1
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Kitagawa Y, Kondo S, Fukuyo M, Wakae K, Dochi H, Mizokami H, Komura S, Kobayashi E, Hirai N, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Wakisaka N, Kaneda A, Yoshizaki T. Phosphoribosyl pyrophosphate amidotransferase: Novel biomarker and therapeutic target for nasopharyngeal carcinoma. Cancer Sci 2024; 115:3587-3595. [PMID: 39196700 PMCID: PMC11531959 DOI: 10.1111/cas.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024] Open
Abstract
Cancer cells show a dynamic metabolic landscape, requiring a sufficient supply of nucleotides to proliferate. They are highly dependent on de novo purine biosynthetic pathways for their nucleotide requirements. Phosphoribosyl pyrophosphate amidotransferase (PPAT), catalyzing the first step of de novo purine biosynthesis, is highly expressed in various cancers. We observed an increased expression of PPAT in nasopharyngeal carcinoma (NPC). Moreover, our ribonucleic acid sequencing analysis showed high PPAT expression in Epstein-Barr virus-positive NPC, which was supported by in vitro analysis. Through a gene knockdown study, we showed that the suppression of PPAT expression reduced the proliferation and invasion of NPC cells. We also demonstrated the regulation of PPAT by glutamine, a cosubstrate for PPAT. A glutamine antagonist, 6-diazo-5-oxo-L-norleucine, blocked glutamine-mediated induction of PPAT and reduced NPC cell proliferation. Immunohistochemical analysis of PPAT in NPC tissues revealed increased expression of PPAT with disease progression, which was significantly associated with poor prognosis. In summary, this study highlighted the biological function of PPAT in NPC, establishing its potential as a novel prognostic biomarker for aggressive NPC and a promising therapeutic target.
Collapse
Affiliation(s)
- Yuki Kitagawa
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Kousho Wakae
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Harue Mizokami
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Shigetaka Komura
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Eiji Kobayashi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Nobuyuki Hirai
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Takayoshi Ueno
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Yosuke Nakanishi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Kazuhira Endo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Hisashi Sugimoto
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Naohiro Wakisaka
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| |
Collapse
|
3
|
Zhao Y, Zhang Q, Zhang B, Dai Y, Gao Y, Li C, Yu Y, Li C. Epstein-Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases. Int J Mol Sci 2024; 25:8160. [PMID: 39125729 PMCID: PMC11311853 DOI: 10.3390/ijms25158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV's life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases.
Collapse
Affiliation(s)
- Yuehong Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Qi Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Botian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yihao Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yifei Gao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Chen Y, Di M, Tang Y, Zhao J, Wang Q, Guo Z, Li Y, Ouyang D, Yang J, Chen H, Wang Y, Weng D, Pan Q, Xiang T, Xia J. Epstein-Barr virus causes vascular abnormalities in epithelial malignancies through upregulating ANXA3-HIF-1α-VEGF pathway. Oncogene 2024; 43:2143-2159. [PMID: 38778160 DOI: 10.1038/s41388-024-03061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Angiogenesis is one of the characteristics of malignant tumors, and persistent generation of abnormal tumor blood vessels is an important factor contributing to tumor treatment resistance. Epstein-Barr virus (EBV) is a highly prevalent DNA oncogenic virus that is associated with the development of various epithelial malignancies. However, the relationship between EBV infection and tumor vascular abnormalities as well as its underlying mechanisms is still unclear. In this study, we found that compared to EBV-uninfected tumors, EBV-infected tumors were more angiogenic, but the neovascularization was mostly immature vessels without pericyte attachment in both clinical patient tumor samples and mouse xenograft models; These immature vessels exhibited aberrant functionality, characterized by poor blood perfusion and increased vascular permeability. The vascular abnormalities caused by EBV infection exacerbated tumor hypoxia and was responsible for accelerated tumor growth. Mechanistically, EBV infection upregulated ANXA3-HIF-1α-VEGF pathway. Silencing the ANXA3 gene or neutralizing ANXA3 with an antibody can diminish vascular abnormalities, thereby increasing immune cell infiltration and alleviating treatment resistance. Finally, a new therapy combining ANXA3 blockade and NK cell + PD1 antibody significantly inhibited the growth of EBV-infected xenografts in mice. In conclusion, our study identified a previously unrecognized role for EBV infection in tumor vascular abnormalities and revealed its underlying mechanism that upregulated the ANXA3-HIF-1α-VEGF pathway. ANXA3 is a potential therapeutic target for EBV-infected tumors and ANXA3 blockade to improve vascular conditions, in combination with NK cell + PD1 antibody therapy, holds promise as an effective treatment strategy for EBV-associated epithelial malignancies.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Muping Di
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jingjing Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Qijing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Zhixing Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of UItrasonic Diagnosis, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yongqiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Dijun Ouyang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jieying Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Desheng Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Qiuzhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Tong Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Experimental Research, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Jianchuan Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
5
|
Lin C, Xiong J, Chen Y, Zheng H, Li M. Overexpression of CENPU promotes cancer growth and metastasis and is associated with poor survival in patients with nasopharyngeal carcinoma. Transl Cancer Res 2024; 13:2812-2824. [PMID: 38988917 PMCID: PMC11231766 DOI: 10.21037/tcr-23-2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024]
Abstract
Background Centromere protein U (CENPU) is key for mitosis in the carcinogenesis of cancers. However, the roles of CENPU have not been inspected in nasopharyngeal carcinoma (NPC). Thus, we aimed to explore the functions and mechanisms of CENPU in NPC. Methods Expression of CENPU was evaluated by real-time quantitative polymerase chain reaction, western blotting and immunohistochemistry. The biological functions of CENPU were evaluated in vitro and in vivo. Gene chip analysis, ingenuity pathway analysis, and coimmunoprecipitation experiments were used to explore the mechanisms of CENPU. Results CENPU was highly expressed in NPC. High expression of CENPU was associated with advanced tumor, node and metastasis (TNM) stage and poor overall survival. Cox regression analysis demonstrated that CENPU expression was an independent prognostic factor in NPC. Knockdown of CENPU inhibited proliferation and migration in vitro and in vivo. Knockdown of CENPU upregulated dual specificity phosphatase 6 (DUSP6) expression. The expression of CNEPU was inversely correlated with the expression of DUSP6 in NPC tissues. Mechanistic studies confirmed that CENPU increased the activation of the ERK1/2 and p38 signaling pathways by suppressing the expression of DUSP6. Conclusions CENPU acts as an oncogene in NPC by interacting with DUSP6, and may represent a promising prognostic biomarker for patients with NPC.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuebing Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Huiping Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Meifang Li
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
6
|
Chen Y, Ouyang D, Wang Y, Pan Q, Zhao J, Chen H, Yang X, Tang Y, Wang Q, Li Y, He J, You JQ, Li Y, Xu C, Ren Y, Xie S, Li S, Lian J, Weng D, Xiang T, Xia JC. EBV promotes TCR-T-cell therapy resistance by inducing CD163+M2 macrophage polarization and MMP9 secretion. J Immunother Cancer 2024; 12:e008375. [PMID: 38886114 PMCID: PMC11184188 DOI: 10.1136/jitc-2023-008375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a double-stranded DNA oncogenic virus. Several types of solid tumors, such as nasopharyngeal carcinoma, EBV-associated gastric carcinoma, and lymphoepithelioma-like carcinoma of the lung, have been linked to EBV infection. Currently, several TCR-T-cell therapies for EBV-associated tumors are in clinical trials, but due to the suppressive immune microenvironment of solid tumors, the clinical application of TCR-T-cell therapy for EBV-associated solid tumors is limited. Figuring out the mechanism by which EBV participates in the formation of the tumor immunosuppressive microenvironment will help T cells or TCR-T cells break through the limitation and exert stronger antitumor potential. METHODS Flow cytometry was used for analyzing macrophage differentiation phenotypes induced by EBV-infected and EBV-uninfected tumors, as well as the function of T cells co-cultured with these macrophages. Xenograft model in mice was used to explore the effects of M2 macrophages, TCR-T cells, and matrix metalloprotein 9 (MMP9) inhibitors on the growth of EBV-infected tumors. RESULTS EBV-positive tumors exhibited an exhaustion profile of T cells, despite the presence of a large T-cell infiltration. EBV-infected tumors recruited a large number of mononuclear macrophages with CCL5 and induced CD163+M2 macrophages polarization through the secretion of CSF1 and the promotion of autocrine IL10 production by mononuclear macrophages. Massive secretion of MMP9 by this group of CD163+M2 macrophages induced by EBV infection was an important factor contributing to T-cell exhaustion and TCR-T-cell therapy resistance in EBV-positive tumors, and the use of MMP9 inhibitors improved the function of T cells cocultured with M2 macrophages. Finally, the combination of an MMP9 inhibitor with TCR-T cells targeting EBV-positive tumors significantly inhibited the growth of xenografts in mice. CONCLUSIONS MMP9 inhibitors improve TCR-T cell function suppressed by EBV-induced M2 macrophages. TCR-T-cell therapy combined with MMP9 inhibitors was an effective therapeutic strategy for EBV-positive solid tumors.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dijun Ouyang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Wang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiuzhong Pan
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jingjing Zhao
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinyi Yang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Tang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qijing Wang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongqiang Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jia He
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jin-Qi You
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yingzi Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chi Xu
- Knowcell Biotechnology Co., Ltd, Shenzhen, China
| | - Yan Ren
- Knowcell Biotechnology Co., Ltd, Shenzhen, China
| | - Sisi Xie
- Knowcell Biotechnology Co., Ltd, Shenzhen, China
| | - Song Li
- TCRCure Biological Technology Co., Ltd, Guangzhou, China
| | - Jiamin Lian
- TCRCure Biological Technology Co., Ltd, Guangzhou, China
| | - Desheng Weng
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jian-Chuan Xia
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Xu K, Jiang P, Chen Z, Gu X, Zhang T. ADAM22 acts as a novel predictive biomarker for unfavorable prognosis and facilitates metastasis via PI3K/AKT signaling pathway in nasopharyngeal carcinoma. Pathol Res Pract 2024; 256:155264. [PMID: 38518731 DOI: 10.1016/j.prp.2024.155264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of epithelial malignancy known for its high likelihood of metastasizing to distant organs, which remains the primary obstacle in the treatment of NPC. The present study aimed to identify potential intervention target for NPC metastasis. METHODS The differentially expressed genes (DEGs) were firstly analyzed and intersected across various NPC related datasets in the Gene Expression Omnibus database. Subsequently, various techniques including quantitative polymerase chain reaction (qPCR), western blotting, immunohistochemistry, migration and invasion assays, in conjunction with bioinformatics and prognostic modeling, were utilized to elucidate the role of candidate genes in NPC metastasis. RESULTS We discerned the gene a disintegrin and metalloprotease 22 (ADAM22) as a distinct and significant factor in the progression and metastasis of NPC through five datasets. The elevated expression of ADAM22 was observed in clinical tissue and plasma samples with advanced NPC, as well as in high metastatic cells. Furthermore, we highlighted its essential role in a prognostic model that demonstrated strong prediction performance for NPC. Notably, overexpression of ADAM22 was found to enhance the aggressiveness and epithelial-mesenchymal transition (EMT) of low metastatic NPC cells, whereas the downregulation of ADAM22 resulted in suppressed effect in high metastatic cells. Delving into the mechanism, ADAM22 activated the PI3K/Akt signaling pathway through the mediation of Rac Family Small GTPase 2 (RAC2), thereby facilitating EMT and metastasis in NPC. CONCLUSIONS The study provided pioneering insights that ADAM22 had the potential to act as an oncogene by promoting EMT and metastasis of NPC through the RAC2-mediated PI3K/Akt signaling pathway. Thus, ADAM22 could serve as a novel prognostic indicator in NPC.
