1
|
Wei S, Xu G, Zhao S, Zhang C, Feng Y, Yang W, Lu R, Zhou J, Ma Y. EGR2 promotes liver cancer metastasis by enhancing IL-8 expression through transcription regulation of PDK4 in M2 macrophages. Int Immunopharmacol 2025; 153:114484. [PMID: 40139095 DOI: 10.1016/j.intimp.2025.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Liver tumor is a common digestive system tumor, and its development is closely related to complex cytokines, tumor microenvironment and immunoregulatory mechanisms. Tumor-associated macrophages play a great role in a series of liver cancer development by secreting various cytokines and transmitting multiple signals, but how macrophages regulate the various biological behaviors of liver cancer cells at the microscopic level is a challenge we still need to overcome. In this research, we first identified the Early Growth Response 2 (EGR2) gene, which exhibited significant expression in M2 macrophages in comparison to M0 and M1 cell types, utilizing RNA sequencing. Subsequently, we validated this finding through a battery of methodologies, including WB, qRT-PCR, and immunofluorescence assays. We further employed a co-culture model involving MHCC97L and macrophages to investigate the impact of EGR2 downregulation within M2 cells on the in vivo and in vitro metastatic and invasive capabilities of MHCC97L cells. Subsequently, we directed our attention to investigating the impact of EGR2 on the levels of interleukin-8 (IL-8). Through comprehensive analyses including RNA sequencing, CUT-and-Tag, and ChIP techniques, we demonstrated that EGR2 can bind to the promoter region of the Pyruvate Dehydrogenase Kinase 4 (PDK4) gene. Finally, we introduced a virus overexpressing PDK4 and demonstrated that EGR2 could regulate the transcriptional level of PDK4 to affect the expression of IL-8, and ultimately alter the metastatic ability of hepatocellular carcinoma cells. Our study demonstrates that EGR2 may be a valuable target for future intervention in the disease process of hepatocellular carcinoma and refines the mechanism at the microscopic level of Tumor-associated macrophages.
Collapse
Affiliation(s)
- Song Wei
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gaoxin Xu
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University,Kunshan,Suzhou,China
| | - Siqi Zhao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, , Zhejiang, China
| | - Chenwei Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yongheng Feng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weijun Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Renhe Lu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Jadhao M, Hsu SK, Deshmukh D, Liu PF, Weng SF, Chen YF, Li CY, Wang CY, Tsai EM, Wang LF, Chiu CC. Prolonged DEHP exposure enhances the stemness and metastatic potential of TNBC cells in an MSI2-dependent manner. Int J Biol Sci 2025; 21:1705-1729. [PMID: 39990676 PMCID: PMC11844279 DOI: 10.7150/ijbs.101598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/02/2025] [Indexed: 02/25/2025] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer, and human exposure to phthalates is a major health concern. DEHP, which is widely recognized as an endocrine disruptor, is associated with an increased risk of several diseases, including breast cancer. Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, and metastasis is the leading cause of TNBC-related mortality. However, the correlation between DEHP exposure and TNBC metastasis remains elusive. In the present study, we found that prolonged DEHP treatment enhanced the migration and invasion of TNBC cells both in vitro and in vivo. Mechanistically, DEHP exposure induced Musashi RNA binding protein 2 (MSI2) overexpression, which subsequently activated the PI3K/Akt/NF-κB/MMP-9 axis to augment metastatic potential. MSI2 also promoted stemness. Interestingly, we identified a novel function of MSI2 in regulating the expression, distribution, and polarization of vimentin that is independent of its conventional RNA binding and translation regulation. Genetic knockdown of MSI2 potently abolished DEHP-mediated TNBC progression. Moreover, MSI2 depletion inhibited lung metastasis in metastatic mouse models but did not affect proliferation or tumor size. Intriguingly, miR-155-5p downregulation was observed after DEHP exposure, while mimic miR-155-5p treatment inhibited DEHP-induced TNBC migration, accompanied by reduced expression of MSI2 and vimentin. These findings suggested an inverse relationship between miR-155-5p levels and MSI2 expression. Taken together, MSI2 might serve as a potential therapeutic target and function as a prognostic biomarker for TNBC patients.
Collapse
Affiliation(s)
- Mahendra Jadhao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45220, OH, USA
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Dhanashri Deshmukh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45220, OH, USA
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Shi P, Ma Y, Zhang S. Non-histone lactylation: unveiling its functional significance. Front Cell Dev Biol 2025; 13:1535611. [PMID: 39925738 PMCID: PMC11802821 DOI: 10.3389/fcell.2025.1535611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Lactylation, a newly discovered protein posttranslational modification (PTM) in 2019, primarily occurs on lysine residues. Lactylation of histones was initially identified, and subsequent studies have increasingly demonstrated its widespread presence on non-histone proteins. Recently, high-throughput proteomics studies have identified a large number of lactylated proteins and sites, revealing their global regulatory role in disease development. Notably, this modification is catalyzed by lactyltransferase and reversed by delactylase, with numerous new enzymes, such as AARS1/2, reported to be involved. Specifically, these studies have revealed how lactylation exerts its influence through alterations in protein spatial conformation, molecular interactions, enzyme activity and subcellular localization. Indeed, lactylation is implicated in various physiological and pathological processes, including tumor development, cardiovascular and cerebrovascular diseases, immune cell activation and psychiatric disorders. This review provides the latest advancements in research on the regulatory roles of non-histone protein lactylation, highlighting its crucial scientific importance for future studies.
Collapse
Affiliation(s)
- Pusong Shi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongjie Ma
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China
| | - Shaolu Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China
| |
Collapse
|
4
|
Niu Y, Zhou T, Li Y. Update on the Progress of Musashi-2 in Malignant Tumors. FRONT BIOSCI-LANDMRK 2025; 30:24928. [PMID: 39862069 DOI: 10.31083/fbl24928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 01/27/2025]
Abstract
Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors. In recent years, research on the MSI protein has advanced, and many novel viewpoints and drug resistance attempts have been derived; for example, tumor protein p53 mutations and MSI-binding proteins lead to resistance to protein arginine N-methyltransferase 5-targeted therapy in lymphoma patients. Moreover, the high expression of MSI2 in pancreatic cancer might suppress its development and progression. As a significant member of the MSI family, MSI2 is closely associated with multiple malignant tumors, including hematological disorders, common abdominal tumors, and other tumor types (e.g., glioblastoma, breast cancer). MSI2 is highly expressed in the majority of tumors and is related to a poor disease prognosis. However, its specific expression levels and regulatory mechanisms may differ based on the tumor type. This review summarizes the research progress related to MSI2 in recent years, including its occurrence, migration mechanism, and drug resistance, as well as the prospect of developing tumor immunosuppressants and biomarkers.
Collapse
Affiliation(s)
- Yiting Niu
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Tao Zhou
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Yanjun Li
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Sahu C, Sahu RK, Roy A. A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting. Curr Drug Targets 2025; 26:167-187. [PMID: 39385414 DOI: 10.2174/0113894501312571240920070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.
Collapse
Affiliation(s)
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Amit Roy
- Chhatrapati Shivaji Institute of Pharmacy, Bhilai, Chhattisgarh-491001, India
| |
Collapse
|
6
|
Li J, Cheng X, Huang D, Cui R. The regulatory role of mitotic catastrophe in hepatocellular carcinoma drug resistance mechanisms and its therapeutic potential. Biomed Pharmacother 2024; 180:117598. [PMID: 39461015 DOI: 10.1016/j.biopha.2024.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
This review focuses on the role and underlying mechanisms of mitotic catastrophe (MC) in the regulation of drug resistance in hepatocellular carcinoma (HCC). HCC is one of the leading causes of cancer-related mortality worldwide, posing significant treatment challenges due to its high recurrence rates and drug resistance. Research suggests that MC, as a mechanism of cell death, plays a crucial role in enhancing the efficacy of HCC treatment by disrupting the replication and division mechanisms of tumor cells. The present review summarizes the molecular mechanisms of MC and its role in HCC drug resistance and explores the potential of combining MC with existing cancer therapies to improve treatment outcomes. Future research should focus on the in-depth elucidation of the molecular mechanisms of MC and its application in HCC therapy, providing new insights for the development of more effective treatments.
