1
|
Li Z, Tian Y, Zong H, Wang X, Li D, Keranmu A, Xin S, Ye B, Bai R, Chen W, Yang G, Ye L, Wang S. Deubiquitinating enzyme OTUD4 stabilizes RBM47 to induce ATF3 transcription: a novel mechanism underlying the restrained malignant properties of ccRCC cells. Apoptosis 2024; 29:1051-1069. [PMID: 38553613 DOI: 10.1007/s10495-024-01953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 07/23/2024]
Abstract
Dysregulation of deubiquitination contributes to various diseases, including cancer, and aberrant expression of deubiquitinating enzymes is involved in carcinoma progression. As a member of the ovarian tumor (OTU) deubiquitinases, OTUD4 is considered a tumor suppressor in many kinds of malignancies. The biological characteristics and mechanisms of OTUD4 in clear cell renal cell carcinoma (ccRCC) remain unclear. The downregulation of OTUD4 in ccRCC was confirmed based on the TCGA database and a validation cohort of 30-paired ccRCC and para-carcinoma samples. Moreover, OTUD4 expression was detected by immunohistochemistry in 50 cases of ccRCC tissues, and patients with lower levels of OTUD4 showed larger tumor size (p = 0.015). TCGA data revealed that patients with high expression of OTUD4 had a longer overall survival rate. In vitro and in vivo studies revealed that downregulation of OTUD4 was essential for tumor cell growth and metastasis in ccRCC, and OTUD4 overexpression inhibited these malignant phenotypes. We further found that OTUD4 sensitized ccRCC cells to Erastin-induced ferroptosis, and ferrostain-1 inhibited OTUD4-induced ferroptotic cell death. Mechanistic studies indicated that OTUD4 functioned as an anti-proliferative and anti-metastasic factor through the regulation of RNA-binding protein 47 (RBM47)-mediated activating transcription factor 3 (ATF3). OTUD4 directly interacted with RBM47 and promoted its stability via deubiquitination events. RBM47 was critical in ccRCC progression by regulating ATF3 mRNA stability, thereby promoting ATF3-mediated ferroptosis. RBM47 interference abolished the suppressive role of OTUD4 overexpression in ccRCC. Our findings provide mechanistic insight into OTUD4 of ccRCC progression and indicate a novel critical pathway OTUD4/RBM47/ATF3 may serve as a potential therapeutic pathway for ccRCC.
Collapse
Affiliation(s)
- Ziyao Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Electrical Engineering of Zhengzhou University, Zhengzhou, China
- Center for Frontier Medical Engineering of Chiba University, Chiba, Japan
| | - Ye Tian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Huafeng Zong
- Department of Pathology, Dalian Friendship Hospital, Dalian, China
| | - Xuelei Wang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongyang Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Adili Keranmu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bowen Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Bai
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Chen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Siyan Wang
- Health Management Center, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China.
| |
Collapse
|
2
|
Xie Q, Hu B, Li H. Acetylation- and ubiquitination-regulated SFMBT2 acts as a tumor suppressor in clear cell renal cell carcinoma. Biol Direct 2024; 19:37. [PMID: 38734627 PMCID: PMC11088781 DOI: 10.1186/s13062-024-00480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (RCC) is the most common kidney tumor. The analysis from medical database showed that Scm-like with four MBT domains protein 2 (SFMBT2) was decreased in advanced clear cell RCC cases, and its downregulation was associated with the poor prognosis. This study aims to investigate the role of SFMBT2 in clear cell RCC. METHODS The expression of SFMBT2 in clear cell RCC specimens were determined by immunohistochemistry staining and western blot. The overexpression and knockdown of SFMBT2 was realized by infection of lentivirus loaded with SFMBT2 coding sequence or silencing fragment in 786-O and 769-P cells, and its effects on proliferation and metastasis were assessed by MTT, colony formation, flow cytometry, wound healing, transwell assay, xenograft and metastasis experiments in nude mice. The interaction of SFMBT2 with histone deacetylase 3 (HDAC3) and seven in absentia homolog 1 (SIAH1) was confirmed by co-immunoprecipitation. RESULTS In our study, SFMBT2 exhibited lower expression in clear cell RCC specimens with advanced stages than those with early stages. Overexpression of SFMBT2 inhibited the growth and metastasis of clear cell RCC cells, 786-O and 769-P, in vitro and in vivo, and its silencing displayed opposites effects. HDAC3 led to deacetylation of SFMBT2, and the HDAC3 inhibitor-induced acetylation prevented SFMBT2 from SIAH1-mediated ubiquitination modification and proteasome degradation. K687 in SFMBT2 protein molecule may be the key site for acetylation and ubiquitination. CONCLUSIONS SFMBT2 exerted an anti-tumor role in clear cell RCC cells, and HDAC3-mediated deacetylation promoted SIAH1-controlled ubiquitination of SFMBT2. SFMBT2 may be considered as a novel clinical diagnostic marker and/or therapeutic target of clear cell RCC, and crosstalk between its post-translational modifications may provide novel insights for agent development.