Collapse
Affiliation(s)
- Kaixiong Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ping Jiang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zui Chen
- Department of Oncology, the Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Ting Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| |
Collapse
|
8
|
Lin C, Chen Y, Lin X, Peng H, Huang J, Lin S, Pan J, Li M, Zong J. Plasma Epstein-Barr virus microRNA BART8-3p as a potential biomarker for detection and prognostic prediction in early nasopharyngeal carcinoma. Sci Rep 2024; 14:7433. [PMID: 38548853 PMCID: PMC10978918 DOI: 10.1038/s41598-024-58233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/01/2024] Open
Abstract
Epstein-Barr virus (EBV) encoded microRNA BART8-3p (miR-BART8-3p) was significantly associated with the metastasis in nasopharyngeal carcinoma (NPC). To explore the clinical values of plasma miR-BART8-3p in patients with early NPC. We retrospectively analyzed 126 patients with stage I and II NPC. A receiver operating characteristic curve was used to examine the diagnostic performance. Kaplan‒Meier analysis was applied to determine survival differences. Cox regression was used for univariate and multivariate analyses. Compared to healthy subjects, plasma EBV miR-BART8-3p was highly expressed in early NPC patients. The sensitivity, specificity, and area under the curve value of plasma miR-BART8-3p combined with plasma EBV DNA was up to 88.9%, 94.4%, and 0.931. Compared to patients with low expression of miR-BART8-3p, patients with high expression of miR-BART8-3p had poorer 5-year overall survival (OS) (98.9% vs. 91.1%, P = 0.025), locoregional recurrence-free survival (LRRFS) (100% vs. 83.9%, P < 0.001) and distant metastasis-free survival (DMFS) (98.9% vs. 88.0%, P = 0.006). Risk stratification analysis revealed that high-risk patients (with high levels of EBV DNA and miR-BART8-3p) had inferior OS, LRRFS, and DMFS than low-risk patients (without high levels of EBV DNA and miR-BART8-3p). Multivariate analysis verified that the high-risk group was an unfavorable factor for OS, LRRFS, and DMFS. A combination of plasma EBV miR-BART8-3p and EBV DNA could be a potential biomarker for the diagnosis and prognosis in early NPC.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yuebing Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xiandong Lin
- Department of Radiation Biology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Hewei Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Juan Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Shaojun Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jianji Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Department of Radiation Oncology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian Province, China
| | - Meifang Li
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| | - Jingfeng Zong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
9
|
Lin C, Li M, Lin Y, Zhang Y, Xu H, Chen B, Yan X, Xu Y. Impact of plasma Epstein-Barr virus DNA in posttreatment nasopharyngeal carcinoma patients after SARS-CoV-2 infection. Infect Agent Cancer 2024; 19:8. [PMID: 38486290 PMCID: PMC10938826 DOI: 10.1186/s13027-024-00570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is prevalent in southern China. EBV DNA is the most useful biomarker in NPC. However, the value of EBV DNA in posttreatment NPC patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear. METHODS Sixty-four eligible NPC patients were enrolled between December 2022 and February 2023. Patients who met the following criteria were included: had non-metastatic NPC, completed radical treatment, were first firstly infected with SARS-CoV-2 and their EBV DNA changed from undetectable to detectable. RESULTS At the end of follow-up, 81.25% (52/64) of patients were confirmed not to relapse with undetectable EBV DNA (no-relapse). In addition, 18.75% (12/64) of patients experienced relapse with consistent detection of EBV DNA (yes-relapse). For all 64 patients, the average time from diagnosis of coronavirus disease 2019 (COVID-19) to detection of detectable EBV DNA was 35.41 days (2 to 139 days). For 52 no-relapse patients, the average time from EBV DNA changing from detectable to undetectable was 63.12 days (6 to 147 days). The levels of EBV DNA were greater in yes-relapse patients than that in no-relapse patients, and the average of EBV DNA levels were 1216 copies/ml and 53.18 copies/ml, respectively. Using 62.3 copies/mL as the threshold, the area under the curve for EBV DNA was 0.88 for distinguishing yes-relapse patients from no-relapse patients. The sensitivity and specificity were 81.97% (95% CI 0.71-0.95) and 86.67% (95% CI 0.70-0.95), respectively. CONCLUSION For NPC patients infected with SARS-CoV-2, EBV DNA alone is insufficient for monitoring relapse after radical therapy. Long-term follow-up and underlying mechanistic investigations of EBV DNA changes are urgently needed.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Interdisciplinary College of Medicine and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Meifang Li
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yingying Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yu Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Hanchuan Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bijuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xia Yan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yun Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
10
|
Qu S, Gong M, Deng Y, Xiang Y, Ye D. Research progress and application of single-cell sequencing in head and neck malignant tumors. Cancer Gene Ther 2024; 31:18-27. [PMID: 37968342 PMCID: PMC10794142 DOI: 10.1038/s41417-023-00691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Single-cell sequencing (SCS) is a technology that separates thousands of cells from the organism and accurately analyzes the genetic material expressed in each cell using high-throughput sequencing technology. Unlike the traditional bulk sequencing approach, which can only provide the average value of a cell population and cannot obtain specific single-cell data, single-cell sequencing can identify the gene sequence and expression changes of a single cell, and reflects the differences between genetic material and protein between cells, and ultimately the role played by the tumor microenvironment. single-cell sequencing can further explore the pathogenesis of head and neck malignancies from the single-cell biological level and provides a theoretical basis for the clinical diagnosis and treatment of head and neck malignancies. This article will systematically introduce the latest progress and application of single-cell sequencing in malignant head and neck tumors.
Collapse
Affiliation(s)
- Siyuan Qu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
11
|
Zhou Z, Zheng K, Zhou S, Yang Y, Chen J, Jin X. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl) 2023; 101:1543-1565. [PMID: 37796337 DOI: 10.1007/s00109-023-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common squamous cell carcinomas of the head and neck, and Epstein-Barr virus (EBV) infection is one of the pathogenic factors involved in the oncogenetic development and progression of NPC. E3 ligases, which are key members of the ubiquitin proteasome system (UPS), specifically recognize various oncogenic factors and tumor suppressors and contribute to determining their fate through ubiquitination. Several studies have demonstrated that E3 ligases are aberrantly expressed and mutated in NPC and that these changes are closely associated with the occurrence and progression of NPC. Herein, we aim to thoroughly review the specific action mechanisms by which E3 ligases participate in NPC signaling pathways and discuss their functional relationship with EBV. Moreover, we describe the current progress in and limitations for targeted therapies against E3 ligases in NPC. KEY MESSAGES: • E3 ubiquitin ligases, as members of the UPS system, determine the fate of their substrates and may act either as oncogenic or anti-tumorigenic factors in NPC. • Mutations or dysregulated expression of E3 ubiquitin ligases is closely related to the occurrence, development, and therapeutic sensitivity of NPC, as they play important roles in several signaling pathways affected by EBV infection. • As promising therapeutic targets, E3 ligases may open new avenues for treatment and for improving the prognosis of NPC patients.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Shao Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Youxiong Yang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315199, China.