Collapse
Affiliation(s)
- Jianwang Li
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China.
| | - Xiaozhen Cheng
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Denggao Huang
- Department of Central Laboratory, Xiangya School of Medicine Affiliated Haikou Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Ronghua Cui
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| |
Collapse
|
7
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
8
|
Liu R, Liu Y, Zhang W, Zhang G, Zhang Z, Huang L, Tang N, Wang K. PCK1 attenuates tumor stemness via activating the Hippo signaling pathway in hepatocellular carcinoma. Genes Dis 2024; 11:101114. [PMID: 38560500 PMCID: PMC10978540 DOI: 10.1016/j.gendis.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/19/2023] [Accepted: 08/04/2023] [Indexed: 04/04/2024] Open
Abstract
Liver cancer stem cells were found to rely on glycolysis as the preferred metabolic program. Phosphoenolpyruvate carboxylase 1 (PCK1), a gluconeogenic metabolic enzyme, is down-regulated in hepatocellular carcinoma and is closely related to poor prognosis. The oncogenesis and progression of tumors are closely related to cancer stem cells. It is not completely clear whether the PCK1 deficiency increases the stemness of hepatoma cells and promotes the oncogenesis of hepatocellular carcinoma. Herein, the results showed that PCK1 inhibited the self-renewal property of hepatoma cells, reduced the mRNA level of cancer stem cell markers, and inhibited tumorigenesis. Moreover, PCK1 increased the sensitivity of hepatocellular carcinoma cells to sorafenib. Furthermore, we found that PCK1 activated the Hippo pathway by enhancing the phosphorylation of YAP and inhibiting its nuclear translocation. Verteporfin reduced the stemness of hepatoma cells and promoted the pro-apoptotic effect of sorafenib. Thus, combined treatment with verteporfin and sorafenib may be a potential anti-tumor strategy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China
| | - Zhirong Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
10
|
Peng W, Li Y, Cheng B, Cao M, Liu L, Yang Y, Bai S, Xiong S, Chen W, Zhao Y. Liquid-liquid phase separation-related lncRNA prognostic signature and ZNF32-AS2 as a novel biomarker in hepatocellular carcinoma. Comput Biol Med 2024; 169:107975. [PMID: 38199212 DOI: 10.1016/j.compbiomed.2024.107975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Liquid-liquid phase separation (LLPS) enhances oncogenic signaling pathways and advances cancer progression, and has been proposed as a promising cancer biomarker and intervention target. Nevertheless, doubts remain about the prognostic importance of LLPS-related long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC). METHODS An LLPS-related lncRNA prognostic signature was generated by drivers and regulators of LLPS, and was validated in external datasets. The underlying genetic changes and functional enrichment of the signature were assessed. The drug sensitivity and response to immunotherapy were predicted in patients categorized as high-risk and low-risk. Clinical samples, phase separation agonist, and dispersant were used to identify lncRNAs with the most significant expression change. Cancer cells with ZNF32-AS2 expression regulation were subjected to colony formation assay, scratch test assay, migration and invasion assay, sorafenib resistance assay, and xenograft tumor model. RESULTS The signature of LLPS-related hub lncRNAs identified through Weighted Gene Co-Expression Network Analysis showed outstanding performance in training and external validation cohorts consistently, and the molecular characteristics varied between different risk groups. Potential drugs for high-risk individuals were identified, and low-risk individuals demonstrated a more favorable reaction to immunotherapy. ZNF32-AS2 showed the most significant expression change in phase separation agonist and dispersant treatment. ZNF32-AS2 promoted the proliferation, mobility, and sorafenib resistance of liver cancer cells. CONCLUSIONS The LLPS-related lncRNA signature may help assess prognosis and predict treatment efficacy in clinical settings. LLPS-related ZNF32-AS2 promoted the proliferation, mobility, and sorafenib resistance of liver cancer cells, and may be a novel potential biomarker in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanling Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mengdie Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luyao Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Gong X, Zheng C, Jia H, Liu Y, Yang R, Chen Z, Pan Y, Li X, Liu Y. A pan-cancer analysis revealing the role of LFNG, MFNG and RFNG in tumor prognosis and microenvironment. BMC Cancer 2023; 23:1065. [PMID: 37932706 PMCID: PMC10626706 DOI: 10.1186/s12885-023-11545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Fringe is a glycosyltransferase involved in tumor occurrence and metastasis. However, a comprehensive analysis of the Fringe family members lunatic fringe (LFNG), manic fringe (MFNG), radical fringe (RFNG) in human cancers is lacking. METHODS In this study, we performed a pan-cancer analysis of Fringe family members in 33 cancer types with transcriptomic, genomic, methylation data from The Cancer Genome Atlas (TCGA) project. The correlation between Fringe family member expression and patient overall survival, copy number variation, methylation, Gene Ontology enrichment, and tumor-infiltrating lymphocytes (TILs) was investigated by using multiple databases, such as cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2. In vitro experiments and immunohistochemical assays were performed to validate our findings. RESULTS High expression levels of LFNG, MFNG, RFNG were closely associated with poor overall survival in multiple cancers, particularly in pancreatic adenocarcinoma (PAAD), uveal melanoma (UVM), and brain lower-grade glioma (LGG). Copy number variation analysis revealed that diploid and gain mutations of LFNG was significantly increased in PAAD and stomach adenocarcinoma (STAD), and significantly associated with the methylation levels in promoter regions. Significant differential genes between high and low expression groups of these Fringe family members were found to be consistently enriched in immune response and T cell activation pathway, extracellular matrix adhesion pathway, RNA splicing and ion transport pathways. Correlation between the abundance of tumor-infiltrating lymphocytes (TILs) and LFNG, MFNG, and RFNG expression showed that high LFNG expression was associated with lower TIL levels, particularly in PAAD. In vitro experiment by using pancreatic cancer PANC1 cells showed that LFNG overexpression promoted cell proliferation and invasion. Immunohistochemical assay in 90 PAAD patients verified the expression level of LFNG and its relationship with the prognosis. CONCLUSIONS Our study provides a relatively comprehensive understanding of the expression, mutation, copy number, promoter methylation level changes along with prognosis values of LFNG, MFNG, and RFNG in different tumors. High LFNG expression may serve as a poor prognosis molecular marker for PAAD.
Collapse
Affiliation(s)
- Xun Gong
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China
| | - Chenglong Zheng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China
| | - Haiying Jia
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Rui Yang
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China.
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
12
|
Abdellateif MS, Zekri ARN. Stem cell therapy for hepatocellular carcinoma and end-stage liver disease. J Egypt Natl Canc Inst 2023; 35:35. [PMID: 37926787 DOI: 10.1186/s43046-023-00194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide, especially for patients who are suffering from end-stage liver disease (ESLD). The ESLD is considered a great challenge for clinicians due to the limited chance for liver transplantation, which is the only curative treatment for those patients. Stem cell-based therapy as a part of regenerative medicine represents a promising application for ESLD patients. Many clinical trials were performed to assess the utility of bone marrow-derived stem cells as a potential therapy for patients with liver diseases. The aim of the present study is to present and review the various types of stem cell-based therapy, including the mesenchymal stem cells (MSCs), BM-derived mononuclear cells (BM-MNCs), CD34 + hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and cancer stem cells.Though this type of therapy achieved promising results for the treatment of ESLD, however still there is a confounding data regarding its clinical application. A large body of evidence is highly required to evaluate the stem cell-based therapy after long-term follow-up, with respect to the incidence of toxicity, immunogenicity, and tumorigenesis that developed in many patients.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt.
| | - Abdel-Rahman N Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, NCI, Cairo University, Cairo, 11976, Egypt
| |
Collapse
|
13
|
Xia P, Liu DH, Ren F. DBC2 Attenuates the Stemness of CD44 Positive Gastric cancer Stem Cells by Suppressing Notch1 Signaling Pathway. Stem Cell Rev Rep 2023; 19:2991-2993. [PMID: 37642901 DOI: 10.1007/s12015-023-10616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Affiliation(s)
- Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, P.R. China.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | - Da-Hua Liu
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, P.R. China
| | - Fu Ren
- Shenyang Medical College, Shenyang, Liaoning, P.R. China
| |
Collapse
|
14
|
Haiduk TS, Sicking M, Brücksken KA, Espinoza-Sánchez NA, Eder KM, Kemper B, Eich HT, Götte M, Greve B, Troschel FM. Dysregulated Stem Cell Markers Musashi-1 and Musashi-2 are Associated with Therapy Resistance in Inflammatory Breast Cancer. Arch Med Res 2023; 54:102855. [PMID: 37481823 DOI: 10.1016/j.arcmed.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND AIM While preliminary evidence points to pro-tumorigenic roles for the Musashi (MSI) RNA-binding proteins Musashi-1 (MSI1) and Musashi-2 (MSI2) in some breast cancer subtypes, no data exist for inflammatory breast cancer (IBC). METHODS MSI gene expression was quantified in IBC SUM149PT cells. We then used small interfering RNA-based MSI1 and MSI2 double knockdown (DKD) to understand gene expression and functional changes upon MSI depletion. We characterized cancer stem cell characteristics, cell apoptosis and cell cycle progression via flow cytometry, mammospheres via spheroid assays, migration and proliferation via digital holographic microscopy, and cell viability using BrdU assays. Chemoresistance was determined for paclitaxel and cisplatin with MTT assays and radioresistance was assessed with clonogenic analyses. In parallel, we supported our in vitro data by analyzing publicly available patient IBC gene expression datasets. RESULTS MSI1 and MSI2 are upregulated in breast cancer generally and IBC specifically. MSI2 is more commonly expressed compared to MSI1. MSI DKD attenuated proliferation, cell cycle progression, migration, and cell viability while increasing apoptosis. Stem cell characteristics CD44(+)/CD24(-), TERT and Oct4 were associated with MSI expression in vivo and were decreased in vitro after MSI DKD as was ALDH expression and mammosphere formation. In vivo, chemoresistant tumors were characterized by MSI upregulation upon chemotherapy application. In vitro, MSI DKD was able to alleviate chemo- and radioresistance. CONCLUSIONS The Musashi RNA binding proteins are dysregulated in IBC and associated with tumor proliferation, cancer stem cell phenotype, chemo- and radioresistance. MSI downregulation alleviates therapy resistance and attenuates tumor proliferation in vitro.