Collapse
Affiliation(s)
- Qingpeng Xie
- Department of Urology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China
| | - Bin Hu
- Department of Urology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China.
| | - Haosong Li
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Lu Y, Zhang M, Zhou J, Liu X, Wang L, Hu X, Mao Y, Gan R, Chen Z. Extracellular vesicles in renal cell carcinoma: challenges and opportunities coexist. Front Immunol 2023; 14:1212101. [PMID: 37469514 PMCID: PMC10352798 DOI: 10.3389/fimmu.2023.1212101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Renal cell carcinoma (RCC) represents an extremely challenging disease in terms of both diagnosis and treatment. It poses a significant threat to human health, with incidence rates increasing at a yearly rate of roughly 2%. Extracellular vesicles (EVs) are lipid-based bilayer structures of membranes that are essential for intercellular interaction and have been linked to the advancement of RCC. This review provides an overview of recent studies on the role of EVs in RCC progression, including involvement in the interaction of tumor cells with M2 macrophages, mediating the generation of immune tolerance, and assuming the role of communication messengers in the tumor microenvironment leading to disease progression. Finally, the " troika " of EVs in RCC therapy is presented, including engineered sEVs' or EVs tumor vaccines, mesenchymal stem cell EVs therapy, and reduction of tumor-derived EVs secretion. In this context, we highlight the limitations and challenges of EV-based research and the prospects for future developments in this field. Overall, this review provides a comprehensive summary of the role of EVs in RCC and their potential as a viable pathway for the future treatment of this complex disease.
Collapse
Affiliation(s)
- Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiulan Liu
- Department of Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongfa Gan
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Zhang W, Wu Y, Zeng M, Yang C, Qiu Z, Liu R, Wang L, Zhong M, Chen Q, Liang W. Protective role of remote ischemic conditioning in renal transplantation and partial nephrectomy: A systematic review and meta-analysis of randomized controlled trials. Front Surg 2023; 10:1024650. [PMID: 37091267 PMCID: PMC10113469 DOI: 10.3389/fsurg.2023.1024650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Objective Studies have shown that remote ischemic conditioning (RIC) can effectively attenuate ischemic-reperfusion injury in the heart and brain, but the effect on ischemic-reperfusion injury in patients with kidney transplantation or partial nephrectomy remains controversial. The main objective of this systematic review and meta-analysis was to investigate whether RIC provides renal protection after renal ischemia-reperfusion injury in patients undergoing kidney transplantation or partial nephrectomy. Methods A computer-based search was conducted to retrieve relevant publications from the PubMed database, Embase database, Cochrane Library and Web of Science database. We then conducted a systematic review and meta-analysis of randomized controlled trials that met our study inclusion criteria. Results Eleven eligible studies included a total of 1,145 patients with kidney transplantation or partial nephrectomy for systematic review and meta-analysis, among whom 576 patients were randomly assigned to the RIC group and the remaining 569 to the control group. The 3-month estimated glomerular filtration rate (eGFR) was improved in the RIC group, which was statistically significant between the two groups on kidney transplantation [P < 0.001; mean difference (MD) = 2.74, confidence interval (CI): 1.41 to 4.06; I 2 = 14%], and the 1- and 2-day postoperative Scr levels in the RIC group decreased, which was statistically significant between the two groups on kidney transplantation (1-day postoperative: P < 0.001; MD = 0.10, CI: 0.05 to 0.15, I 2 = 0; 2-day postoperative: P = 0.006; MD = 0.41, CI: 0.12 to 0.70, I 2 = 0), but at other times, there was no significant difference between