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
12
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Wu Y, Zhang X, Liu C, Li Z, Wen Y, Zheng R, Xu C, Tian J, Wei L, Wang J, Yan Q, Zheng X, Ma J. Epstein-Barr virus microRNA miR-BART2-5p accelerates nasopharyngeal carcinoma metastasis by suppressing RNase Ⅲ endonuclease DICER1. J Biol Chem 2023; 299:105082. [PMID: 37495108 PMCID: PMC10470218 DOI: 10.1016/j.jbc.2023.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
The development and progression of nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. NPC is usually asymptomatic until it spreads to other sites, and more than 70% of cases are classified as locally advanced disease at diagnosis. EBV-positive nasopharyngeal cancer tissues express only limited viral latent proteins, but express high levels of the EBV-encoded BamHI-A rightward transcript (BART) miRNA molecules. Here, we report that EBV-miRNA-BART2-5p (BART2-5p) promotes NPC cell invasion and metastasis in vivo and in vitro but has no effect on NPC cell proliferation and apoptosis. In addition, BART2-5p altered the mRNA and miRNA expression profiles of NPC cells. The development of human tumors has been reported to be associated with altered miRNAs expression, and overall miRNAs expression is reduced in many types of tumors. We found that BART2-5p downregulated the expression of several miRNAs that could exert oncogenic functions. Mechanistically, BART2-5p directly targets the RNase III endonuclease DICER1, inhibiting its function of cleaving double-stranded stem-loop RNA into short double-stranded RNA, which in turn causes altered expression of a series of key epithelial-mesenchymal transition molecules, and reverting DICER1 expression can rescue this phenotype. Furthermore, analysis from clinical samples showed a negative correlation between BART2-5p and DICER1 expression. According to our study, high expression of BART2-5p in tissues and plasma of patients with NPC is associated with poor prognosis. Our results suggest that, BART2-5p can accelerate NPC metastasis through modulating miRNA profiles which are mediated by DICER1, implying a novel role of EBV miRNAs in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Yangge Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Can Liu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Yuqing Wen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Chenxiao Xu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Junrui Tian
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Lingyu Wei
- Department of Pathology and Immunology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Jia Wang
- Department of Pathology and Immunology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
14
|
Zhong Q, Nie Q, Wu R, Huang Y. Exosomal miR-18a-5p promotes EMT and metastasis of NPC cells via targeting BTG3 and activating the Wnt/β-catenin signaling pathway. Cell Cycle 2023; 22:1544-1562. [PMID: 37287276 PMCID: PMC10361138 DOI: 10.1080/15384101.2023.2216508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
This study investigated the underlying mechanism of miR-18a-5p regulating the proliferation, invasion, and metastasis of nasopharyngeal carcinoma (NPC) cells in vitro and in vivo to indicate the pathogenesis of NPC. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was utilized to determine miR-18a-5p expression level in NPC tissues and cell lines. Besides, 2,5-diphenyl-2 H-tetrazolium bromide (MTT) and colony formation assays were employed to detect the effect of miR-18a-5p expression level on NPC cell proliferation. Wound healing and Transwell assays were utilized to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins (Vimentin, N-cadherin, and E-cadherin) were identified by Western blot assay. After collecting exosomes from CNE-2 cells, it was found that exosomal miR-18a-5p secreted from NPC cells promoted NPC cell proliferation, migration, invasion, and EMT, whereas inhibition of miR-18a-5p expression level led to the opposite results. The dual-luciferase reporter assay showed that BTG anti-proliferation factor 3 (BTG3) was the target gene of miR-18a-5p, and BTG3 could overturn the effect of miR-18a-5p on NPC cells. Xenograft mouse model of NPC nude mice showed that miR-18a-5p promoted NPC growth and metastasis in vivo. This study revealed that exosomal miR-18a-5p derived from NPC cells promoted angiogenesis via targeting BTG3 and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiong Zhong
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Qihong Nie
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Renrui Wu
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Yun Huang
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
15
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Zhang Y, Shi D, Zhang X, Wu S, Liu W, Luo B. Downregulation of MUS81 expression inhibits cell migration and maintains EBV latent infection through miR-BART9-5p in EBV-associated gastric cancer. J Med Virol 2023; 95:e28725. [PMID: 37185865 DOI: 10.1002/jmv.28725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Epstein-Barr virus (EBV) infection is associated with the occurrence and development of gastric cancer (GC). Methyl methanesulfonate and ultraviolet-sensitive gene 81 (MUS81) is the catalytic component of a structure-specific endonuclease and plays an important role in chromosomal stability. However, the link between EBV infection and MUS81 remains unclear. In the present study, we found that MUS81 expression was much lower in EBV-associated GC cells than in EBV-negative GC. MUS81 acts as an oncogene in GC by inducing the cell migration and proliferation. Western blot and luciferase reporter assays revealed that miR-BART9-5p directly targeted MUS81 and downregulated its expression. Additionally, overexpression of MUS81 in EBV-positive GC cells inhibited the expression of EBV nuclear antigen 1 (EBNA1). EBNA1 is critical for the pathogenesis of EBV-associated tumors and the maintenance of a stable copy number of the viral genomes. Altogether, these results indicated that the lowering MUS81 expression might be a mechanism by EBV to maintain its latent infection.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Duo Shi
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
| | - Xing Zhang
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
| | - Shuo Wu
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
- Laboratory Medicine Center of Qingdao, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Wen Liu
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023; 14:1116143. [PMID: 36846758 PMCID: PMC9947861 DOI: 10.3389/fmicb.2023.1116143] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics Sdn Bhd, Pusat Perdagangan Bandar, Persiaran Jalil 1, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
18
|
Pathogenesis and Diagnostic Significance of EBV-miR-BARTs in Nasopharyngeal Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4479905. [PMID: 36225172 PMCID: PMC9550407 DOI: 10.1155/2022/4479905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Objective. Examining the role of EBV-miR-BARTs in nasopharyngeal cancer etiology and diagnosis. Method. As the subjects of this study, nasopharyngeal cancer cell lines were chosen and then randomly assigned to one of four groups: the control group, EBV-miR-BART5-3p NC, EBV-miR-BART5-3p mimics, and EBV-miR-BART5-3p inhibitor groups. Utilizing reverse transcription polymerase chain reaction, we determined the levels of gene expression in nasopharyngeal cancer cells that had been treated with EBV-miR-BART5-3p (RT-PCR). The MTT, Transwell, and scratch tests were used to determine the degree to which cells underwent apoptosis, invasion, and migration. The Western blotting method was used in order to examine the protein expression. Result. Compared with normal nasopharyngeal cells,
showed that nasopharyngeal cancer cells had greater EBV-miR-BART5-3p expressions and proliferation rates in the control, EBV-miR-BART5-3p NC, and EBV-miR-BART5-3p No statistically significant differences were seen between the mimic groups (
); compared with the control group, the proliferation rate of the EBV-miR-BART5-3p inhibitor group was lower with
. At a significance threshold of
, there was no difference in the rates of apoptosis between the control group and the EBV-miR- BART5-3p NC group. Comparing the control group to the EBV-miR-BART5-3p mimics group and the EBV-miR-BART5-3p inhibitors group revealed that the rate of apoptosis was dramatically enhanced in the EBV-miR-BART5-3p inhibitors group but significantly decreased in the control group (
). When comparing the control group to the EBV-miR-BART5-3p NC group, there was no statistically significant change in the total number of invasive cells (
). When comparing the EBV-miR-BART5-3p mimics group to the control group, we found a statistically significant increase in the former and a decrease in the latter (
). The migration rates of the control group, the EBV-miR-BART5-3p NC group, and the EBV-miR-BART5-3p mimics group did not vary from one another in a way that was statistically significant (
). When compared to the control group, the migration rate was considerably (P 0.05) lower in the EBV-miR-BART5-3p inhibitor group. There were no discernible changes identified (
) in the levels of Bcl-2 protein expression in the control group, the EBV-miR-BART5-3p NC group, and the EBV-miR-BART5-3p mimic group in a research that compared these three groups. Protein levels of BCL-2 were significantly decreased (
) in the EBV-miR-BART5-3p inhibitor group, in comparison to the control group. When comparing the control and EBV- miR-BART5-3p NC groups, we found no statistically significant differences in Bax and Caspase-3 protein expression levels (
). The protein expressions of Bax and Caspase-3 were statistically significantly greater in the EBV-miR-BART5-3p contrast between the inhibitor and control groups. When comparing the protein expressions of MMP-2 and MMP-9 between the control group, the EBV-miR-BART5-3p NC group, and the EBV-miR-BART5-3p mimics group, there was no statistically significant change (
). Protein levels of MMP-2 and MMP-9 were inhibited by EBV-miR-BART5-3p to a greater extent (
) in the experimental group compared to the control group. Conclusion. The understanding that inhibiting expression of EBV-miR-BART5-3p might reduce the risk of developing nasopharyngeal cancer may help direct clinical treatment for the condition.
Collapse
|
19
|
Viral Encoded miRNAs in Tumorigenesis: Theranostic Opportunities in Precision Oncology. Microorganisms 2022; 10:microorganisms10071448. [PMID: 35889167 PMCID: PMC9321719 DOI: 10.3390/microorganisms10071448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
About 15% of all human cancers have a viral etiology. Although progress has been made, understanding the viral oncogenesis and associated molecular mechanisms remain complex. The discovery of cellular miRNAs has led to major breakthroughs. Interestingly, viruses have also been discovered to encode their own miRNAs. These viral, small, non-coding miRNAs are also known as viral-miRNAs (v-miRNAs). Although the function of v-miRNAs largely remains to be elucidated, their role in tumorigenesis cannot be ignored. V-miRNAs have also been shown to exploit the cellular machinery to benefit viral replication and survival. Although the discovery of Hepatitis C virus (HCV), and its viral miRNAs, is a work in progress, the existence of HPV-, EBV-, HBV-, MCPyV- and KSHV-encoded miRNA has been documented. V-miRNAs have been shown to target host factors to advance tumorigenesis, evade and suppress the immune system, and deregulate both the cell cycle and the apoptotic machinery. Although the exact mechanisms of v-miRNAs-induced tumorigenesis are still unclear, v-miRNAs are active role-players in tumorigenesis, viral latency and cell transformation. Furthermore, v-miRNAs can function as posttranscriptional gene regulators of both viral and host genes. Thus, it has been proposed that v-miRNAs may serve as diagnostic biomarkers and therapeutic targets for cancers with a viral etiology. Although significant challenges exist in their clinical application, emerging reports demonstrate their potent role in precision medicine. This review will focus on the roles of HPV-, HCV-, EBV-, HBV-, MCPyV-, and KSHV-produced v-miRNAs in tumorigenesis, as effectors in immune evasion, as diagnostic biomarkers and as novel anti-cancer therapeutic targets. Finally, it will discuss the challenges and opportunities associated with v-miRNAs theranostics in precision oncology.
