Collapse
Affiliation(s)
- Hee-Yeon Cho
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steve Swenson
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thu Zan Thein
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weijun Wang
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Neloni R Wijeratne
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Nagore I Marín-Ramos
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan E Katz
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Florence M Hofman
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Pathology Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thomas C Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Pathology Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Xie Y, Liu J, Kang R, Tang D. Mitophagy Receptors in Tumor Biology. Front Cell Dev Biol 2020; 8:594203. [PMID: 33262988 PMCID: PMC7686508 DOI: 10.3389/fcell.2020.594203] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are multifunctional organelles that regulate cancer biology by synthesizing macromolecules, producing energy, and regulating cell death. The understanding of mitochondrial morphology, function, biogenesis, fission and fusion kinetics, and degradation is important for the development of new anticancer strategies. Mitophagy is a type of selective autophagy that can degrade damaged mitochondria under various environmental stresses, especially oxidative damage and hypoxia. The key regulator of mitophagy is the autophagy receptor, which recognizes damaged mitochondria and allows them to enter autophagosomes by binding to MAP1LC3 or GABARAP, and then undergo lysosomal-dependent degradation. Many components of mitochondria, including mitochondrial membrane proteins (e.g., PINK1, BNIP3L, BNIP3, FUNDC1, NIPSNAP1, NIPSNAP2, BCL2L13, PHB2, and FKBP8) and lipids (e.g., cardiolipin and ceramides), act as mitophagy receptors in a context-dependent manner. Dysfunctional mitophagy not only inhibits, but also promotes, tumorigenesis. Similarly, mitophagy plays a dual role in chemotherapy, radiotherapy, and immunotherapy. In this review, we summarize the latest advances in the mechanisms of mitophagy and highlight the pathological role of mitophagy receptors in tumorigenesis and treatment.
Collapse
Affiliation(s)
- Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
14
|
Stimuli-Responsive Micelles with Detachable Poly(2-ethyl-2-oxazoline) Shell Based on Amphiphilic Polyurethane for Improved Intracellular Delivery of Doxorubicin. Polymers (Basel) 2020; 12:polym12112642. [PMID: 33182767 PMCID: PMC7696422 DOI: 10.3390/polym12112642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Polyurethanes (PUs) have various biomedical applications including controlled drug delivery. However, the incompletely release of drug at tumor sites limits the efficiency of these drug loaded polyurethane micelles. Here we report a novel polymer poly(2-ethyl-2-oxazoline)-SS-polyurethane-SS-poly(2-ethyl-2-oxazoline) triblock polyurethane (PEtOz-PU(PTMCSS)-PEtOz). The hydrophilic pH-responsive poly(2-ethyl-2-oxazoline) was used as an end-block to introduce pH responsiveness, and the hydrophobic PU middle-block was easily synthesized by the reaction of poly (trimethylene carbonate) diol containing disulfide bonds (PTMC-SS-PTMC diol) and bis (2-isocyanatoethyl) disulfide (CDI). PEtOz-PU(PTMCSS)-PEtOz could self-assemble to form micelles (176 nm). The drug release profile of PEtOz-PU(PTMCSS)-PEtOz micelles loaded with Doxorubicin (DOX) was studied in the presence of acetate buffer (10 mM, pH 5.0) and 10 mM dithiothreitol (DTT). The results showed that under this environment, DOX-loaded polyurethane micelles could release DOX faster and more thoroughly, about 97% of the DOX was released from the DOX-loaded PEtOz-PU(PTMCSS)-PEtOz micelle. In addition, fluorescent microscopy and cell viability assays validated that the DOX-loaded polyurethane micelle strongly inhibits the growth of C6 cells, suggesting their potential as a new nanomedicine against cancer.