the two groups in Scr levels. The incidence of delayed graft function (DGF) decreased, but there was no significant difference (P = 0.60; 95% CI: 0.67 to 1.26). There was no significant difference between the two groups in terms of cross-clamp time, cold ischemia time, warm ischemic time, acute rejection (AR), graft loss or length of hospital stay. Conclusion Our meta-analysis showed that the effect of remote ischemia conditioning on reducing serum creatinine (Scr) and improving estimate glomerular filtration rate (eGFR) seemed to be very weak, and we did not observe a significant protective effect of RIC on renal ischemic-reperfusion. Due to small sample sizes, more studies using stricter inclusion criteria are needed to elucidate the nephroprotective effect of RIC in renal surgery in the future.
Collapse
Affiliation(s)
- Wenfu Zhang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
- Department of Anesthesia, hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| | - Yingting Wu
- Department of Critical Care Medicine Nursing, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mingwang Zeng
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Chao Yang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongrong Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lifeng Wang
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Maolin Zhong
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiaoling Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weidong Liang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Izadpanah MH, Forghanifard MM. TWIST1 Plays Role in Expression of Stemness State Markers in ESCC. Genes (Basel) 2022; 13:genes13122369. [PMID: 36553636 PMCID: PMC9777594 DOI: 10.3390/genes13122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Stemness markers play critical roles in the maintenance of key properties of embryonic stem cells (ESCs), including the pluripotency, stemness state, and self-renewal capacities, as well as cell fate decision. Some of these features are present in cancer stem cells (CSCs). TWIST1, as a bHLH transcription factor oncogene, is involved in the epithelial-mesenchymal transition (EMT) process in both embryonic and cancer development. Our aim in this study was to investigate the functional correlation between TWIST1 and the involved genes in the process of CSCs self-renewal in human esophageal squamous cell carcinoma (ESCC) line KYSE-30. METHODS TWIST1 overexpression was enforced in the ESCC KYSE-30 cells using retroviral vector containing the specific pruf-IRES-GFP-hTWIST1 sequence. Following RNA extraction and cDNA synthesis, the mRNA expression profile of TWIST1 and the stem cell markers, including BMI1, CRIPTO1, DPPA2, KLF4, SOX2, NANOG, and MSI1, were assessed using relative comparative real-time PCR. RESULTS Ectopic expression of TWIST1 in KYSE-30 cells resulted in an increased expression of TWIST1 compared to control GFP cells by nearly 9-fold. Transduction of TWIST1-retroviral particles caused a significant enhancement in BMI1, CRIPTO1, DPPA2, KLF4, and SOX2 mRNA expression, approximately 4.5-, 3.2-, 5.5-, 3.5-, and 3.7-folds, respectively, whereas this increased TWIST1 expression caused no change in the mRNA expression of NANOG and MSI1 genes. CONCLUSIONS TWIST1 gene ectopic expression in KYSE-30 cells enhanced the level of cancer stem cell markers' mRNA expression. These results may emphasize the role of TWIST1 in the self-renewal process and may corroborate the involvement of TWIST1 in the stemness state capacity of ESCC cell line KYSE-30, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mohammad Hossein Izadpanah
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad 9196773117, Iran
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan 3671637849, Iran
- Correspondence: or ; Tel.: +98-912-711-6027
| |
Collapse
|
6
|