Collapse
|
20
|
Yang T, You C, Meng S, Lai Z, Ai W, Zhang J. EBV Infection and Its Regulated Metabolic Reprogramming in Nasopharyngeal Tumorigenesis. Front Cell Infect Microbiol 2022; 12:935205. [PMID: 35846746 PMCID: PMC9283984 DOI: 10.3389/fcimb.2022.935205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Viral oncogenes may drive cellular metabolic reprogramming to modulate the normal epithelia cell malignant transformation. Understanding the viral oncogene-mediated signaling transduction dysregulation that involves in metabolic reprogramming may provide new therapeutic targets for virus-associated cancer treatment. Latent EBV infection and expression of viral oncogenes, including latent membrane proteins 1 and 2 (LMP1/2), and EBV-encoded BamH I-A rightward transcripts (BART) microRNAs (miR-BARTs), have been demonstrated to play fundamental roles in altering host cell metabolism to support nasopharyngeal carcinoma (NPC) pathogenesis. Yet, how do EBV infection and its encoded oncogenes facilitated the metabolic shifting and their roles in NPC carcinogenesis remains unclear. In this review, we will focus on delineating how EBV infection and its encoded oncoproteins altered the metabolic reprograming of infected cells to support their malignances. Furthermore, based on the understanding of the host's metabolic signaling alterations induced by EBV, we will provide a new perspective on the interplay between EBV infection and these metabolic pathways and offering a potential therapeutic intervention strategy in the treatment of EBV-associated malignant diseases.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Chanping You
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuhui Meng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
21
|
Lin C, Li M, Lin N, Zong J, Pan J, Ye Y. RNF38 suppress growth and metastasis via ubiquitination of ACTN4 in nasopharyngeal carcinoma. BMC Cancer 2022; 22:549. [PMID: 35568845 PMCID: PMC9107765 DOI: 10.1186/s12885-022-09641-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background Accumulated evidence suggests that RING finger proteins (RNFs) are involved in the carcinogenesis of cancers. However, RNF38, a member of the RNF protein family, has not been studied in nasopharyngeal carcinoma (NPC). Methods RNF38 expression was analyzed by RT-PCR, Western blotting and Immunohistochemistry. Biological functions of RNF38 were evaluated by cell growth, colony formation, apoptosis, migration and invasion assays in vitro. Xenograft growth and lung metastasis models were conducted to investigate the effect of RNF38 in vivo. Liquid chromatography coupled with tandem mass spectrometry, co-immunoprecipitation, and CHX assay were implemented to detect the interaction among RNF38 and ACTN4. Results RNF38 was significantly downregulated in NPC cells and tissues. Immunohistochemistry implied that loss of RNF38 was an independent prognostic factor for poor outcomes of NPC patients. Gain- and loss-of-function experiments showed that RNF38 inhibited proliferation and metastasis in NPC in vitro and in vivo. Upregulation of RNF38 promoted apoptosis of NPC cells to etoposide but not cisplatin. ACTN4 was upregulated in NPC and negatively correlated with RNF38. Mechanistic investigations suggested that RNF38 inactivates the NF-𝛋B and ERK1/2 signaling pathways by inducing ubiquitination and degradation of ACTN4. RNF38 suppress the development of NPC by interacting with ACTN4. Conclusions RNF38 plays a potential cancer suppressor gene role in NPC tumorigenesis and is a prognostic biomarker in NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09641-x.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, China.
| | - Meifang Li
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Na Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, 350014, China. .,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| |
Collapse
|
22
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Jasinski-Bergner S, Blümke J, Bauer M, Skiebe SL, Mandelboim O, Wickenhauser C, Seliger B. Novel approach to identify putative Epstein-Barr-virus microRNAs regulating host cell genes with relevance in tumor biology and immunology. Oncoimmunology 2022; 11:2070338. [PMID: 35529676 PMCID: PMC9067544 DOI: 10.1080/2162402x.2022.2070338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022] Open
Abstract
The human Epstein-Barr virus is associated with several human solid and hematopoietic malignancies. However, the underlying molecular mechanisms including virus-encoded microRNAs (miRs), which lead to the malignant transformation of infected cells and immune evasion of EBV-associated tumors, have not yet been characterized. The expression levels of numerous known EBV-specific miRs and their suitability as diagnostic and/or prognostic markers were determined in different human EBV-positive tissues followed by in silico analyses to identify putative EBV-miR-regulated target genes, thereby offering a suitable screening strategy to overcome the limited available data sets of EBV-miRs and their targeted gene networks. Analysis of microarray data sets from healthy human B cells and malignant-transformed EBV-positive B cells of patients with Burkitt's lymphoma revealed statistically significant (p < 0.05) deregulated genes with known functions in oncogenic properties, immune escape and anti-tumoral immune responses. Alignments of in vivo and in silico data resulted in the prediction of putative candidate EBV-miRs and their target genes. Thus, a combinatorial approach of bioinformatics, transcriptomics and in situ expression analyses is a promising tool for the identification of EBV-miRs and their potential targets as well as their eligibility as markers for EBV detection in different EBV-associated human tissue.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Juliane Blümke
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marcus Bauer
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Saskia Luise Skiebe
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, En Kerem, P.O. Box 12271, Jerusalem91120, Israel
| | - Claudia Wickenhauser
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
24
|
Abusalah MAH, Irekeola AA, Hanim Shueb R, Jarrar M, Yean Yean C. Prognostic Epstein-Barr Virus (EBV) miRNA biomarkers for survival outcome in EBV-associated epithelial malignancies: Systematic review and meta-analysis. PLoS One 2022; 17:e0266893. [PMID: 35436288 PMCID: PMC9015129 DOI: 10.1371/journal.pone.0266893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background
The EBV-associated epithelial tumours consist 80% of all EBV-associated cancer, where the nasopharyngeal cancer (NPC) and EBV-associated gastric carcinoma (EBVaGC) are considered as the most frequent EBV-associated epithelial tumours. It has been shown that the BART-encoded miRNAs are abundantly expressed in EBV-associated epithelial tumours, hence, these miRNAs may serve as diagnostic and prognostic biomarkers for EBV-associated epithelial tumours. Therefore, the purpose of this systematic review and meta-analysis is to assess these EBV miRNAs as prognostic biomarkers for NPC and GC.
Method
This systematic review was developed based on PRISMA guidelines and utilizing PubMed, Web of Science, Scopus, Cochrane, and Google scholar databases. The retrieved articles were thoroughly screened in accordance with the selection criteria. The hazard ratio (HR) and 95% confidence interval (CI) for patient survival outcomes were used to evaluate EBV miRNA expression levels. To assess the risk of bias, funnel plot symmetry and Egger’s bias test were employed.
Result
Eleven studies met the selection criteria for inclusion, and four were included in the meta-analysis. Most of the articles considered in this study were from China, with one study from South Korea. The overall pooled effect size estimation (HR) for upregulated EBV miRNAs was 3.168 (95% CI: 2.020–4.969), demonstrating that upregulated EBV miRNA expression enhanced the mortality risk in NPC and GC patients by three times.
Conclusion
To the best of our knowledge, this is the first meta-analysis that investigates the significance of EBV miRNAs as prognostic biomarkers in NPC and GC patients. The pooled effect estimates of HR of the various studies revealed that higher EBV miRNA expression in NPC and GC may result in a worse survival outcome. To assess the clinical significance of EBV miRNAs as prognostic biomarkers, larger-scale prospective studies are needed.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti SainsMalaysia, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti SainsMalaysia, Kelantan, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa, Kwara State, Nigeria
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti SainsMalaysia, Kelantan, Malaysia
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti SainsMalaysia, Kelantan, Malaysia
- * E-mail: ,
| |
Collapse
|
25
|
Lei Y, Luo W, Gong Q, Luo L, Jing W. Long Non-Coding RNA Cancer Susceptibility Candidate 9 Regulates the Malignant Biological Behavior of Nasopharyngeal Carcinoma Cells by Targeting miR-497-5p/Wnt3a/β-catenin Signaling Pathway. Front Oncol 2022; 12:807052. [PMID: 35419295 PMCID: PMC8995468 DOI: 10.3389/fonc.2022.807052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a major kind of head and neck epithelial carcinoma. Increasing evidences reveal that long noncoding RNAs are considered as vital regulators in tumorigenesis and progression. Although previous studies have found that cancer susceptibility candidate 9 (CASC9) highly expresses in NPC, the underlying mechanisms need to be further studied. In this study, we found that CASC9 was overexpressed and associated with worse prognosis in NPC. CASC9 knockdown significantly inhibited the cell proliferation, migration and invasion in vitro and enhanced the sensitivity of tumor cells to cisplatin and paclitaxel. Mechanism research confirmed CASC9 regulated the malignant biological behavior of nasopharyngeal carcinoma cells by targeting miR-497-5p/Wnt3a/β-catenin signaling pathway. The present study might provide a novel mechanism for tumorigenesis and progression of NPC and contribute to the development of an effective molecular target therapy.
Collapse
Affiliation(s)
- Yue Lei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenlong Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyue Gong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wuyang Jing
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Zhang JY, Du Y, Gong LP, Shao YT, Wen JY, Sun LP, He D, Guo JR, Chen JN, Shao CK. EBV-Induced CXCL8 Upregulation Promotes Vasculogenic Mimicry in Gastric Carcinoma via NF-κB Signaling. Front Cell Infect Microbiol 2022; 12:780416. [PMID: 35321317 PMCID: PMC8936189 DOI: 10.3389/fcimb.2022.780416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022] Open
Abstract
Epstein–Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a distinct entity with a conspicuous tumor microenvironment compared with EBV-negative gastric carcinoma. However, the exact role of EBV in gastric carcinogenesis remains elusive. In the present study, we found that EBV upregulated CXCL8 expression, and CXCL8 significantly promoted vasculogenic mimicry (VM) formation of gastric carcinoma (GC) cells. In accordance with these observations, overexpression of CXCL8 increased cell proliferation and migration of AGS and BGC823 cells, while knockdown of CXCL8 with siRNA inhibited cell proliferation and migration of AGS-EBV cells. In addition, activation of NF-κB signaling was involved in VM formation induced by CXCL8, which was blocked by NF-κB inhibitors BAY 11-7082 and BMS345541. Furthermore, EBV-encoded lncRNA RPMS1 activated the NF-κB signaling cascade, which is responsible for EBV-induced VM formation. Both xenografts and clinical samples of EBVaGC exhibit VM histologically, which are correlated with CXCL8 overexpression. Finally, CXCL8 is positively correlated with overall survival in GC patients. In conclusion, EBV-upregulated CXCL8 expression promotes VM formation in GC via NF-κB signaling, and CXCL8 might serve as a novel anti-tumor target for EBVaGC.