Collapse
Affiliation(s)
- Tiffany S Haiduk
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Kathrin A Brücksken
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany; Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
15
|
Jiang L, Chi J, Wang J, Fang S, Peng T, Quan G, Liu D, Huang Z, Lu C. Superparamagnetic Nanocrystals Clustered Using Poly(ethylene glycol)-Crosslinked Amphiphilic Copolymers for the Diagnosis of Liver Cancer. Pharmaceutics 2023; 15:2205. [PMID: 37765174 PMCID: PMC10535018 DOI: 10.3390/pharmaceutics15092205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Superparamagnetic iron oxide (SPIO) nanocrystals have been extensively studied as theranostic nanoparticles to increase transverse (T2) relaxivity and enhance contrast in magnetic resonance imaging (MRI). To improve the blood circulation time and enhance the diagnostic sensitivity of MRI contrast agents, we developed an amphiphilic copolymer, PCPZL, to effectively encapsulate SPIO nanocrystals. PCPZL was synthesized by crosslinking a polyethylene glycol (PEG)-based homobifunctional linker with a hydrophobic star-like poly(ε-benzyloxycarbonyl-L-lysine) segment. Consequently, it could self-assemble into shell-crosslinked micelles with enhanced colloidal stability in bloodstream circulation. Notably, PCPZL could effectively load SPIO nanocrystals with a high loading capacity of 66.0 ± 0.9%, forming SPIO nanoclusters with a diameter of approximately 100 nm, a high cluster density, and an impressive T2 relaxivity value 5.5 times higher than that of Resovist®. In vivo MRI measurements highlighted the rapid accumulation and contrast effects of SPIO-loaded PCPZL micelles in the livers of both healthy mice and nude mice with an orthotopic hepatocellular carcinoma tumor model. Moreover, the magnetic micelles remarkably enhanced the relative MRI signal difference between the tumor and normal liver tissues. Overall, our findings demonstrate that PCPZL significantly improves the stability and magnetic properties of SPIO nanocrystals, making SPIO-loaded PCPZL micelles promising MRI contrast agents for diagnosing liver diseases and cancers.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiahui Wang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Shaobin Fang
- The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Zhongjie Huang
- Department of Radiology, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518109, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| |
Collapse
|
16
|
Ferrari A, Fiocca R, Bonora E, Domizio C, Fonzi E, Angeli D, Domenico Raulli G, Mattioli S, Martinelli G, Molinari C. Detection of a Novel MSI2-C17orf64 Transcript in a Patient with Aggressive Adenocarcinoma of the Gastroesophageal Junction: A Case Report. Genes (Basel) 2023; 14:genes14040918. [PMID: 37107676 PMCID: PMC10137952 DOI: 10.3390/genes14040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Adenocarcinoma of the esophagus (EAC) and gastroesophageal junction (GEJ-AC) is associated with poor prognosis, treatment resistance and limited systemic therapeutic options. To deeply understand the genomic landscape of this cancer type, and potentially identify a therapeutic target in a neoadjuvant chemotherapy non-responder 48-year-old man, we adopted a multi-omic approach. We simultaneously evaluated gene rearrangements, mutations, copy number status, microsatellite instability and tumor mutation burden. The patient displayed pathogenic mutations of the TP53 and ATM genes and variants of uncertain significance of three kinases genes (ERBB3, CSNK1A1 and RPS6KB2), along with FGFR2 and KRAS high copy number amplification. Interestingly, transcriptomic analysis revealed the Musashi-2 (MSI2)-C17orf64 fusion that has never been reported before. Rearrangements of the RNA-binding protein MSI2 with a number of partner genes have been described across solid and hematological tumors. MSI2 regulates several biological processes involved in cancer initiation, development and resistance to treatment, and deserves further investigation as a potential therapeutic target. In conclusion, our extensive genomic characterization of a gastroesophageal tumor refractory to all therapeutic approaches led to the discovery of the MSI2-C17orf64 fusion. The results underlie the importance of deep molecular analyses enabling the identification of novel patient-specific markers to be monitored during therapy or even targeted at disease evolution.
Collapse
Affiliation(s)
- Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, FC, Italy
| | - Roberto Fiocca
- Unit of Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, 16125 Genova, Italy
- Department of Surgical and Diagnostic Sciences (DISC), University of Genova, 16125 Genova, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40126 Bologna, Italy
| | - Chiara Domizio
- Department of Life Sciences and Biotechnology, Ferrara University, 44124 Ferrara, Italy
| | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, FC, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, FC, Italy
| | | | - Sandro Mattioli
- GVM Care & Research Group, Division of Thoracic Surgery-Maria Cecilia Hospital, 48022 Cotignola, RA, Italy
- Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, FC, Italy
| | - Chiara Molinari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, FC, Italy
| |
Collapse
|
17
|
Bai S, Zhao Y, Chen W, Peng W, Wang Y, Xiong S, Li Y, Yang Y, Chen S, Cheng B, Wang R. The stromal-tumor amplifying STC1-Notch1 feedforward signal promotes the stemness of hepatocellular carcinoma. J Transl Med 2023; 21:236. [PMID: 37004088 PMCID: PMC10067215 DOI: 10.1186/s12967-023-04085-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment (TME), play crucial roles in tumor stemness. It has been shown in various cancer studies that stanniocalcin-1 (STC1) is secreted by CAFs, however, its function in HCC is still not clear. METHODS The serum concentration and intracellular expression level of STC1 were quantified by ELISA and western blotting, respectively. The role of CAF-derived STC1 in HCC stemness was investigated by sphere formation, sorafenib resistance, colony formation, and transwell migration and invasion assays in vitro and in an orthotopic liver xenograft model in vivo. An HCC tissue microarray containing 72 samples was used to evaluate the expression of STC1 and Notch1 in HCC tissues. Coimmunoprecipitation (CoIP) and dual-luciferase reporter assays were performed to further explore the underlying mechanisms. ELISAs were used to measure the serum concentration of STC1 in HCC patients. RESULTS We demonstrated that CAFs were the main source of STC1 in HCC and that CAF-derived STC1 promoted HCC stemness through activation of the Notch signaling pathway. In HCC patients, the expression of STC1 was positively correlated with Notch1 expression and poor prognosis. The co-IP assay showed that STC1 directly bound to Notch1 receptors to activate the Notch signaling pathway, thereby promoting the stemness of HCC cells. Our data further demonstrated that STC1 was a direct transcriptional target of CSL in HCC cells. Furthermore, ELISA revealed that the serum STC1 concentration was higher in patients with advanced liver cancer than in patients with early liver cancer. CONCLUSIONS CAF-derived STC1 promoted HCC stemness via the Notch1 signaling pathway. STC1 might serve as a potential biomarker for the prognostic assessment of HCC, and the stromal-tumor amplifying STC1-Notch1 feedforward signal could constitute an effective therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yanling Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Shiru Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
18
|
Zhao Z, Zhang Y, Guo E, Zhang Y, Wang Y. Periostin secreted from podoplanin-positive cancer-associated fibroblasts promotes metastasis of gastric cancer by regulating cancer stem cells via AKT and YAP signaling pathway. Mol Carcinog 2023; 62:685-699. [PMID: 36785937 DOI: 10.1002/mc.23517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are heterogeneous stromal cells present in the tumor microenvironment (TME), which play a critical role in gastric cancer (GC) progression. Here, we examined a subset of CAFs with high podoplanin (PDPN) expression, which is correlated with tumor metastasis and poor survival in GC patients. Animal models of gastric cancer liver metastasis monitored by micro-PET/CT confirmed that periostin (POSTN) derived from PDPN(+) CAFs regulated CAFs' pro-migratory ability. Mechanistically, PDPN(+) CAFs secreted POSTN to modulate cancer stem cells (CSCs) through FAK/AKT phosphorylation. Furthermore, POSTN could also activate FAK/YAP signaling in GC cells to produce increased amounts of IL-6, which in turn induced phosphorylation of PI3K/AKT in PDPN(+) CAFs. Prolonged PI3K/AKT pathway activation in PDPN(+) CAFs maintains the production of POSTN and the effect on CSC enrichment and GC cell migration. In conclusion, our study demonstrated a positive feedback loop between PDPN(+) CAFs and CSCs during GC progression and suggested a selective target for GC treatment.