Yang J, Xiao B, Li Y, Liu X, Zhang M, Luo Y, Wang B, Liu H. A novel biflavone from Reineckia carnea induces apoptosis of human renal cancer 786-O cells. Front Pharmacol 2022; 13:1053184. [PMID: 36532756 PMCID: PMC9756134 DOI: 10.3389/fphar.2022.1053184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system, which is highly invasive, metastatic, and insensitive to radiotherapy and chemotherapy. Chinese herbal medicine has always been an important source of anti-tumor drug development. Reineckia carnea Kunth is a traditional herb commonly used by the Miao nationality in southwest China. In this study, the extract of Reineckia carnea was isolated and purified by reverse phase preparative chromatography and other chromatographic techniques. According to the physicochemical properties and spectral data, the structure of the compound was identified, and a novel biflavone compound named Reineckia-biflavone A (RFA) was obtained. The result of antiproliferative activity showed that RFA had cytotoxicity on 786-O cells with an IC50 value of 19.34 μmol/L. The results of CCK-8 and hemolysis assays showed that RFA was not significantly cytotoxic to both red blood cells (RBC) and peripheral blood mononuclear cells (PBMC). By Hoechst 33258 apoptosis staining, typical apoptotic morphology was observed under fluorescence microscope. RFA could induce the apoptosis of 786-O cells with the increase of apoptosis rate. The cell cycle tests showed that the cell proportion was obviously arrested in the S phase. At the same time, RFA could decrease the mitochondrial membrane potential and increase the intracellular free Ca2+ concentration. Western blot showed that the expression levels of pro-apoptotic proteins (Bax, Caspase-3, Cleaved Caspase-3, and Cytochrome c) in cells rose, while the expression level of anti-apoptotic proteins (Bcl-2) declined significantly. In conclusion, this study suggests that the RFA is a new biflavone determined by SciFinder retrieval. The apoptosis may be triggered by RFA through the mitochondrial pathway, which is mediated by up-regulating the intracellular calcium ion, down-regulating the mitochondrial membrane potential, and changing the apoptosis-related proteins.
Collapse
Affiliation(s)
- Jianqiong Yang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Yamei Li
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiaoxuan Liu
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yaoling Luo
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Biao Wang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Hai Liu
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Fang J, Zhen J, Gong Y, Ke Y, Fu B, Jiang Y, Xie J, Liu Y, Ding Y, Huang D, Xiao F. MND1 functions as a potential prognostic biomarker associated with cell cycle and immune infiltration in kidney renal clear cell carcinoma. Aging (Albany NY) 2022; 14:7416-7442. [PMID: 36098680 PMCID: PMC9550261 DOI: 10.18632/aging.204280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 12/18/2022]
Abstract
Kidney renal clear cell carcinoma (KIRC) is a common and invasive subtype of renal tumors, which has poor prognosis and high mortality. MND1 is a meiosis specific protein that participates in the progress of diverse cancers. Nonetheless, its function in KIRC was unclear. Here, TIMER, TCGA, GEO databases and IHC found MND1 expression is upregulated in KIRC, leading to poor overall survival, and MND1 can serve as an independent prognostic factor. Moreover, enrichment analysis revealed the functional relationship between MND1 and cell cycle, immune infiltration. EdU and transwell assays confirmed that MND1 knockdown surely prohibited the proliferation, migration, and invasion of KIRC cells. Additionally, immune analysis showed that MND1 displayed a strong correlation with various immune cells. Interference with MND1 significantly reduces the expression of chemokines. TCGA and GEO databases indicated that MND1 expression is significantly related to two m6A modification related gene (METTL14, IGF2BP3). Finally, the drug sensitivity analysis revealed 7 potentially sensitive drugs for KIRC patients with high MND1 expression. In conclusion, MND1 can be used as a prognostic biomarker for KIRC and provides clues regarding cell cycle, immune infiltrates and m6A. Sensitive drugs may be an effective treatment strategy for KIRC patients with high expression of MND1.