Collapse
|
15
|
Hu Y, Wang B, Wang L, Wang Z, Jian Z, Deng L. Mammalian STE20‑like kinase 1 regulates pancreatic cancer cell survival and migration through Mfn2‑mediated mitophagy. Mol Med Rep 2020; 22:398-404. [PMID: 32377725 PMCID: PMC7248474 DOI: 10.3892/mmr.2020.11098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian STE20-like kinase 1 (MST1) plays an important role in pancreatic cancer progression, but its downstream targets are still unknown. In the present study, our results indicated that MST1 expression was significantly downregulated in pancreatic cancer cell lines (PANC‑1, BxPC‑3 and HPAC) compared with that in the normal ductal epithelial cell line (hTERT‑HPNE). Moreover, MST1 overexpression in PANC‑1 cells led to increased apoptosis as determined by MTT and TUNEL assays and inhibited cellular migration. Mechanistically, upregulation of MST1 expression caused mitochondrial dysfunction, decreased ATP production, and activation of the mitochondrial‑dependent apoptotic pathway via inhibition of mitofusin 2 (Mfn2)‑mediated mitophagy, which ultimately resulted in increased cellular apoptosis and decreased cellular migration. Collectively, the present study demonstrated that MST1 may regulate pancreatic cancer PANC‑1 cell survival, invasion and migration through Mfn2‑mediated mitophagy, laying the foundation for the exploration of novel therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Yongli Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Bing Wang
- Department of General Surgery, 900th Hospital of the Joint Service Support Force of the PLA, Fuzhou, Fujian 350000, P.R. China
| | - Lie Wang
- Department of General Surgery, 900th Hospital of the Joint Service Support Force of the PLA, Fuzhou, Fujian 350000, P.R. China
| | - Zhenran Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Zhiyuan Jian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Lin Deng
- Department of General Surgery, 900th Hospital of the Joint Service Support Force of the PLA, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
16
|
Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch Pharm Res 2020; 43:475-488. [PMID: 32458284 DOI: 10.1007/s12272-020-01239-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a self-degradation process in which the cytoplasmic cargoes are delivered to the lysosomes for degradation. As the cargoes are degraded/recycled, the autophagy process maintains the cellular homeostasis. Anti-cancer therapies induce apoptosis and autophagy concomitantly, and the induced autophagy normally prevents stress responses that are being induced. In such cases, the inhibition of autophagy can be a reasonable strategy to enhance the efficacy of anti-cancer therapies. However, recent studies have shown that autophagy induced by anti-cancer drugs causes cell death/apoptosis induction, indicating a controversial role of autophagy in cancer cell survival or death/apoptosis. Therefore, in the present review, we aimed to assess the signaling mechanisms involved in autophagy and cell death/apoptosis induction during anti-cancer therapies. This review summarizes the process of autophagy, autophagy flux and its blockade, and measurement and interpretation of autophagy flux. Further, it describes the signaling pathways involved in the blockade of autophagy flux and the role of signaling molecules accumulated by autophagy blockade in cell death/apoptosis in various cancer cells during anti-cancer therapies. Altogether, it implies that factors such as types of cancer, drug therapies, and characteristics of autophagy should be evaluated before targeting autophagy for cancer treatment.
Collapse
|
17
|
Abstract
The mevalonate (MVA) pathway is a key metabolic pathway involved in various important cellular functions. Its downstream products are critical for cell-signaling, cell membrane integrity, protein synthesis, and cellular respiration. The rate-limiting enzyme of this pathway is targeted by statins, a class of medications best known for their lipid-lowering effects. Many studies have shown that a variety of cancerous cells have a dysregulated MVA pathway. Lung cancer is responsible for a third of all cancer-related deaths worldwide. As our understanding of the molecular mechanisms driving the pathogenesis of lung cancer improves, newer therapeutics have been proposed. However, these medications have not had the expected benefits for all subtypes of lung cancer. Therefore, there exists a significant role in identifying medications with safe profiles, which can potentially be used in managing various types of lung cancer. Herein, we review whether there is a role in utilizing statins to target the MVA pathway in treating lung cancer.
Collapse
|
18
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Kaviyani N, Tavakol S. Monoterpenes modulating autophagy: A review study. Basic Clin Pharmacol Toxicol 2020; 126:9-20. [PMID: 31237736 DOI: 10.1111/bcpt.13282] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 01/19/2023]
Abstract
From the beginning of the 21st century, much attention has been made towards the medicinal herbs due to their low side effects and valuable biological activities. Among them, terpenes comprise a large group of naturally occurring chemical compounds that are considered as main components of flavours, antifeedants and pheromones. Monoterpenes have demonstrated a favourable profile as compounds that have antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective and anti-tumour activities. On the other hand, autophagy is a 'self-digestion' mechanism which plays a remarkable role in a number of pathological conditions such as cancer, ageing, metabolic disorders and infection. Also, autophagy is considered as a stress adaptor that may lead to apoptotic cell death under severe and sustained stress. Autophagy modulation is a promising strategy in cancer treatment, and a variety of drugs have been designed in line with this strategy. In the present MiniReview, we discuss the effects of monoterpenes on autophagy and its relationship with therapeutic impacts of monoterpenes.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Zahra Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Kaviyani
- Department of Basic Science, Islamic Azad University, Shoushtar, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|