Collapse
Affiliation(s)
- Jing-yue Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi-ting Shao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jing-yun Wen
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-ping Sun
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin-rui Guo
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jian-ning Chen, ; Chun-kui Shao,
| | - Chun-kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jian-ning Chen, ; Chun-kui Shao,
| |
Collapse
|
27
|
Chen X, Xu W, Ma Z, Zhu J, Hu J, Li X, Fu S. TTN-AS1 accelerates the growth and migration of nasopharyngeal carcinoma cells via targeting miR-876-5p/NETO2. Mol Ther Oncolytics 2022; 24:535-546. [PMID: 35229031 PMCID: PMC8851086 DOI: 10.1016/j.omto.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most predominant cancers occurring in China with high morbidity. Lately, large quantities of long non-coding RNAs (lncRNAs) have been highlighted to regulate the biological activities in multiple tumors, including NPC. Our study centered on whether TTN-AS1 was involved in NPC and how it modulated the progression of NPC. Here, qRT-PCR data uncovered that TTN-AS1 expression was conspicuously high in NPC cells. Based on the results of functional assays, TTN-AS1 silence hampered the proliferative, migratory, and invasive abilities but stimulated the apoptotic capability of NPC cells. After a series of mechanism assays, TTN-AS1 was found to competitively bind with miR-876-5p and recruit UPF1 to enhance NETO2 expression. In addition, TTN-AS1 could be transcriptionally activated by YY1 in NPC cells. It was also found that miR-876-5p overexpression or NETO2 downregulation had inhibitory effects on cell proliferation, migration, and invasion in NPC. Moreover, NETO2 upregulation could restore the suppressive impacts of TTN-AS1 depletion on NPC cell and tumor growth. In conclusion, YY1-activated TTN-AS1 interacted with both miR-876-5p and UPF1 to upregulate NETO2, thus strengthening NPC cell malignant behaviors, which might provide more useful information for people to develop effective NPC treatments.
Collapse
Affiliation(s)
- Xinping Chen
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Weihua Xu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Zhichao Ma
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Juan Zhu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Junjie Hu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Xiaojuan Li
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Shengmiao Fu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
- Corresponding author Shengmiao Fu, Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China.
| |
Collapse
|
28
|
Wang R, Fan H, Sun M, Lv Z, Yi W. Roles of BMI1 in the Initiation, Progression, and Treatment of Hepatocellular Carcinoma. Technol Cancer Res Treat 2022; 21:15330338211070689. [PMID: 35072573 PMCID: PMC8793120 DOI: 10.1177/15330338211070689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver cancer has high rates of morbidity and mortality, and its treatment is a global health challenge. Hepatocellular carcinoma (HCC) accounts for 90% of all primary liver cancer cases. B-lymphoma Mo-MLV insertion region 1 (BMI1) has been identified as a proto-oncogene, which contributes to the initiation and progression of many malignant tumors. BMI1 expression is upregulated in HCC, and it influences the occurrence and development of HCC by various mechanisms, such as the INK4a/ARF locus, NF-κB signaling pathway, and PTEN/PI3K/AKT signaling pathway. In addition, the expression of BMI1 is related to prognosis and recurrence of HCC. Hence, there is clear evidence that BMI1 is a novel and valid therapeutic target for HCC. Accordingly, the development of therapeutic strategies targeting BMI1 has been a focus of recent research, providing new directions for HCC treatment. This review summarizes the role of BMI1 in the occurrence and treatment of HCC, which will provide a basis for using BMI1 as a potential target for the development of therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Ru Wang
- 278245Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hengwei Fan
- 535219The Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
| | - Ming Sun
- 278245Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongwei Lv
- 278245Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wanwan Yi
- 278245Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
The Emerging Role of Non-Coding RNAs in the Regulation of Virus Replication and Resultant Cellular Pathologies. Int J Mol Sci 2022; 23:ijms23020815. [PMID: 35055001 PMCID: PMC8775676 DOI: 10.3390/ijms23020815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding RNAs, particularly lncRNAs and miRNAs, have recently been shown to regulate different steps in viral infections and induction of immune responses against viruses. Expressions of several host and viral lncRNAs have been found to be altered during viral infection. These lncRNAs can exert antiviral function via inhibition of viral infection or stimulation of antiviral immune response. Some other lncRNAs can promote viral replication or suppress antiviral responses. The current review summarizes the interaction between ncRNAs and herpes simplex virus, cytomegalovirus, and Epstein–Barr infections. The data presented in this review helps identify viral-related regulators and proposes novel strategies for the prevention and treatment of viral infection.
Collapse
|
30
|
Fierti AO, Yakass MB, Okertchiri EA, Adadey SM, Quaye O. The Role of Epstein-Barr Virus in Modulating Key Tumor Suppressor Genes in Associated Malignancies: Epigenetics, Transcriptional, and Post-Translational Modifications. Biomolecules 2022; 12:biom12010127. [PMID: 35053275 PMCID: PMC8773690 DOI: 10.3390/biom12010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.
Collapse
|
31
|
Lin C, Lin K, Zhang B, Su Y, Guo Q, Lu T, Xu Y, Lin S, Zong J, Pan J. OUP accepted manuscript. Oncologist 2022; 27:e340-e349. [PMID: 35380720 PMCID: PMC8982379 DOI: 10.1093/oncolo/oyac024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Background Nasopharyngeal carcinoma is an Epstein-Barr virus (EBV)-associated tumor that is highly common in southern China. Our previous sequencing data demonstrated that the EBV-encoded microRNA BART8-3p was most upregulated in nasopharyngeal carcinoma (NPC) and was closely associated with the metastasis of NPC. However, the values of plasma BART8-3p in NPC patients have not yet been well characterized. Material and Methods We quantified plasma BART8-3p expression by quantitative real-time PCR in 205 newly diagnosed NPC patients. Kaplan-Meier analysis was used to compare overall survival (OS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRRFS) between the groups. Results Plasma pretreatment BART8-3p was highly expressed in NPC patients compared with healthy controls. Pretreatment BART8-3p yielded a 92% predictive value for detecting NPC. Importantly, BART8-3p decreased dramatically after therapy relative to pretreatment levels. High levels of pretreatment or post-treatment BART8-3p were associated with worse OS, DMFS, and LRRFS. Multivariate analysis showed that high pretreatment or post-treatment BART8-3p was an independent unfavorable prognostic marker for OS (HR 3.82, 95% CI 1.77-8.24, P = .001 or HR 2.74, 95% CI 1.27-5.91, P = .010), DMFS (HR 2.82, 95% CI 1.36-5.85, P = .005 or HR 3.27, 95% CI 1.57-6.81, P = .002), and LRRFS (HR 1.94, 95% CI 1.12-3.35, P = .018 or HR 2.03, 95% CI 1.14-3.62, P = .016) in NPC. Subgroup analysis revealed that for patients with locally advanced NPC with high levels of pretreatment BART8-3p (n = 58), more cycles of chemotherapy (≥6 cycles) tended to prolong OS (P = .070). Over 50% (6/11) patients with high levels of post-treatment BART8-3p presented distant metastasis. Conclusion Plasma BART8-3p is a promising biomarker for the detection and prognosis of NPC.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- The School of Clinical Medicine and Fujian Medical University, Fuzhou, People’s Republic of China
| | - Keyu Lin
- Department of Radiation Biology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Su
- Department of Radiation Biology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Tianzhu Lu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Shaojun Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- Corresponding author: Jianji Pan and Jingfeng Zong, Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital No. 420 Fuma Road, Fuzhou 350014, People’s Republic of China. ;
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, People’s Republic of China
- Corresponding author: Jianji Pan and Jingfeng Zong, Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital No. 420 Fuma Road, Fuzhou 350014, People’s Republic of China. ;
| |
Collapse
|
32
|
Wang X, Chen P. Aberrant miR-362-3p is Associated with EBV-Infection and Prognosis in Nasopharyngeal Carcinoma and Involved in Tumor Progression by Targeting JMJD2A. Onco Targets Ther 2022; 15:121-131. [PMID: 35115787 PMCID: PMC8806052 DOI: 10.2147/ott.s325100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background Many microRNAs (miRNAs) are involved in the progression of nasopharyngeal carcinoma (NPC). This study aimed to examine the expression and clinical significance of microRNA (miR)-362-3p in NPC, especially in Epstein–Barr virus (EBV)-positive patients, and explore its potential mechanism in NPC progression. Methods miR-362-3p levels and Jumonji C domain 2A (JMJD2A) mRNA levels were detected by quantitative real-time PCR. The diagnostic value of miR-362-3p to distinguish NPC patients and EBV-positive cases was evaluated using receiver operating characteristic analysis. The association of miR-362-3p with NPC survival was assessed by Kaplan–Meier curves and Cox regression analysis. NPC cell proliferation, migration and invasion were determined using Cell Counting Kit-8 and Transwell assays, respectively. A luciferase reporter assay was used to confirm the interaction between miR-362-3p and JMJD2A. Results miR-362-3p expression was decreased in the serum and tissues of NPC patients and had diagnostic value for screening NPC. According to the survival follow-up, NPC survivors had significantly higher miR-362-3p, and miR-326-3p was demonstrated as an independent prognostic indicator of NPC. Interestingly, it is found that EBV-positive NPC patients and cells had significantly lower miR-362-3p compared with EBV-negative NPC patients and cells and had certain ability to distinguish EBV-positive patients. Moreover, miR-362-3p inhibited the proliferation, migration and invasion of both EBV-positive and -negative NPC cells, and these effects might be mediated by targeting JMJD2A. Conclusion Abnormal miR-362-3p expression is related to EBV-infection and prognosis in NPC patients and may be involved in NPC progression by targeting JMJD2A.