Collapse
Affiliation(s)
- Jiayu Fang
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Xie
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yongqi Ding
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Francescangeli F, De Angelis ML, Rossi R, Sette G, Eramo A, Boe A, Guardiola O, Tang T, Yu SC, Minchiotti G, Zeuner A. CRIPTO Is a Marker of Chemotherapy-Induced Stem Cell Expansion in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:830873. [PMID: 35719935 PMCID: PMC9200964 DOI: 10.3389/fonc.2022.830873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 01/15/2023] Open
Abstract
Chemotherapy is the mainstay for the treatment of non-small cell lung cancer (NSCLC). However, NSCLC cells are either intrinsically chemoresistant or rapidly develop therapy resistance. Cancer stem cells (CSCs) are widely recognized as the cell population responsible for resistance to systemic therapies, but the molecular responses of CSCs to chemotherapeutic agents are largely unknown. We identified the embryonic protein CRIPTO in stem cell-enriched spheroid cultures of adenocarcinoma (AC) and squamous cell carcinoma (SCC) derived from NSCLC surgical specimens. The CRIPTO-positive population had increased clonogenic capacity and expression of stem cell-related factors. Stemness-related properties were also obtained with forced CRIPTO expression, whereas CRIPTO downregulation resulted in cell cycle blockade and CSCs death. Cell populations positive and negative for CRIPTO expression were interconvertible, and interfering with their reciprocal equilibrium resulted in altered homeostasis of cell expansion both in spheroid cultures and in tumor xenografts. Chemotherapy treatment of NSCLC cells resulted in reduction of cell number followed by increased CRIPTO expression and selective survival of CRIPTO-positive cells. In NSCLC tumor xenografts, chemotherapeutic agents induced partial cell death and tumor stabilization followed by CRIPTO overexpression and tumor progression. Altogether, these findings indicate CRIPTO as a marker of lung CSCs possibly implicated in cancer cell plasticity and post-chemotherapy tumor progression.
Collapse
Affiliation(s)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rachele Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Tao Tang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, ChongQing, China.,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, ChongQing, China.,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing, China
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Li J, Li Y, Xu F, Sun B, Yang L, Wang H. Deubiquitinating enzyme PSMD14 facilitates gastric carcinogenesis through stabilizing PTBP1. Exp Cell Res 2022; 415:113148. [DOI: 10.1016/j.yexcr.2022.113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
|
10
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
11
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
12
|
Wang Y, Li X, Wang S, Song Z, Bao Y, Zheng L, Wang G, Sun Y. miR-3929 Inhibits Proliferation and Promotes Apoptosis by Downregulating Cripto-1 Expression in Cervical Cancer Cells. Cytogenet Genome Res 2021; 161:425-436. [PMID: 34569498 DOI: 10.1159/000518521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Cripto-1 is highly expressed in many cancers, and downregulating its expression may become a promising approach for cancer treatment. However, the regulation of Cripto-1 expression is not well characterized. In this study, we focused on the post-transcriptional regulation of Cripto-1 expression and analyzed the potential miRNAs that bind to the 3'UTR of Cripto-1 mRNA. miR-3929 was found to be able to bind to the 3'UTR and downregulate the expression of Cripto-1 in cervical cancer cells. Then, we analyzed the effect of miR-3929 on the biological behavior of cervical cancer cells, finding that miR-3929 could reduce cell viability, DNA synthesis, and Ki67 expression and induce cell cycle arrest in the G2/M phase; overexpression of Cripto-1 reversed the inhibitory effect of miR-3929 on proliferation. Moreover, DAPI staining and flow cytometry revealed that miR-3929-induced cell apoptosis is dependent on the mitochondrial pathway; the overexpression of Cripto-1 reversed the proapoptotic effect of miR-3929. Finally, the in vivo results showed that miR-3929 significantly inhibits the growth of HeLa xenograft tumors in nude mice. Therefore, our findings suggest that miR-3929 inhibits the proliferation and induces the apoptosis of cervical cancer cells by downregulating Cripto-1 via specifically targeting the 3'UTR of its mRNA.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaoli Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