Collapse
Affiliation(s)
- Zhenxiong Zhao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanqiu Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ergang Guo
- Department of Oncology, Tongji HospitalTongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Zhang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Yu ZL, Liu J, Ning ZK, Tian HK, Wu X, Huang YF, Wu ZC, Zong Z, Zhou TC. The TGF-β/Smad 2/3 signaling pathway is involved in Musashi2-induced invasion and metastasis of colorectal cancer. Mol Carcinog 2023; 62:261-276. [PMID: 36345938 DOI: 10.1002/mc.23484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
To identify Musashi2 as an effective biomarker regulated by the TGF-β/Smad2/3 signaling pathway for the precise diagnosis and treatment of colorectal cancer (CRC) through bioinformatic tools and experimental verification. The Cancer Genome Atlas, Timer, and Kaplan-Meier analyses were performed to clarify the expression of Musashi2 and its influence on the prognosis of CRC. Transforming growth factor beta 1 (TGF-β1) was used to activate the TGF-β/Smad2/3 signaling pathway to identify whether it could regulate the expression and function of Musashi2. Western blot analysis and quantitative PCR analyses were conducted to verify the expression of Musashi2. Cell counting kit-8 (CCK8), EdU, wound healing, and Transwell assays were conducted to reveal the role of Musashi2 in the proliferation, migration, and invasion of CRC. Musashi2 was upregulated in CRC and promoted proliferation and metastasis. TGF-β1 increased the expression of Musashi2, while the antagonist inducer of type II TGF-β receptor degradation-1 (ITD-1) decreased the expression. CCK8 and EdU assays demonstrated that inhibition of Musashi2 or use of ITD-1 lowered proliferation ability. The Transwell and wound healing assays showed that the migration and invasion abilities of CRC cells could be regulated by Musashi2. The above functions could be enhanced by TGF-β1 by activating the TGF-β/Smad2/3 signaling pathway and reversed by ITD-1. A positive correlation was found between Musashi2 and the TGF-β/Smad2/3 signaling pathway. TGF-β1 activates the TGF-β/Smad2/3 pathway to stimulate the expression of Musashi2, which promotes the progression of CRC. Musashi2 might become a target gene for the development of new antitumor drugs.
Collapse
Affiliation(s)
- Zhong Lin Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiang Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Kun Ning
- Department of Day Ward, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Kai Tian
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xun Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Chun Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tai Cheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Ma T, Wang D, Wu J, Xiao Y, Fan A, Cao X, Cao J, Ren K. KCTD10 functions as a tumor suppressor in hepatocellular carcinoma by triggering the Notch signaling pathway. Am J Transl Res 2023; 15:125-137. [PMID: 36777839 PMCID: PMC9908486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/01/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVE Our previous study found KCTD10 negatively regulates Notch signaling, but whether KCTD10 regulates human hepatocellular carcinoma (HCC) carcinogenicity was uncertain. METHODS We used lentivirus infection to regulate KCTD10 expression in HCC cell lines, then monitored tumor sphere formation rate, cell migration, in vitro and in vivo tumorigenicity, cancer stem cell (CSC) biomarkers and Notch signaling variation. RESULTS Down-regulation of KCTD10 in HCC cell lines (Hep3B and MHCC97H) enhanced the expression of CSC marker genes, promoted self-renewal and tumorigenic ability, and increased the CD133+ cell population. Further molecular studies showed that the transmembrane/intracellular region (NTM) of Notch1 decreased when KCTD10 was knocked down in HCC cell lines, and that the balance between P53 and Notch activity was regulated. CONCLUSIONS The results demonstrated that KCTD10 can act as a tumor suppressor in HCC cells through Notch signaling.
Collapse
Affiliation(s)
- Tao Ma
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal UniversityChangsha 410013, Hunan, China,Hunan Aerospace HospitalNo. 139 Fenglin Third Road, Yuelu District, Changsha 410205, Hunan, China
| | - Daoyuan Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal UniversityChangsha 410013, Hunan, China,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan ProvinceChangsha 410013, Hunan, China
| | - Jiajun Wu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal UniversityChangsha 410013, Hunan, China,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan ProvinceChangsha 410013, Hunan, China
| | - Yihui Xiao
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal UniversityChangsha 410013, Hunan, China,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan ProvinceChangsha 410013, Hunan, China
| | - Anfang Fan
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal UniversityChangsha 410013, Hunan, China,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan ProvinceChangsha 410013, Hunan, China
| | - Xiaocheng Cao
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal UniversityChangsha 410013, Hunan, China,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan ProvinceChangsha 410013, Hunan, China
| | - Jianguo Cao
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal UniversityChangsha 410013, Hunan, China,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan ProvinceChangsha 410013, Hunan, China
| | - Kaiqun Ren
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal UniversityChangsha 410013, Hunan, China,Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan ProvinceChangsha 410013, Hunan, China
| |
Collapse
|
21
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
22
|
Jiang L, Xue S, Xu J, Fu X, Wei J, Zhang C. Prognostic value of Musashi 2 (MSI2) in cancer patients: A systematic review and meta-analysis. Front Oncol 2022; 12:969632. [PMID: 36530989 PMCID: PMC9751961 DOI: 10.3389/fonc.2022.969632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2023] Open
Abstract
Musashi 2 (MSI2) is an RNA-binding protein that regulates mRNA translation of numerous intracellular targets and plays an important role in the development of cancer. However, the prognostic value of MSI2 in various cancers remains controversial. Herein, we conducted this meta-analysis including 21 studies with 2640 patients searched from PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure databases, and WanFang databases to accurately assess the prognostic significance of MSI2 in various cancers. Our results indicated that high MSI2 expression was significantly related to poor overall survival (HR = 1.84, 95% CI: 1.66-2.05, P < 0.001) and disease-free survival (HR = 1.73, 95% CI: 1.35-2.22, P < 0.001). In addition, MSI2 positive expression was associated with certain phenotypes of tumor aggressiveness, such as clinical stage, depth of invasion, lymph node metastasis, liver metastasis and tumor size. In conclusion, elevated MSI2 expression is closely correlated with poor prognosis in various cancers, and may serve as a potential molecular target for cancer patients.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Anesthesiology, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiaoyang Fu
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jing Wei
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
23
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
24
|
Chen W, Wang R, Zhao Y, Li Y, Wang X, Peng W, Bai S, Zheng M, Liu M, Cheng B. CD44v6+ Hepatocellular Carcinoma Cells Maintain Stemness Properties through Met/cJun/Nanog Signaling. Stem Cells Int 2022; 2022:5853707. [PMID: 36387747 PMCID: PMC9663228 DOI: 10.1155/2022/5853707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/07/2024] Open
Abstract
Cancer stem cells (CSCs) are characterized by their self-renewal and differentiation abilities. CD44v6 is a novel CSC marker that can activate various signaling pathways. Here, we hypothesized that the HGF/Met signaling pathway promotes stemness properties in CD44v6+ hepatocellular carcinoma (HCC) cells via overexpression of the transcription factor, cJun, thus representing a valuable target for HCC therapy. Magnetic activated cell sorting was used to separate the CD44v6+ from CD44v6- cells, and Met levels were regulated using lentiviral particles and the selective Met inhibitor, PHA665752. An orthotopic liver xenograft tumor model was used to assess the self-renewal ability of CD44v6+ cells in immunodeficient NOD/SCID mice. Luciferase reporter and chromatin immunoprecipitation assays were also conducted using cJun-overexpressing 293 T cells to identify the exact binding site of cJun in the Nanog promoter. Our data demonstrate that CD44v6 is an ideal surface marker of liver CSCs. CD44v6+ HCC cells express higher levels of Met and possess self-renewal and tumor growth abilities. Xenograft liver tumors were smaller in nude mice injected with shMet HCC cells. Immunohistochemical analysis of liver tissue specimens revealed that high Met levels in HCC cells were associated with poor patient prognosis. Further, a cJun binding site was identified 1700 bp upstream of the Nanog transcription start site and mutation of the cJun binding site reduced Nanog expression. In conclusion, the HGF/Met signaling pathway is important for maintenance of stemness in CD44v6+ HCC cells by enhancing expression of cJun, which binds 1700 bp upstream of the Nanog transcription start site.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Yawen Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China 563003
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Digestive Endoscopy, The Affiliated Hospital of Guizhou Medical University, Guiyi Street No. 28, Guiyang, Guizhou, China 550000
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Gastroenterology and Hepatology, Taikang Tongji Wuhan Hospital, Wuhan, China 430050
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| |
Collapse
|
25
|
RNA-binding proteins: Underestimated contributors in tumorigenesis. Semin Cancer Biol 2022; 86:431-444. [PMID: 35124196 DOI: 10.1016/j.semcancer.2022.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
mRNA export, translation, splicing, cleavage or capping determine mRNA stability, which represents one of the primary aspects regulating gene expression and function. RNA-binding proteins (RBPs) bind to their target mRNAs to regulate multiple cell functions by increasing or reducing their stability. In recent decades, studies of the role of RBPs in tumorigenesis have revealed an increasing number of proteins impacting the prognosis, diagnosis and cancer treatment. Several RBPs have been identified based on their interactions with oncogenes or tumor suppressor genes in human cancers, which are involved in apoptosis, the epithelial-mesenchymal transition (EMT), DNA repair, autophagy, cell proliferation, immune response, metabolism, and the regulation of noncoding RNAs. In this review, we propose a model showing how RBP mutations influence tumorigenesis, and we update the current knowledge regarding the molecular mechanism by which RBPs regulate cancer. Special attention is being devoted to RBPs that represent prognostic and diagnostic factors in cancer patients.