Collapse
Affiliation(s)
- Xiangyun Wang
- Department of Otorhinolaryngology, Dongying People’s Hospital, Dongying, Shandong, 257091, People’s Republic of China
- Correspondence: Xiangyun Wang, Department of Otorhinolaryngology, Dongying People’s Hospital, No. 317 Nanyi Road, Dongying, Shandong, 257091, People’s Republic of China, Tel/Fax + 86-0546-8901191, Email
| | - Ping Chen
- Department of Otorhinolaryngology, Dongying People’s Hospital, Dongying, Shandong, 257091, People’s Republic of China
| |
Collapse
|
33
|
Heawchaiyaphum C, Pientong C, Yoshiyama H, Iizasa H, Panthong W, Ekalaksananan T. General Features and Novel Gene Signatures That Identify Epstein-Barr Virus-Associated Epithelial Cancers. Cancers (Basel) 2021; 14:cancers14010031. [PMID: 35008199 PMCID: PMC8750470 DOI: 10.3390/cancers14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with various types of human malignancies, including nasopharyngeal carcinoma (NPC), EBV-associated gastric carcinoma (EBVaGC), and oral squamous cell carcinoma (OSCC). The present study aimed to identify gene signatures and common signaling pathways that can be used to predict the prognosis of EBV-associated epithelial cancers (EBVaCAs) by performing an integrated bioinformatics analysis of cell lines and tumor tissues. We identified 12 differentially expressed genes (DEGs) in the EBVaCA cell lines. Among them, only four DEGs, including BAMBI, SLC26A9, SGPP2, and TMC8, were significantly upregulated. However, SLC26A9 and TMC8, but not BAMBI and SGPP2, were significantly upregulated in EBV-positive tumor tissues compared to EBV-negative tumor tissues. Next, we identified IL6/JAK/STAT3 and TNF-α/NF-κB signaling pathways as common hallmarks of EBVaCAs. The expression of key genes related to the two hallmarks was upregulated in both EBV-infected cell lines and EBV-positive tumor tissues. These results suggest that SLC26A9 and TMC8 might be gene signatures that can effectively predict the prognosis of EBVaCAs and provide new insights into the molecular mechanisms of EBV-driven epithelial cancers.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (C.P.); (W.P.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (C.P.); (W.P.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.Y.); (H.I.)
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.Y.); (H.I.)
| | - Watcharapong Panthong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (C.P.); (W.P.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (C.P.); (W.P.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-4336-3808; Fax:+66-4334-8385
| |
Collapse
|
34
|
Lin X, Wang S, Lin K, Zong J, Zheng Q, Su Y, Huang T. Competitive Endogenous RNA Landscape in Epstein-Barr Virus Associated Nasopharyngeal Carcinoma. Front Cell Dev Biol 2021; 9:782473. [PMID: 34805186 PMCID: PMC8600047 DOI: 10.3389/fcell.2021.782473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Non-coding RNAs have been shown to play important regulatory roles, notably in cancer development. In this study, we investigated the role of microRNAs and circular RNAs in Nasopharyngeal Carcinoma (NPC) by constructing a circRNA-miRNA-mRNA co-expression network and performing differential expression analysis on mRNAs, miRNAs, and circRNAs. Specifically, the Epstein-Barr virus (EBV) infection has been found to be an important risk factor for NPC, and potential pathological differences may exist for EBV+ and EBV- subtypes of NPC. By comparing the expression profile of non-cancerous immortalized nasopharyngeal epithelial cell line and NPC cell lines, we identified differentially expressed coding and non-coding RNAs across three groups of comparison: cancer vs. non-cancer, EBV+ vs. EBV- NPC, and metastatic vs. non-metastatic NPC. We constructed a ceRNA network composed of mRNAs, miRNAs, and circRNAs, leveraging co-expression and miRNA target prediction tools. Within the network, we identified the regulatory ceRNAs of CDKN1B, ZNF302, ZNF268, and RPGR. These differentially expressed axis, along with other miRNA-circRNA pairs we identified through our analysis, helps elucidate the genetic and epigenetic changes central to NPC progression, and the differences between EBV+ and EBV- NPC.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Steven Wang
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Keyu Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Jingfeng Zong
- Department of Radiotherapy, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Qianlan Zheng
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Ying Su
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
35
|
Li XZ, Tu YJ, Zhou T, Zhang JB, Xiao RW, Yang DW, Zhang PF, You PT, Zheng XH. MicroRNA-483-5p Predicts Poor Prognosis and Promotes Cancer Metastasis by Targeting EGR3 in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:720835. [PMID: 34722264 PMCID: PMC8554159 DOI: 10.3389/fonc.2021.720835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/28/2021] [Indexed: 12/08/2022] Open
Abstract
Background MicroRNAs, as small non-coding RNAs, play an important role in tumorigenesis. MiR-483-5p was found to have a significant increase as a diagnostic biomarker of nasopharyngeal carcinoma (NPC), not only in plasma from NPC patients but also in tumor cell lines and biopsy tissues in our previous study. However, its function and mechanism in NPC are still unclear. Methods Tissue microarray including 178 primary NPC and 35 adjacent non-cancerous nasopharyngeal mucosal tissues was used to further validate the overexpression of miR-483-5p. Wound healing and invasion assays were conducted to verify its biological function. RNA sequencing (RNA-seq) and dual-luciferase reporter assay was performed to explore its target, and it was verified in fresh biopsy tissues from 23 NPC patients and 9 patients with chronic nasopharyngitis. Results MiR-483-5p was highly expressed in NPC tissues than in adjacent non-cancerous tissues. It was found to have a significant correlation with poor overall survival (OS) [hazard ratio (HR) = 2.89, 95% confidence interval (CI) = 1.00-8.35, p = 0.041] and progression-free survival (PFS) (HR = 1.95, 95%CI = 1.06-3.60, p = 0.029) of NPC patients. Silencing of its expression inhibited the migratory and invasive capacities of NPC cells in vitro. EGR3 (early growth response 3) was identified as a direct target, and inhibiting miR-483-5p expression markedly enhanced the expression of EGR3 at both the mRNA and protein levels. Besides, a significant decrease of EGR3 expression was found in fresh biopsy tissues from NPC patients, in contrast to miR-483-5p expression. Furthermore, directly decreasing the expression of EGR3 could enhance the migration and invasion of NPC cells. Conclusion The newly identified miR-483-5p/EGR3 pathway provides further insights into the development and metastasis of NPC and may provide a potential therapeutic target for NPC treatment in order to improve survival of NPC patients.
Collapse
Affiliation(s)
- Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Jun Tu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng-Tao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
36
|
Shi D, Zhang Y, Mao T, Liu D, Liu W, Luo B. MiR-BART2-3p targets Unc-51-like kinase 1 and inhibits cell autophagy and migration in Epstein-Barr virus-associated gastric cancer. Virus Res 2021; 305:198567. [PMID: 34555439 DOI: 10.1016/j.virusres.2021.198567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022]
Abstract
ULK1 (Unc-51-like kinase 1) is an evolutionarily conserved serine/threonine kinase that plays a central role in the regulation of autophagy. ULK1 is associated with prognosis for metastasis and survival in several tumors. However, its relationship with Epstein-Barr virus (EBV) has not been studied. We found that the expression of ULK1 in EBV-associated gastric cancer cells was lower than that in EBV-negative gastric cancer cells. Further, a luciferase reporter gene assay showed that miR-BART2-3p directly targets ULK1. EBV-miR-BART2-3p attenuated endogenous protein expression levels of some autophagy-related genes. MiR-BART2-3p could thus be involved in the regulation of autophagy. Most important, our research indicates that miR-BART2-3p targets ULK1, resulting in downregulation of epithelial-mesenchymal transformation (EMT) -associated marker proteins and reducing EMT and cell migration. Our study shows that modulation of ULK1 is the likely mechanism by which miR-BART2-3p participates in the regulation of autophagy and cancer cell migration.
Collapse
Affiliation(s)
- Duo Shi
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, ZiBo, 255000, China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Dandan Liu
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bing Luo
- Department of Pathogeny Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
37
|
Gao Y, Liu Z, Liu Y. Cisplatin combined with capecitabine-induced chemotherapy for local nasopharyngeal carcinoma can improve the quality of life and reduce toxic and side effects. World J Surg Oncol 2021; 19:280. [PMID: 34535176 PMCID: PMC8449458 DOI: 10.1186/s12957-021-02393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background This study was designed to probe into the effect of cisplatin combined with capecitabine on nasopharyngeal carcinoma (NPC). Methods A total of 136 NPC patients treated for the first time in our hospital from January 2016 to March 2017 were collected and divided into two groups: A and B. Among them, 66 in group A were treated with cisplatin intravenous drip, while 70 in group B were treated with capecitabine on the basis of group A. The efficacy, toxic and side effects, and quality of life of the two groups were observed. Results The short-term efficacy of group B was better than that of group A (p<0.05). The toxic and side effects of group B were lower than that of group A (p<0.05). The quality of life in group B was higher than that in group A (p<0.05). Conclusions Cisplatin combined with capecitabine-induced chemotherapy for local NPC can improve the quality of life and reduce the toxic and side effects.
Collapse
Affiliation(s)
- Ying Gao
- Department of Otorhinolaryngology, Affiliated Hospital of Yan'an University, Yan'an, 716000, Shanxi Province, China
| | - Zhe Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000, Shanxi Province, China
| | - Yiting Liu
- Department of Medical Oncology, Affiliated Hospital of Yan'an University, 43 North Street, Baota District, Yan'an, 716000, Shanxi Province, China.
| |
Collapse
|
38
|
Zhou X, Lin Y, Chen Y, Wang L, Peng X, Liao J, Zeng H, Luo W, Wu D, Cai L. Epstein-Barr virus (EBV) encoded microRNA BART8-3p drives radioresistance-associated metastasis in nasopharyngeal carcinoma. J Cell Physiol 2021; 236:6457-6471. [PMID: 33694159 DOI: 10.1002/jcp.30320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Radiotherapy plays an important role in the treatment of nasopharyngeal carcinoma (NPC), however, 20% of patients with NPC exhibit unusual radioresistance. Patients with radioresistance are at risk of recurrence, so it is imperative to explore the mechanism of resistance to radiotherapy. In the past, studies on the mechanism of radioresistance have been restricted to DNA damage and related cell cycle remodeling or apoptosis. So far, no studies have explored the relationship between radioresistance and metastasis. Through the analysis of clinical samples, we observed that the metastasis rate of recurrent NPC was much higher than that of primary patients. In vitro and in vivo experiments showed that NPC cells with acquired radioresistance exhibited a stronger ability for invasion and metastasis. Mechanistically, we found that the Epstein-Barr virus (EBV)-encoded miRNA BART8-3p was increased in patients with NPC, and its expression was positively correlated with adverse prognostic factors, such as radioresistance. Besides this, miR-BART8-3p promoted the epithelial-mesenchymal transition, invasion, and metastasis of radioresistant NPC cells by targeting and inhibiting their PAG1 host gene. These findings suggested a novel role for EBV-miR-BART8-3p in promoting NPC radioresistance-associated metastasis and highlighted its potential value as a prognostic indicator or therapeutic target.