13
|
Arnouk H, Yum G, Shah D. Cripto-1 as a Key Factor in Tumor Progression, Epithelial to Mesenchymal Transition and Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22179280. [PMID: 34502188 PMCID: PMC8430685 DOI: 10.3390/ijms22179280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cripto-1 is an essential protein for human development that plays a key role in the early phase of gastrulation in the differentiation of an embryo as well as assists with wound healing processes. Importantly, Cripto-1 induces epithelial to mesenchymal transition to turn fixed epithelial cells into a more mobile mesenchymal phenotype through the downregulation of epithelial adhesion molecules such as E-cadherin, occludins, and claudins, and the upregulation of mesenchymal, mobile proteins, such as N-cadherin, Snail, and Slug. Consequently, Cripto-1’s role in inducing EMT to promote cell motility is beneficial in embryogenesis, but detrimental in the formation, progression and metastasis of malignant tumors. Indeed, Cripto-1 is found to be upregulated in most cancers, such as breast, lung, gastrointestinal, hepatic, renal, cervical, ovarian, prostate, and skin cancers. Through its role in EMT, Cripto-1 can remodel cancer cells to enable them to travel through the extracellular matrix as well as blood and lymphatic vessels to metastasize to different organs. Additionally, Cripto-1 promotes the survival of cancer stem cells, which can lead to relapse in cancer patients.
Collapse
Affiliation(s)
- Hilal Arnouk
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Chicago College of Optometry, Midwestern University, Downers Grove, IL 60515, USA;
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
- College of Dental Medicine-Illinois, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence:
| | - Gloria Yum
- Chicago College of Optometry, Midwestern University, Downers Grove, IL 60515, USA;
| | - Dean Shah
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
- Master of Public Health Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
14
|
Hu C, Zhang Y, Zhang M, Li T, Zheng X, Guo Q, Zhang X. Exosomal Cripto-1 Serves as a Potential Biomarker for Perihilar Cholangiocarcinoma. Front Oncol 2021; 11:730615. [PMID: 34434900 PMCID: PMC8380828 DOI: 10.3389/fonc.2021.730615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Perihilar cholangiocarcinoma (PHCCA) has a poor prognosis, mainly due to diagnosis at an advanced stage. Cripto-1 functions as an oncogene and is highly expressed in several human cancers, however, its clinical application in PHCCA is poorly understood. Herein, we identified that Cripto-1 was released by PHCCA cells via exosomes in vitro and in vivo. Furthermore, an ELISA method was developed to detect exosomal Cripto-1 in the serum of 115 PHCCA patients, 47 cholangitis patients and 65 healthy controls, and it was found that exosomal Cripto-1 was increased in PHCCA patients and associated with metastasis. Compared with traditional serum tumor markers, CA19-9 and CEA, exosomal Cripto-1 demonstrated a larger area under ROC curve for PHCCA diagnosis. The cutoff value of exosomal Cripto-1 was 0.82, achieving a sensitivity of 79.1% and a specificity of 87.5%. As expected, exosomal Cripto-1 levels in immunohistochemically Cripto-1-high cases were significantly elevated compared to in Cripto-1-low cases. When measured 1-week postoperatively, Cripto-1 levels decreased on average from 1.25(0.96-3.26) to 0.85(0.62-1.82). Immunohistochemistry analysis showed Cripto-1 expression was negatively correlated with E-cadherin and was an independent prognostic biomarker for poor survival in PHCCA patients. In conclusion, exosomal Cripto-1 in sera can reflect its expression in the tissue of PHCAA patients and has the potential be a non-invasive biomarker for diagnosis and prognosis of PHCCA.