Collapse
|
26
|
Sun YT, Cai JH, Bao S. Overexpression of lncRNA HCP5 in human umbilical cord mesenchymal stem cell-derived exosomes promoted the proliferation and inhibited the apoptosis of ovarian granulosa cells via the musashi RNA-binding protein 2/oestrogen receptor alpha 1 axis. Endocr J 2022; 69:1117-1129. [PMID: 35545536 DOI: 10.1507/endocrj.ej21-0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
HCP5 has been reported to be downregulated in ovarian granulosa cells (OGCs) and to facilitate cell proliferation. Human umbilical cord mesenchymal stem cell exosome (hucMSCs-exo) treatment can prevent OGCs apoptosis in vitro. However, the functional mechanism of HCP5 and hucMSCs-exo requires further exploration. Fluorescence-activated cell sorting (FACS) was performed to measure the expression of markers related to hucMSCs. The osteogenic and adipogenic potential of hucMSCs was measured by alkaline phosphatase (ALP) and Alizarin red and by oil red-O staining, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect the mRNA and protein levels, respectively. Cell proliferation and apoptosis were measured by Cell Counting Kit-8 (CCK-8) assay, colony formation assay and flow cytometry. The interaction of HCP5/musashi RNA-binding protein 2 (MSI2) and oestrogen receptor alpha 1 (ESR1) mRNA was analysed using RNA pulldown and RIP assays. HucMSCs and exosomes were successfully isolated and identified. HucMSC-derived exosomes promoted the proliferation of OGCs and ESR1 expression and inhibited cell apoptosis. HCP5 overexpression in exosomes further enhanced these effects. MSI2 knockdown led to the opposite results. HCP5 targeted MSI2, and MSI2 knockdown reduced the decreases in HCP5 and ESR1 expression. Mechanistically, HCP5 in HucMSC-derived exosomes promoted ESR1 expression by binding to MSI2, which promoted the proliferation of OGCs.
Collapse
Affiliation(s)
- Yu-Ting Sun
- Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Jun-Hong Cai
- Central Laboratory, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, Hainan Province, China
| |
Collapse
|
27
|
Mechanisms of resistance to tyrosine kinase inhibitors in liver cancer stem cells and potential therapeutic approaches. Essays Biochem 2022; 66:371-386. [PMID: 35818992 DOI: 10.1042/ebc20220001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The administration of tyrosine kinase inhibitors (TKIs) for the treatment of advanced-stage patients is common in hepatocellular carcinoma (HCC). However, therapy resistance is often encountered, and its emergence eventually curtails long-term clinical benefits. Cancer stem cells (CSCs) are essential drivers of tumor recurrence and therapy resistance; thus, the elucidation of key hallmarks of resistance mechanisms of liver CSC-driven HCC may help improve patient outcomes and reduce relapse. The present review provides a comprehensive summary of the intrinsic and extrinsic mechanisms of TKI resistance in liver CSCs, which mediate treatment failure, and discusses potential strategies to overcome TKI resistance from a preclinical perspective.
Collapse
|
28
|
Vishnoi K, Ke R, Viswakarma N, Srivastava P, Kumar S, Das S, Singh SK, Principe DR, Rana A, Rana B. Ets1 mediates sorafenib resistance by regulating mitochondrial ROS pathway in hepatocellular carcinoma. Cell Death Dis 2022; 13:581. [PMID: 35789155 PMCID: PMC9253325 DOI: 10.1038/s41419-022-05022-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/21/2023]
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) are on a rise in the Western countries including US, attributed mostly to late detection. Sorafenib has been the first-line FDA-approved drug for advanced unresectable HCC for almost a decade, but with limited efficacy due to the development of resistance. More recently, several other multi-kinase inhibitors (lenvatinib, cabozantinib, regorafenib), human monoclonal antibody (ramucirumab), and immune checkpoint inhibitors (nivolumab, pembrolizumab) have been approved as systemic therapies. Despite this, the median survival of patients is not significantly increased. Understanding of the molecular mechanism(s) that govern HCC resistance is critically needed to increase efficacy of current drugs and to develop more efficacious ones in the future. Our studies with sorafenib-resistant (soraR) HCC cells using transcription factor RT2 Profiler PCR Arrays revealed an increase in E26 transformation-specific-1 (Ets-1) transcription factor in all soraR cells. HCC TMA studies showed an increase in Ets-1 expression in advanced HCC compared to the normal livers. Overexpression or knocking down Ets-1 modulated sorafenib resistance-related epithelial-mesenchymal transition (EMT), migration, and cell survival. In addition, the soraR cells showed a significant reduction of mitochondrial damage and mitochondrial reactive oxygen species (mROS) generation, which were antagonized by knocking down Ets-1 expression. More in-depth analysis identified GPX-2 as a downstream mediator of Ets-1-induced sorafenib resistance, which was down-regulated by Ets-1 knockdown while other antioxidant pathway genes were not affected. Interestingly, knocking down GPX2 expression significantly increased sorafenib sensitivity in the soraR cells. Our studies indicate the activation of a novel Ets-1-GPX2 signaling axis in soraR cells, targeting which might successfully antagonize resistance and increase efficacy.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Rong Ke
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Navin Viswakarma
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Piush Srivastava
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Sandeep Kumar
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Subhasis Das
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Sunil Kumar Singh
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Daniel R. Principe
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Ajay Rana
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Basabi Rana
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
29
|
[Advances in research of Musashi2 in solid tumors]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:448-456. [PMID: 35426812 PMCID: PMC9010998 DOI: 10.12122/j.issn.1673-4254.2022.03.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RNA binding protein (RBP) plays a key role in gene regulation and participate in RNA translation, modification, splicing, transport and other important biological processes. Studies have shown that abnormal expression of RBP is associated with a variety of diseases. The Musashi (Msi) family of mammals is an evolutionarily conserved and powerful RBP, whose members Msi1 and Msi2 play important roles in the regulation of stem cell activity and tumor development. The Msi family members regulate a variety of biological processes by binding and regulating mRNA translation, stability and downstream cell signaling pathways, and among them, Msi2 is closely related to embryonic growth and development, maintenance of tumor stem cells and development of hematological tumors. Accumulating evidence has shown that Msi2 also plays a crucial role in the development of solid tumors, mainly by affecting the proliferation, invasion, metastasis and drug resistance of tumors, involving Wnt/β-catenin, TGF-β/SMAD3, Akt/mTOR, JAK/STAT, Numb and their related signaling pathways (Notch, p53, and Hedgehog pathway). Preclinical studies of Msi2 gene as a therapeutic target for tumor have achieved preliminary results. This review summarizes the molecular structure, physiological function, role of Msi2 in the development and progression of various solid tumors and the signaling pathways involved.
Collapse
|
30
|
Chen J, Zhou C, Liu Y. Establishing a cancer driver gene signature-based risk model for predicting the prognoses of gastric cancer patients. Aging (Albany NY) 2022; 14:2383-2399. [PMID: 35288483 PMCID: PMC8954960 DOI: 10.18632/aging.203948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/24/2022] [Indexed: 12/09/2022]
Abstract
Despite the high prevalence of gastric cancer (GC), molecular biomarkers that can reliably detect GC are yet to be discovered. The present study aimed to establish a robust gene signature based on cancer driver genes (CDGs) that can predict GC prognosis. Transcriptional profiles and clinical data from GC patients were analyzed using univariate Cox regression analysis and the least absolute shrinkage and selection (LASSO)-penalized Cox regression analysis to select optimal prognosis-related genes for modeling. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier analyses were done to assess the predictive power of this gene signature. A nomogram model for prediction of survival of GC patients was established using the CDG signature and clinical information, and a seven-CDG signature was identified. Risk scores were calculated using this signature, and patients were subsequently divided into high- and low-risk groups; high-risk patients in the training and validation datasets had poorer prognoses than low-risk patients. Cox regression analysis revealed that the CDG signature is an independent prognostic factor for GC. The signature and other clinical features were used to construct a nomogram for predicting overall GC patient survival. Calibration and decision curve analysis showed that the nomogram accurately predicted survival, highlighting its clinical utility. Thus, we established a novel CDG signature and nomogram for predicting GC prognosis, which may facilitate personalized treatment of GC.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Ying Liu
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
31
|
Han Y, Azuma K, Watanabe S, Semba K, Nakayama J. Metastatic profiling of HER2-positive breast cancer cell lines in xenograft models. Clin Exp Metastasis 2022; 39:467-477. [PMID: 35103869 DOI: 10.1007/s10585-022-10150-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023]
Abstract
Most studies on breast cancer metastasis have been performed using triple-negative breast cancer cells; thus, subtype-dependent metastatic ability of breast cancer is poorly understood. In this research, we performed intravenous injection (IVI) and intra-caudal arterial injections using nine human epidermal growth factor receptor-2 (HER2)-positive breast cancer cell lines for evaluating their metastatic abilities. Our results showed that MDA-MB-453, UACC-893, and HCC-202 had strong bone metastatic abilities, whereas HCC-2218 and HCC-1419 did not show bone metastasis. HER2-positive cell lines could hardly metastasize to the lung through IVI. From the genomic analysis, gene signatures were extracted according to the breast cancer subtypes and their metastatic preferences. The UACC-893 cell line was identified as a useful model for the metastasis study of HER2-positive breast cancer. Combined with our previous result on brain metastasis ability, we provide a characteristic metastasis profile of HER2-positive breast cancer cell lines in this study.