Collapse
Affiliation(s)
- Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingzhi Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohong Peng
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrong Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hanyi Zeng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenxiao Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longmei Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Xu N, Guo R, Yang X, Li N, Yu J, Zhang P. Exosomes-mediated tumor treatment: One body plays multiple roles. Asian J Pharm Sci 2021; 17:385-400. [PMID: 35782325 PMCID: PMC9237599 DOI: 10.1016/j.ajps.2021.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are vesicles secreted by a variety of living cells, containing proteins, RNA and other components, which are nanoscale capsules commonly existed in the body. Exosomes play important roles in a variety of physiological and pathological processes by participating in material and information exchange between cells, which can play multiple roles in tumor treatment. On the one hand, exosomes can be used as carriers and biomarkers, participate in the apoptosis signaling pathway and improve chemotherapy resistance, thus playing beneficial roles in tumor treatment. On the other hand, exosomes play unfavorable roles in tumor treatment. Tumor cell exosomes contain PD-L1, which is a nuclear weapon for tumor growth, metastasis, and immunosuppression. In addition, exosomes can not only promote the epithelial-mesenchymal transition process, tumor angiogenesis and chemoresistance, but also participate in the autocrine pathway. In this review, the multiple roles of exosomes and their prospects in the treatment of tumor were reviewed in detail.
Collapse
|
40
|
Luo WJ, He SW, Zou WQ, Zhao Y, He QM, Yang XJ, Guo R, Mao YP. Epstein-Barr virus microRNA BART10-3p promotes dedifferentiation and proliferation of nasopharyngeal carcinoma by targeting ALK7. Exp Biol Med (Maywood) 2021; 246:2618-2629. [PMID: 34424090 DOI: 10.1177/15353702211037261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-keratinizing nasopharyngeal carcinoma, the major subtype of nasopharyngeal carcinoma, is characterized by low differentiation and a close relation to Epstein-Barr virus infection, which indicates a link between Epstein-Barr virus oncogenesis and loss of differentiation, and raises our interest in investigating the involvement of Epstein-Barr virus in nasopharyngeal carcinoma dedifferentiation. Our previous study showed abundant expression of an Epstein-Barr virus-encoded microRNA, BART10-3p, in nasopharyngeal carcinoma tissues, but the association between BART10-3p and nasopharyngeal carcinoma differentiation remains unknown. Here, we examined the expression and prognostic value of BART10-3p, and undertook bioinformatics analysis and functional assays to investigate the influence of BART10-3p on nasopharyngeal carcinoma differentiation and proliferation and the underpinning mechanism. Microarray analysis identified BART10-3p as the most significantly upregulated Epstein-Barr virus-encoded microRNA in nasopharyngeal carcinoma tissues and the upregulation was confirmed in two public datasets. The expression of BART10-3p was an independent unfavorable prognosticator in nasopharyngeal carcinoma and its integration with the clinical stage showed improved prognosis predictive performance. Bioinformatics analysis suggested a potential role of BART10-3p in tumor differentiation and progression. Functional assays demonstrated that BART10-3p could promote nasopharyngeal carcinoma cell dedifferentiation, epithelial-mesenchymal transition, and proliferation in vitro, and tumorigenicity in vivo. Mechanistically, BART10-3p directly targeted the 3'UTR of ALK7 and suppressed its expression. Reconstitution of ALK7 rescued BART10-3p-induced malignant phenotypes. Overall, our study demonstrates that BART10-3p promotes dedifferentiation and proliferation of nasopharyngeal carcinoma by targeting ALK7, suggesting a promising therapeutic opportunity to reverse the malignant phenotypes of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Wei-Jie Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wen-Qing Zou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan-Ping Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
41
|
Guo C, Ma X, He H, Li Y, Zhou J. Expression of ANCR in nasopharyngeal carcinoma patients and its clinical significance. Medicine (Baltimore) 2021; 100:e26834. [PMID: 34414934 PMCID: PMC8376304 DOI: 10.1097/md.0000000000026834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
Anti-differentiation non-coding RNA (ANCR), a long non-coding RNA, is involved in the development, progression and metastasis of various human cancers. However, its clinical significance in nasopharyngeal carcinoma (NPC) still remains unknown. This study aimed to investigate ANCR expression and its clinical significance in NPC.Totally, 96 NPC tissues and 24 non-cancerous nasopharyngeal mucosa tissues were used. The levels of ANCR were determined by qRT-PCR. Relationship of ANCR with patient clinical characteristics, disease-free survival and overall survival (OS) was evaluated.ANCR expression was increased in NPC tissues compared to non-cancerous nasopharyngeal mucosae. ANCR expression was significantly related to lymph node metastasis, clinical stage, and tumor differentiation (P < .05). Kaplan-Meier survival analysis revealed that high level of ANCR expression was significantly associated with poor disease-free survival but not with OS in NPC patients. Univariate analysis showed a significant association between increased ANCR expression and adverse OS (P < .05), but multivariate analysis suggested that ANCR could not be used as an independent prognostic factor for NPC patients.ANCR is involved in the development and progression of NPC, but whether it can be used as an effective therapeutic target for NPC needs further study.
Collapse
Affiliation(s)
- Chengbing Guo
- Department of Otorhinolaryngology, Dantu District People's Hospital, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China
| | - Xingkai Ma
- Department of Otorhinolaryngology, Zhangjiagang First People's hospital, Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Hailin He
- Department of Otorhinolaryngology, Dantu District People's Hospital, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China
| | - Yanhua Li
- Department of Otorhinolaryngology, Dantu District People's Hospital, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China
| | - Jieyu Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
42
|
Chen Y, Wang Z, Li H, Li Y. Integrative Analysis Identified a 6-miRNA Prognostic Signature in Nasopharyngeal Carcinoma. Front Cell Dev Biol 2021; 9:661105. [PMID: 34336826 PMCID: PMC8322954 DOI: 10.3389/fcell.2021.661105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus-associated epithelial malignancy, which is rare in America but endemic in China. The current clinical gold TNM-based standard for prognosis may not be enough. Although some studies have reported that some miRNAs have a prognostic power in NPC, there is a scarcity of independent validation for these miRNAs. Methods In this work, we firstly conducted a literature review of all miRNA profiling datasets with survival information, then integrated miRNA expression data across different profiling platforms and built prognostic models using machine learning methods. The Kaplan–Meier method and log-rank tests were applied to estimate correlations of the miRNA signature with survival, and the area under the time-dependent ROC curve (AUC) and concordance index (C-index) were used to assess the predictive power of prognostic models. We also investigated the biological roles of the prognostic miRNAs through identifying their regulated genes and association with immune infiltration. Results We constructed a prognostic model based on 6-miRNA signature (ebv-miR-BART12, ebv-miR-BART15, miR-29c-3p, miR-30e-5p, hsa-miR-375-3p, has-miR-93-5p) using the elastic net penalized Cox regression model. The AUCs of our model predicting 1-, 3-, and 5-year overall survival rates were 0.90, 0.73, and 0.70 for the external validation dataset and showed better prognostic power than models using previously reported miRNA signatures. The 6-miRNA risk score was an independent prognostic predictor for overall survival (OS), disease-free survival (DFS), and metastasis-free survival (MFS). It could stratify patients into low-risk and high-risk groups; patients in the low-risk group treated with concurrent chemotherapy had a better survival. On the basis that the 6-miRNA risk score improved the current clinical gold standard for prognosis, we built a nomogram integrating both clinical characterizations and the risk score to predict 3-, 5-, and 10-year overall survival. Functional analysis suggested that the six miRNAs mainly play roles in virus infection pathways and oncogenic signaling pathways and associated with B-cell expression. Conclusion We identified a 6-miRNA prognostic signature in nasopharyngeal carcinoma across miRNA profiling platforms and patient geographical difference, which showed good prediction capability in terms of OS, DFS, and MFS. The 6-miRNA risk score might be helpful for clinicians to make treatment strategies and predict patient outcomes.
Collapse
Affiliation(s)
- Yunqin Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
43
|
Aguayo F, Boccardo E, Corvalán A, Calaf GM, Blanco R. Interplay between Epstein-Barr virus infection and environmental xenobiotic exposure in cancer. Infect Agent Cancer 2021; 16:50. [PMID: 34193233 PMCID: PMC8243497 DOI: 10.1186/s13027-021-00391-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is a herpesvirus associated with lymphoid and epithelial malignancies. Both B cells and epithelial cells are susceptible and permissive to EBV infection. However, considering that 90% of the human population is persistently EBV-infected, with a minority of them developing cancer, additional factors are necessary for tumor development. Xenobiotics such as tobacco smoke (TS) components, pollutants, pesticides, and food chemicals have been suggested as cofactors involved in EBV-associated cancers. In this review, the suggested mechanisms by which xenobiotics cooperate with EBV for carcinogenesis are discussed. Additionally, a model is proposed in which xenobiotics, which promote oxidative stress (OS) and DNA damage, regulate EBV replication, promoting either the maintenance of viral genomes or lytic activation, ultimately leading to cancer. Interactions between EBV and xenobiotics represent an opportunity to identify mechanisms by which this virus is involved in carcinogenesis and may, in turn, suggest both prevention and control strategies for EBV-associated cancers.