Collapse
Affiliation(s)
- Chunxiao Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Mengjiao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zheng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
15
|
Arboretto P, Cillo M, Leonardi A. New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates. Int J Mol Sci 2021; 22:ijms22157838. [PMID: 34360603 PMCID: PMC8345935 DOI: 10.3390/ijms22157838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.
Collapse
|
16
|
Wang X, Lu Y, Tuo Z, Zhou H, Zhang Y, Cao Z, Peng L, Yu D, Bi L. Role of SIRT1/AMPK signaling in the proliferation, migration and invasion of renal cell carcinoma cells. Oncol Rep 2021; 45:109. [PMID: 33907836 PMCID: PMC8082341 DOI: 10.3892/or.2021.8060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Renal cell carcinoma (RCC) is a lethal urologic tumor commonly seen in men that best responds to partial nephrectomy. An enhanced understanding of the molecular pathogenesis of RCC can broaden treatment options and tumor prevention strategies. Sirtuin 1 (SIRT1) is a NAD+‑dependent deacetylase that regulates several bioactive substances, and the present study aimed to identify the role of SIRT1/AMP‑activated protein kinase (AMPK) signaling in RCC progression. SIRT1 expression was detected in 100 patients with RCC using tissue microarray immunohistochemistry. SIRT1‑knockdown and overexpression were performed via RNA interference and plasmid transfection. Inhibition of AMPK was used for the phenotypic rescue assays to verify whether AMPK was a downstream target of SIRT1. Reverse transcription‑quantitative PCR was performed to verify transfection efficiency. Transwell, MTT and flow cytometry apoptosis assays were performed to evaluate the migration, invasion, proliferation and early apoptosis level of RCC cells. SIRT1 and AMPK protein expression in human RCC tissues and cell lines (786‑O and ACHN) was detected using western blotting and immunofluorescence staining. The current results, combined with data from The Cancer Genome Atlas database, revealed that SIRT1 expression in RCC tissues was downregulated compared with in adjacent normal tissues. Additionally, high SIRT1 expression was associated with an improved prognosis in patients with RCC. Overexpression of SIRT1 inhibited the proliferation, migration and invasion of RCC cell lines and induced apoptosis, while inhibition of SIRT1 expression had the opposite effects. Further experiments indicated that SIRT1 may serve an anticancer role by upregulating the expression levels of downstream AMPK, thus revealing a potential therapeutic target for RCC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Youlu Lu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huan Zhou
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangjun Cao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
17
|
Li X, Li H, Yang C, Liu L, Deng S, Li M. Comprehensive Analysis of ATP6V1s Family Members in Renal Clear Cell Carcinoma With Prognostic Values. Front Oncol 2020; 10:567970. [PMID: 33194650 PMCID: PMC7662125 DOI: 10.3389/fonc.2020.567970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023] Open
Abstract
ATP6V1s participate in the biological process of transporting hydrogen ions and are associated with various cancers in expression and clinicopathological features, while its role in kidney renal clear cell carcinoma is unknown. We aimed to demonstrate the relationship between ATP6V1s and kidney renal clear cell carcinoma. This study investigated the expression and roles of ATP6V1s in KIRC using Oncomine, The Cancer Genome Atlas, UALCAN, Human Protein Atlas, Clinical Proteomics Tumor Analysis Consortium, GeneMANIA, Tumor IMmune Estimation Resource, GEPIA databases. Low mRNA and protein expression of ATP6V1s members were found to be significantly associated with clinical cancer stages, nodal metastasis status, and patient's gender in KIRC patients. Besides, lower mRNA expression of ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1C2, ATP6V1D, ATP6V1E1, ATP6V1E2, ATP6V1F, ATP6V1G1, and ATP6V1H have shorter OS. Taken together, these results indicated that ATP6V1s family members could be a potential target in the development of anti-KIRC therapeutics and an efficient marker of the prognostic value of KIRC.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caihong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Chen V, Iwama E, Kim IK, Giaccone G. Serum CRIPTO does not confer drug resistance against osimertinib but is an indicator of tumor burden in non-small cell lung cancer. Lung Cancer 2020; 145:48-57. [PMID: 32408132 DOI: 10.1016/j.lungcan.2020.