Collapse
Affiliation(s)
- Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kazushi Azuma
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
32
|
Song M, Kuerban M, Zhao L, Peng X, Xu Y. Inhibition of RFX6 Suppresses the Invasive Ability of Tumor Cells Through the Notch Pathway and Affects Tumor Immunity in Hepatocellular Carcinoma. Front Oncol 2022; 11:801222. [PMID: 34988028 PMCID: PMC8721116 DOI: 10.3389/fonc.2021.801222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background The DNA-binding protein RFX6 was overexpressed in hepatocellular carcinoma, and its expression level was correlated with the prognosis and immune cell infiltration in liver hepatocellular carcinoma. However, the mechanism of the abnormal expression and the biological effects of RFX6 in liver cancer remains unknown. Methods To understand the specific expression mechanism of RFX6 in liver cancer, we performed bioinformatic prediction, CHIP-qPCR assay, co-IP, and dual-luciferase assay to assess the regulating mechanism of RFX6. In the meantime, a series of biological experiments in vivo and in vitro were conducted to analyze the biological significance of RFX6 in hepatocellular carcinoma. Results We demonstrated that knockdown of RFX6 in liver cancer cells significantly suppressed the proliferation, migration, and invasion of cancer cells. Moreover, inhibition of RFX6 could affect the immune response of T cells. Among a number of interacting proteins, we revealed that RFX6 directly binds to DTX2, a regulator of the Notch signaling pathway by targeting NOTCH1, and helps in its transcription stability. Furthermore, we discovered that miRNA-542-3p, the expression of which was decreased in hepatocellular carcinoma, was directly involved in the negative regulation of the expression of RFX6. Conclusion In summary, we discovered that the miRNA-542-3p–RFX6–DTX2–NOTCH1 regulatory pathway played significant roles in the tumor progression of liver hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mu Song
- Department of Surgical Oncology, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China.,Department of Thyroid and Breast Surgery, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Mulati Kuerban
- Department of Surgical Oncology, The Seventh Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Lu Zhao
- Department of Surgical Oncology, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China.,Department of Thyroid and Breast Surgery, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Xiaolin Peng
- Department of Thyroid and Breast Surgery, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Youqin Xu
- Department of Thyroid and Breast Surgery, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
33
|
Zhu Y, Zhou B, Hu X, Ying S, Zhou Q, Xu W, Feng L, Hou T, Wang X, Zhu L, Jin H. LncRNA LINC00942 promotes chemoresistance in gastric cancer by suppressing MSI2 degradation to enhance c-Myc mRNA stability. Clin Transl Med 2022; 12:e703. [PMID: 35073459 PMCID: PMC8785984 DOI: 10.1002/ctm2.703] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chemoresistance to cisplatin (DDP) remains a major challenge in advanced gastric cancer (GC) treatment. Although accumulating evidence suggests an association between dysregulation of long non-coding RNAs (lncRNAs) and chemoresistance, the regulatory functions and complexities of lncRNAs in modulating DDP-based chemotherapy in GC remain under-investigated. This study was designed to explore the critical chemoresistance-related lncRNAs in GC and identify novel therapeutic targets for patients with chemoresistant GC. METHODS Chemoresistance-related lncRNAs were identified through microarray and verified through a quantitative real-time polymerase chain reaction (qRT-PCR). Proteins bound by lncRNAs were identified through a human proteome array and validated through RNA immunoprecipitation (RIP) and RNA pull-down assays. Co-immunoprecipitation and ubiquitination assays were performed to explore the molecular mechanisms of the Musashi2 (MSI2) post-modification. The effects of LINC00942 (LNC942) and MSI2 on DDP-based chemotherapy were investigated through MTS, apoptosis assays and xenograft tumour formation in vivo. RESULTS LNC942 was found to be up-regulated in chemoresistant GC cells, and its high expression was positively correlated with the poor prognosis of patients with GC. Functional studies indicated that LNC942 confers chemoresistance to GC cells by impairing apoptosis and inducing stemness. Mechanically, LNC942 up-regulated the MSI2 expression by preventing its interaction with SCFβ-TRCP E3 ubiquitin ligase, eventually inhibiting ubiquitination. Then, LNC942 stabilized c-Myc mRNA in an N6-methyladenosine (m6 A)-dependent manner. As a potential m6 A recognition protein, MSI2 stabilized c-Myc mRNA with m6 A modifications. Moreover, inhibition of the LNC942-MSI2-c-Myc axis was found to restore chemosensitivity both in vitro and in vivo. CONCLUSIONS These results uncover a chemoresistant accelerating function of LNC942 in GC, and disrupting the LNC942-MSI2-c-Myc axis could be a novel therapeutic strategy for GC patients undergoing chemoresistance.
Collapse
Affiliation(s)
- Yiran Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang ProvinceCancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Bingluo Zhou
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang ProvinceCancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang ProvinceCancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Shilong Ying
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang ProvinceCancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qiyin Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang ProvinceCancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang ProvinceCancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Tianlun Hou
- Department of Clinical MedicineWenzhou Medical UniversityWenzhouChina
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang ProvinceCancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang ProvinceCancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
34
|
Zhao Y, Wang Y, Chen W, Bai S, Peng W, Zheng M, Yang Y, Cheng B, Luan Z. Targeted intervention of eIF4A1 inhibits EMT and metastasis of pancreatic cancer cells via c-MYC/miR-9 signaling. Cancer Cell Int 2021; 21:670. [PMID: 34906136 PMCID: PMC8672469 DOI: 10.1186/s12935-021-02390-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background Owing to the lack of effective treatment options, early metastasis remains the major cause of pancreatic ductal adenocarcinoma (PDAC) recurrence and mortality. However, the molecular mechanism of early metastasis is largely unknown. We characterized the function of eukaryotic translation initiation factors (eIFs) in epithelial-mesenchymal-transition (EMT) and metastasis in pancreatic cancer cells to investigate whether eIFs and downstream c-MYC affect EMT and metastasis by joint interference. Methods We used The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to analyze eIF4A1 expression in PDAC tissues and further validated the findings with a microarray containing 53 PDAC samples. Expression regulation and pharmacological inhibition of eIF4A1 and c-MYC were performed to determine their role in migration, invasion, and metastasis in pancreatic cancer cells in vitro and in vivo. Results Elevated eIF4A1 expression was positively correlated with lymph node infiltration, tumor size, and indicated a poor prognosis. eIF4A1 decreased E-cadherin expression through the c-MYC/miR-9 axis. Loss of eIF4A1 and c-MYC decreased the EMT and metastasis capabilities of pancreatic cancer cells, whereas upregulation of eIF4A1 attenuated the inhibition of EMT and metastasis induced by c-MYC downregulation. Treatment with the eIF4A1 inhibitor rocaglamide (RocA) or the c-MYC inhibitor Mycro3 either alone or in combination significantly decreased the expression level of EMT markers in pancreatic cancer cells in vitro. However, the efficiency and safety of RocA alone were not inferior to those of the combination treatment in vivo. Conclusion Overexpression of eIF4A1 downregulated E-cadherin expression through the c-MYC/miR-9 axis, which promoted EMT and metastasis of pancreatic cancer cells. Despite the potential feedback loop between eIF4A1 and c-MYC, RocA monotherapy is a promising treatment inhibiting eIF4A1-induced PDAC metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02390-0.