Collapse
Affiliation(s)
| | - Enrique Boccardo
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alejandro Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, 1000000, Arica, Chile.,Center for Radiological Research, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
44
|
Zhang S, Wang B, Zheng L, Fu Z, Fu Y, Huang W, Cheng A. Advances in research on microRNAs related to the invasion and metastasis of nasopharyngeal carcinoma. Curr Mol Pharmacol 2021; 15:463-474. [PMID: 34126919 DOI: 10.2174/1874467214666210614150720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC), which is associated with latent Epstein-Barr virus infection in most cases, is a unique epithelial malignancy arising from the nasopharyngeal mucosal lining. Accumulating evidence provides insights into the genetic and molecular aberrations that likely drive nasopharyngeal tumor development and progression. We review recent analyses of microRNAs (miRNAs), including Epstein-Barr virus-encoded miRNAs (EBV-encoded miRNAs) and dysregulated cellular miRNAs, that may be related to the metastasis of nasopharyngeal carcinoma. The studies summarized herein have greatly expanded our knowledge of the molecular biology of NPC involving miRNAs, and they may provide new biological targets for clinical diagnosis and reveal the potential of microRNA therapeutics. However, much information remains to be uncovered.
Collapse
Affiliation(s)
- ShanShan Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - BaiQi Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - LuLu Zheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - ZhuQiong Fu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - YiTing Fu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - WeiGuo Huang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - AiLan Cheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
45
|
Zuo X, Meng P, Bao Y, Tao C, Wang Y, Liu X, Bu Y, Zhu J. Cell cycle dysregulation with overexpression of KIF2C/MCAK is a critical event in nasopharyngeal carcinoma. Genes Dis 2021; 10:212-227. [PMID: 37013060 PMCID: PMC10066047 DOI: 10.1016/j.gendis.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 01/21/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant carcinoma of the head and neck, and the biological mechanisms underlying the pathogenesis of NPC remain not fully understood. In the present study, we systematically analyzed four independent NPC transcriptomic datasets and focused on identifying the critical molecular networks and novel key hub genes implicated in NPC. We found totally 170 common overlapping differentially expressed genes (DEGs) in the four NPC datasets. GO and KEGG pathway analysis revealed that cell cycle dysregulation is a critical event in NPC. Protein-protein interaction (PPI) network analysis identified a 15 hub-gene core network with overexpressed kinesin family member 2C (KIF2C) as a central regulator. Loss-of-function study demonstrated that knockdown of KIF2C significantly inhibited cell growth and cell motility, and delayed cell cycle progression, accompanied with dramatic mitotic defects in spindle formation in NPC cells. RNA-seq analysis revealed that KIF2C knockdown led to deregulation of various downstream genes. KIF2C could also regulate the AKT/mTOR pathways, and enhance paclitaxel sensitivity in NPC cells. Taken together, our results suggest that cell cycle dysregulation is a critical event during NPC pathogenesis and KIF2C is a novel key mitotic hub gene with therapeutic potential in NPC.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Peixin Meng
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yuxin Bao
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chuntao Tao
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Xianjun Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Corresponding author. Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| | - Jiang Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Corresponding author. Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
46
|
Wu A, Zhang L, Luo N, Zhang L, Li L, Liu Q. Limb-bud and heart (LBH) inhibits cellular migration, invasion and epithelial-mesenchymal transition in nasopharyngeal carcinoma via downregulating αB-crystallin expression. Cell Signal 2021; 85:110045. [PMID: 34000384 DOI: 10.1016/j.cellsig.2021.110045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Limb-bud and heart (LBH) gene has received increasing attention in recent cancer studies. Here we investigated the role of the LBH gene in regulating the metastasis capacity and epithelial-mesenchymal transition (EMT) of nasopharyngeal carcinoma (NPC) cells, and its potential mechanism. The expressions of LBH and αB-crystallin (CRYAB) were modulated by lentiviral infection, or plasmid/siRNA transfection, and the phosphorylation of p38 was suppressed by an inhibitor, to explore their functions in modulating NPC cell phenotypes, as well as the relationships of these factors with each other. Cellular proliferation, migration and invasion were examined by RTCA system, Transwell assays and Matrigel Transwell assays respectively. The EMT progression was indicated by RT-qPCR and Western blotting measuring the expressions of EMT biomarkers. NPC xenografts were constrcucted, and formed tumors were sectioned for morphology and immunohistofluorescence. The interaction between LBH and CRYAB was examined by colocalization and Fluorescence resonance energy transfer (FRET) analysis. We reached the conclusion that LBH inhibits the proliferation, migration, invasion and EMT of NPC cells, and its effects were partially achieved by suppressing p38 phosphorylation, which subsequently downregulates the mRNA expression and phosphorylation of CRYAB, while CRYAB directly interacts with LBH in NPC cells. This LBH-related pathway we revealed provides a novel therapeutic target for nasopharyngeal carcinoma research.
Collapse
Affiliation(s)
- Anbiao Wu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China
| | - Ling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651# Dongfeng Road East, Guangzhou 510060, PR China
| | - Ning Luo
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2nd Avenue, Guangzhou 510080, PR China
| | - Lihong Zhang
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651# Dongfeng Road East, Guangzhou 510060, PR China.
| | - Qicai Liu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
47
|
Sales G, Calura E. Micro-RNA Quantification, Target Gene Identification, and Pathway Analysis. Methods Mol Biol 2021; 2284:207-229. [PMID: 33835445 DOI: 10.1007/978-1-0716-1307-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
RNA sequencing has become a powerful tool for profiling the expression level of small RNAs from both solid tissues and liquid biopsies. In conjunction with pathway analysis, it offers exciting possibilities for the identification of disease specific biomarkers. In this chapter, we describe a workflow for processing this type of sequencing data. We start by removing technical sequences (adapters) and by performing quality control, a critical task that is necessary to identify possible issues caused by sample preparation and library sequencing. We then describe read alignment and gene-level abundance estimation. Building on these results, we normalize expression profiles and compute differentially expressed microRNAs between sample groups of interest. We conclude by showing how to employ pathway analysis to identify molecular signatures corresponding to biological processes that are significantly altered by the action for microRNAs.
Collapse
Affiliation(s)
- Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy.
| | - Enrica Calura
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
48
|
Wang Z, Liu Q, Huang P, Cai G. miR-299-3p suppresses cell progression and induces apoptosis by downregulating PAX3 in gastric cancer. Open Life Sci 2021; 16:266-276. [PMID: 33817318 PMCID: PMC8005920 DOI: 10.1515/biol-2021-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is ranked the fourth leading cause of cancer-related death, with an over 75% mortality rate worldwide. In recent years, miR-299-3p has been identified as a biomarker in multiple cancers, such as acute promyelocytic leukemia, thyroid cancer, and lung cancer. However, the regulatory mechanism of miR-299-3p in GC cell progression is still largely unclear. Cell viability and apoptosis tests were performed by CCK8 and flow cytometry assay, respectively. Transwell assay was recruited to examine cell invasion ability. The interaction between miR-299-3p and PAX3 was determined by the luciferase reporter system. PAX3 protein level was evaluated by western blot assay. The expression of miR-299-3p was downregulated in GC tissues and cell lines (MKN-45, AGS, and MGC-803) compared with the normal tissues and cells. Besides, overexpression of miR-299-3p significantly suppressed proliferation and invasion and promoted apoptosis in GC. Next, we clarified that PAX3 expression was regulated by miR-299-3p using a luciferase reporter system, qRT-PCR, and western blot assay. Additionally, downregulation of PAX3 repressed GC cell progression. The rescue experiments indicated that restoration of PAX3 inversed miR-299-3p-mediated inhibition on cell proliferation and invasion. miR-299-3p suppresses cell proliferation and invasion as well as induces apoptosis by regulating PAX3 expression in GC, representing desirable biomarkers for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenfen Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Ping Huang
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Guohao Cai
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| |
Collapse
|
49
|
Luo Y, Liu Y, Wang C, Gan R. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int 2021; 21:93. [PMID: 33549103 PMCID: PMC7868022 DOI: 10.1186/s12935-021-01793-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely associated with multiple human cancers. EBV-associated cancers are mainly lymphomas derived from B cells and T cells (Hodgkin lymphoma, Burkitt lymphoma, NK/T-cell lymphoma, and posttransplant lymphoproliferative disorder (PTLD)) and carcinomas derived from epithelial cells (nasopharyngeal carcinoma and gastric carcinoma). EBV can induce oncogenesis in its host cell by activating various signaling pathways, such as nuclear factor-κB (NF-κB), phosphoinositide-3-kinase/protein kinase B (PI3K/AKT), Janus kinase/signal transducer and transcription activator (JAK/STAT), mitogen-activated protein kinase (MAPK), transforming growth factor-β (TGF-β), and Wnt/β-catenin, which are regulated by EBV-encoded proteins and noncoding RNA. In this review, we focus on the oncogenic roles of EBV that are mediated through the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Yin Luo
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| | - Runliang Gan
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
50
|
Torres K, Landeros N, Wichmann IA, Polakovicova I, Aguayo F, Corvalan AH. EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166049. [PMID: 33401001 DOI: 10.1016/j.bbadis.2020.166049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) contribute to the regulation of gene expression. By acting as competing endogenous RNA (ceRNA), long non-coding RNAs (lncRNAs) hijack microRNAs (miRNAs) and inhibit their ability to bind their coding targets. Viral miRNAs can compete with and target the same transcripts as human miRNAs, shifting the balance in networks associated with multiple cellular processes and diseases. Epstein-Barr virus (EBV) is an example of how a subset of viral coding RNA and non-coding RNAs can cause deregulation of human transcripts and contribute to the development of EBV-associated malignancies. EBV non-coding transforming genes include lncRNAs (i.e circular RNAs), and small ncRNAs (i.e. miRNAs). Among the latter, most ongoing research has focused on miR-BARTs whereas target many genes associated with apoptosis and epithelial-mesenchymal transition, in EBV-associated gastric cancer (GC). In this review, we propose to include the interactions between EBV ncRNAs human transcripts in the hypothesis known as "competitive viral and host RNAs". These interactions may shift the balance in biological pathways such as apoptosis and epithelial-mesenchymal transition in EBV-associated gastric cancer.
Collapse
Affiliation(s)
- Keila Torres
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile; Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|