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC) and often harbors oncogenic driver mutations in the epidermal growth factor receptor (EGFR). Osimertinib (AZD9291), a third generation EGFR TKI, has replaced earlier generation EGFR TKIs for first line treatment of EGFR mutant lung cancer due to its improved overall survival, longer progression free survival, and better tolerability compared to earlier generation inhibitors. However, like earlier generation EGFR TKIs, only about two thirds of patients respond, indicating an unknown mechanism of intrinsic resistance for the non-responders. We previously identified overexpression of CRIPTO as a potential mechanism of intrinsic resistance to EGFR TKIs of first and second generation. OBJECTIVE To determine if CRIPTO could promote drug resistance against the third generation EGFR-TKIs osimertinib. We also wanted to investigate whether this resistance was conferred by both membrane bound and secreted CRIPTO. Finally, we wanted to explore the potential of secreted CRIPTO as a non-invasive biomarker for EGFR-TKI resistance. MATERIALS AND METHODS HCC827 and H1975, EGFR mutant non-small cell lung carcinoma (NSCLC) cell lines, were transfected with wildtype CRIPTO, two secreted variants of CRIPTO, a membrane only version of CRIPTO, and the mock backbone vector as the control. Western blotting, immunoprecipitation, and in vitro viability experiments were performed. In vivo work was carried out in athymic nude mice; 2 × 106 CRIPTO overexpressing HCC827 cells were implanted per mouse. EGFR mutant NSCLC patient blood samples were collected before treatment with and EGFR-TKI, during response while on treatment, and at progression while on treatment. RESULTS Although both membrane bound and secreted CRIPTO forms were able to activate downstream pathways such as SRC, CRIPTO was unable to elicit resistance towards osimertinib in vitro or in vivo. CRIPTO serum levels in mice were higher in larger xenograft tumors. Furthermore, CRIPTO serum levels were higher in patients with progressing lung cancer when compared to their CRIPTO serum levels during EGFR-TKI response. CONCLUSIONS CRIPTO does not cause resistance against third generation EGFR-TKI osimertinib. CRIPTO levels in serum might be a potentially useful biomarker for tumor burden in NSCLC patients.
Collapse
Affiliation(s)
- Vincent Chen
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, United States
| | - Eiji Iwama
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, United States
| | - In-Kyu Kim
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, United States
| | - Giuseppe Giaccone
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, United States.
| |
Collapse
|
19
|
Wei Y, Jiang J, Wang C, Zou H, Shen X, Jia W, Jin S, Zhang L, Hu J, Yang L, Pang L. Prognostic value of cripto-1 expression in non-small-cell lung cancer patients: a systematic review and meta-analysis. Biomark Med 2020; 14:317-329. [PMID: 32134335 DOI: 10.2217/bmm-2019-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This systematic review and meta-analysis aimed to analyze the association between cripto-1 expression and prognosis as well as clinicopathological features of non-small-cell lung cancer (NSCLC) patients. Methods: The electronic databases for all articles about NSCLC and cripto-1 expression were searched. Results: Twelve articles were enrolled in this meta-analysis (3130 samples). In NSCLC patients, cripto-1 was expressed higher than in normal tissues. Cripto-1 expression was closely correlated with lymph node metastasis, histological differentiation and advanced clinical stage of NSCLC patients, but not related to smoking, age and gender. Pooled hazard ratios found that high cripto-1 expression had poor overall survival and progression-free survival. Conclusion: Cripto-1 could serve as a novel biomarker for predicting poor prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Jinfang Jiang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Chengyan Wang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Hong Zou
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Xihua Shen
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China
| | - Wei Jia
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Shan Jin
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Lu Zhang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Jianming Hu
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Lan Yang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| | - Lijuan Pang
- Department of Pathology, The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, North 2nd Road, Shihezi 832002, Xinjiang, China
| |
Collapse
|