Collapse
Affiliation(s)
- Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.,Departement of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.
| | - Zhou Luan
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.
| |
Collapse
|
35
|
Bai S, Chen W, Zheng M, Wang X, Peng W, Zhao Y, Wang Y, Xiong S, Cheng B. Spindle and kinetochore-associated complex subunit 3 (SKA3) promotes stem cell-like properties of hepatocellular carcinoma cells through activating Notch signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1361. [PMID: 34733913 PMCID: PMC8506556 DOI: 10.21037/atm-21-1572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022]
Abstract
Background Cancer stemness contributes to hepatocellular carcinoma (HCC) initiation, metastasis, drug resistance, and recurrence. The spindle and kinetochore-associated (SKA) complex has been shown to be involved in tumor progression; however, its effects on cancer stem cell-like properties have not yet been examined. This research sought to study each subunit of the SKA complex in HCC systematically. Methods Bioinformatic analyses were carried out to examine the expression and clinical data of the SKA complex’s each subunit in HCC. The expression of the target genes was detected by quantitative reverse transcription-polymerase chain reaction and Western blot assays. Clone formation and Transwell assays were performed to assess the proliferation and migration abilities of the SKA complex’s each subunit. Sphere formation assays and subcutaneous xenograft experiments were performed to investigate the effects of SKA complex subunit 3 (SKA3) on the self-renewal and tumorigenic abilities of HCC. Results Each subunit of the SKA complex was highly expressed in HCC, but only SKA complex subunit 1 (SKA1) and SKA3 were associated with the poor overall survival of HCC patients. Additionally, the HCC cells overexpressing SKA3 exhibited increased migration, invasion, proliferation, self-renewal, Sorafenib resistance and tumorigenic abilities. Notch signaling played a vital role in the process by which SKA3 promoted HCC stemness. Conclusions SKA3 promotes HCC stem cell-like properties via the Notch signaling pathway. As SKA3 appears to act as a regulator of stemness in HCC, it might be a potential molecular target for HCC.
Collapse
Affiliation(s)
- Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Digestive Endoscopy, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Xu XF, Yang XK, Song Y, Chen BJ, Yu X, Xu T, Chen ZL. Dysregulation of Non-coding RNAs mediates Cisplatin Resistance in Hepatocellular Carcinoma and therapeutic strategies. Pharmacol Res 2021; 176:105906. [PMID: 34543740 DOI: 10.1016/j.phrs.2021.105906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth major contributor to cancer-related deaths worldwide, and patients mostly have poor prognosis. Although several drugs have been approved for the treatment of HCC, cisplatin (CDDP) is still applied in treatment of HCC as a classical chemotherapeutic drug. Unfortunately, the emergence of CDDP resistance has caused HCC patients to exhibit poor drug response. How to mitigate or even reverse CDDP resistance is an urgent clinical issue to be solved. Because of critical roles in biological functional processes and disease developments, non-coding RNAs (ncRNAs) have been extensively studied in HCC in recent years. Importantly, ncRNAs have also been demonstrated to be involved in the development of HCC to CDDP resistance process. Therefore, this review highlighted the regulatory roles of ncRNAs in CDDP resistance of HCC, elucidated the multiple potential mechanisms by which HCC develops CDDP resistance, and attempted to propose multiple drug delivery systems to alleviate CDDP resistance. Recently, ncRNA-based therapy may be a feasible strategy to alleviate CDDP resistance in HCC. Meanwhile, nanoparticles can overcome the deficiencies in ncRNA-based therapy and make it possible to reverse tumor drug resistance. The combined use of these strategies provides clues for reversing CDDP resistance and overcoming the poor prognosis of HCC.
Collapse
Affiliation(s)
- Xu-Feng Xu
- Department of Hemorrhoid and Fistula of Traditional Chinese Medicine, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui, 238000, P.R. China.
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Yang Song
- Department of Pain Treatment, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Bang-Jie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Xiao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China; School of Pharmacy, Anhui Key Lab. of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui, 230032, P. R. China.
| | - Zhao-Lin Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
37
|
Heyes E, Schmidt L, Manhart G, Eder T, Proietti L, Grebien F. Identification of gene targets of mutant C/EBPα reveals a critical role for MSI2 in CEBPA-mutated AML. Leukemia 2021; 35:2526-2538. [PMID: 33623142 PMCID: PMC7611617 DOI: 10.1038/s41375-021-01169-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Mutations in the gene encoding the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) occur in 10-15% of acute myeloid leukemia (AML). Frameshifts in the CEBPA N-terminus resulting in exclusive expression of a truncated p30 isoform represent the most prevalent type of CEBPA mutations in AML. C/EBPα p30 interacts with the epigenetic machinery, but it is incompletely understood how p30-induced changes cause leukemogenesis. We hypothesized that critical effector genes in CEBPA-mutated AML are dependent on p30-mediated dysregulation of the epigenome. We mapped p30-associated regulatory elements (REs) by ATAC-seq and ChIP-seq in a myeloid progenitor cell model for p30-driven AML that enables inducible RNAi-mediated knockdown of p30. Concomitant p30-dependent changes in gene expression were measured by RNA-seq. Integrative analysis identified 117 p30-dependent REs associated with 33 strongly down-regulated genes upon p30-knockdown. CRISPR/Cas9-mediated mutational disruption of these genes revealed the RNA-binding protein MSI2 as a critical p30-target. MSI2 knockout in p30-driven murine AML cells and in the CEBPA-mutated human AML cell line KO-52 caused proliferation arrest and terminal myeloid differentiation, and delayed leukemia onset in vivo. In summary, this work presents a comprehensive dataset of p30-dependent effects on epigenetic regulation and gene expression and identifies MSI2 as an effector of the C/EBPα p30 oncoprotein.
Collapse
Affiliation(s)
- Elizabeth Heyes
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Luisa Schmidt
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Gabriele Manhart
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Thomas Eder
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Ludovica Proietti
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Florian Grebien
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria.
| |
Collapse
|
38
|
Chen M, Su J, Feng C, Liu Y, Zhao L, Tian Y. Chemokine CCL20 promotes the paclitaxel resistance of CD44 +CD117 + cells via the Notch1 signaling pathway in ovarian cancer. Mol Med Rep 2021; 24:635. [PMID: 34278466 PMCID: PMC8280726 DOI: 10.3892/mmr.2021.12274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Studies have found that C‑C motif chemokine ligand 20 (CCL20)/C‑C motif chemokine receptor 6 (CCR6)/notch receptor 1 (Notch1) signaling serves an important role in various diseases, but its role and mechanism in ovarian cancer remains to be elucidated. The aim of the present study was to investigate the underlying mechanism of CCL20/CCR6/Notch1 signaling in paclitaxel (PTX) resistance of a CD44+CD117+ subgroup of cells in ovarian cancer. The CD44+CD117+ cells were isolated from SKOV3 cells, followed by determination of the PTX resistance and the CCR6/Notch1 axis. Notch1 was silenced in the CD44+CD117+ subgroup and these cells were treated with CCL20, followed by examination of PTX resistance and the CCR6/Notch1 axis. Furthermore, in nude mice, CD44+CD117+ and CD44‑CD117‑ cells were used to establish the xenograft model and cells were treated with PTX and/or CCL20, followed by proliferation, apoptosis, reactive oxygen species (ROS) and mechanism analyses. Higher expression levels of Oct4, CCR6, Notch1 and ATP binding cassette subfamily G member 1 (ABCG1), increased sphere formation ability, IC50 and proliferative ability, as well as lower ROS levels and apoptosis were observed in CD44+CD117+ cells compared with the CD44‑CD117‑ cells. It was found that CCL20 could significantly increase the expression levels of Oct4, CCR6, Notch1 and ABCG1, enhance the IC50, sphere formation ability and proliferation, as well as decrease the ROS and apoptosis levels in the CD44+CD117+ cells. However, Notch1 knockdown could markedly reverse these changes. Moreover, CCL20 could significantly increase the proliferation and expression levels of Oct4, CCR6, Notch1 and ABCG1 in the CD44+CD117+ groups compared with the CD44‑CD117‑ groups. After treatment with PTX, apoptosis and ROS levels were decreased in the CD44+CD117+ groups compared with the CD44‑CD117‑ groups. Collectively, the present results demonstrated that, via the Notch1 pathway, CCL20/CCR6 may promote the stemness and PTX resistance of CD44+CD117+ cells in ovarian cancer.
Collapse
Affiliation(s)
- Min Chen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Juan Su
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Chunmei Feng
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Ying Liu
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Li Zhao
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
39
|
Xu Z, Huang X, Lin Q, Xiang W. Long non-coding RNA TUG1 knockdown promotes autophagy and improves acute renal injury in ischemia-reperfusion-treated rats by binding to microRNA-29 to silence PTEN. BMC Nephrol 2021; 22:288. [PMID: 34429073 PMCID: PMC8385981 DOI: 10.1186/s12882-021-02473-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) is increased under the condition of ischemia. This study intended to identify the mechanism of TUG1 in renal ischemia-reperfusion (I/R). Methods First, a rat model of acute renal injury induced by I/R was established, followed by the measurement of blood urea nitrogen (BUN), serum creatine (SCr), methylenedioxyphetamine (MDA) and superoxide dismutase (SOD) in the serum of rats. TUG1 was knocked down in I/R rats (ko-TUG1 group). Next, histological staining was used to evaluate the pathological damage and apoptosis of rat kidney. Western blot analysis was used to detect the levels of apoptosis- and autophagy-related proteins and transmission electron microscope was used to observe autophagosomes. Autophagy and apoptosis were evaluated after inhibition of the autophagy pathway using the inhibitor 3-MA. The targeting relation among TUG1, microRNA (miR)-29 and phosphatase and tensin homolog (PTEN) were validated. Lastly, the effects of TUG1 on biological behaviors of renal tubular cells were evaluated in vitro. Results In vivo, the levels of BUN, SCr and MDA in the serum of I/R-treated rats were increased while SOD level and autophagosomes were reduced, tubule epithelial cells were necrotic, and TUG1 was upregulated in renal tissues of I/R-treated rats, which were all reversed in rats in the ko-TUG1 group. Autophagy inhibition (ko-TUG1 + 3-MA group) averted the protective effect of TUG1 knockdown on I/R-treated rats. TUG1 could competitively bind to miR-29 to promote PTEN expression. In vitro, silencing TUG1 (sh-TUG1 group) promoted viability and autophagy of renal tubular cells and inhibited apoptosis. Conclusions LncRNA TUG can promote PTEN expression by competitively binding to miR-29 to promote autophagy and inhibited apoptosis, thus aggravating acute renal injury in I/R-treated rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02473-0.
Collapse
Affiliation(s)
- Zhiquan Xu
- Department of Nephrology, Rheumatology and Immunology, Hainan Women and Children's Medical Center, 570300, Haikou, Hainan, P.R. China
| | - Xiaoyan Huang
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, 570206, Haikou, Hainan, P.R. China
| | - Qiuyu Lin
- Department of Respiratory, Hainan Maternal and Children's Medical Center, 570000, Haikou, Hainan, P.R. China
| | - Wei Xiang
- Department of Pediatrics, Hainan Maternal and Children's Medical Center, Changbin Road, Xiuying District, Hainan, 571199, Haikou, P.R. China.
| |
Collapse
|
40
|
Xia M, Duan LJ, Lu BN, Pang YZ, Pang ZR. LncRNA AFAP1-AS1/miR-27b-3p/VEGF-C axis modulates stemness characteristics in cervical cancer cells. Chin Med J (Engl) 2021; 134:2091-2101. [PMID: 34334630 PMCID: PMC8440026 DOI: 10.1097/cm9.0000000000001665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) functions as a competing endogenous RNA to regulate target genes expression by sponging microRNAs (miRs) to play cancer-promoting roles in cancer stem cells. However, the regulatory mechanism of AFAP1-AS1 in cervical cancer (CC) stem cells is unknown. The present study aimed to provide a new therapeutic target for the clinical treatment of CC. Methods: Hyaluronic acid receptor cluster of differentiation 44 variant exon 6 (CD44v6)(+) CC cells were isolated by flow cytometry (FCM). Small interfering RNAs of AFAP1-AS1 (siAFAP1-AS1) were transfected into the (CD44v6)(+) cells. The levels of AFAP1-AS1 were measured by quantitative real-time PCR (qRT-PCR). Sphere formation assay, cell cycle analysis, and Western blotting were used to detect the effect of siAFAP1-AS1. RNA pull-down and luciferase reporter assay were used to verify the relationship between miR-27b-3p and AFAP1-AS1 or vascular endothelial growth factor (VEGF)-C. Results: CD44v6(+) CC cells had remarkable stemness and a high level of AFAP1-AS1. However, AFAP1-AS1 knockdown with siAFAP1-AS1 suppressed the cell cycle transition of G(1)/S phase and inhibited self-renewal of CD44v6(+) CC cells, the levels of the stemness markers octamer-binding transcription factor 4 (OCT4), osteopontin (OPN), and cluster of differentiation 133 (CD133), and the epithelial-mesenchymal transition (EMT)-related proteins Twist1, matrix metalloprotease (MMP)-9, and VEGF-C. In the mechanism study, miR-27b-3p/VEGF-C signaling was demonstrated to be a key downstream of AFAP1-AS1 in the CD44v6(+) CC cells. Conclusions: LncRNA AFAP1-AS1 knockdown inhibits the CC cell stemness by upregulating miR-27b-3p to suppress VEGF-C.
Collapse
Affiliation(s)
- Meng Xia
- School of Pharmacy, Minzu University of China, Beijing 100081, China Department of Orthopedics, Bayannaoer City Hospital, Bayannaoer, Inner Mongolia 015000, China Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing 100081, China
| | | | | | | | | |
Collapse
|
41
|
Zhao H, Bi M, Lou M, Yang X, Sun L. Downregulation of SOX2-OT Prevents Hepatocellular Carcinoma Progression Through miR-143-3p/MSI2. Front Oncol 2021; 11:685912. [PMID: 34322386 PMCID: PMC8311736 DOI: 10.3389/fonc.2021.685912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE LncRNA SOX2-OT is involved in a variety of cancers. This study explored the effect of lncRNA SOX2-OT on hepatocellular carcinoma (HCC) cells. METHODS SOX2-OT expressions were detected in HCC tissues and normal tissues, normal cells, and HCC cells. The relationship between SOX2-OT and prognosis was analyzed by TCGA. After SOX2-OT expression was inhibited using siRNA, HCC cell malignant behaviors were evaluated. The subcellular localization of SOX2-OT in HCC cells was predicted and analyzed. The binding relationships among SOX2-OT, miR-143-3p, and MSI2 were analyzed by bioinformatics website, dual-luciferase assay, and RNA pull-down assay. The effect of miR-143-3p and MSI2 on the regulation of SOX2-OT on biological behaviors of HCC cells was confirmed by functional rescue experiments. The effect of SOX2-OT on the tumorigenicity of HCC was evaluated by subcutaneous tumorigenesis in nude mice. RESULTS SOX2-OT was highly expressed in HCC cells and tissues. The prognosis was poor in HCC patients with high SOX2-OT expression. Downregulating SOX2-OT inhibited HCC cell malignant behaviors. SOX2-OT bound to miR-143-3p to promote MSI2 expression. Downregulating miR-143-3p or upregulating MSI2 averted the role of si-SOX2-OT in HCC cells. Nude mouse subcutaneous tumorigenesis showed that SOX2-OT downregulation decreased the tumorigenicity of HCC, and affected the levels of miR-143-3p and MSI2 mRNA in tumor tissues. CONCLUSION SOX2-OT inhibited the targeted inhibition of miR-143-3p on MSI2 through competitively binding to miR-143-3p, thus promoting MSI2 expression and proliferation, invasion, and migration of HCC cells.
Collapse
Affiliation(s)
- Hongfeng Zhao
- Department of Oncology, Xinxiang Central Hospital, The Fourth Clinical of Xinxiang Medical University, Xinxiang, China
| | | | | | | | | |
Collapse
|
42
|
Sun J, Sheng W, Ma Y, Dong M. Potential Role of Musashi-2 RNA-Binding Protein in Cancer EMT. Onco Targets Ther 2021; 14:1969-1980. [PMID: 33762829 PMCID: PMC7982713 DOI: 10.2147/ott.s298438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Local invasion and distant metastasis are the key hallmarks in the aggressive progression of malignant tumors, including the ability of cancer cells to detach from the extracellular matrix overcome apoptosis, and disseminate into distant sites. It is generally believed that this malignant behavior is stimulated by epithelial-mesenchymal transition (EMT). Musashi (MSI) RNA-binding proteins, belonging to the evolutionarily conserved RNA-binding proteins (RBP) family, were originally discovered to regulate asymmetric cell division during embryonic development. Recently, Musashi-2 (MSI2), as a key member of MSI family, has been prevalently reported to be tightly associated with the advanced clinical stage of several cancers. Multiple oncogenic signaling pathways mediated by MSI2 play vital roles in EMT. Here, we systematically reviewed the detailed role and signal networks of MSI2 in regulating cancer development, especially in EMT signal transduction, involving EGF, TGF-β, Notch, and Wnt pathways.
Collapse
Affiliation(s)
- Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
43
|
Zhang J, Zheng X, Wang P, Wang J, Ding W. Role of apoptosis repressor with caspase recruitment domain (ARC) in cell death and cardiovascular disease. Apoptosis 2021; 26:24-37. [PMID: 33604728 DOI: 10.1007/s10495-020-01653-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly effective and multifunctional inhibitor of apoptosis that is mainly expressed in postmitotic cells such as cardiomyocytes and skeletal muscle cells. ARC contains a C-terminal region rich in proline and glutamic acid residues and an N-terminal caspase recruitment domain (CARD). The CARD is originally described as a protein-binding motif that interacts with caspase through a CARD-CARD interaction. Initially, the inhibitory effect of ARC was only found in apoptosis, however, it was later found that ARC also played a regulatory role in other types of cell death. As a powerful cardioprotective factor, ARC can protect the heart by inhibiting the death of cardiomyocytes in various ways. ARC can reduce the cardiomyocyte apoptotic response to various stresses and injuries, including extrinsic apoptosis induced by death receptor ligands, cellular Ca2+ homeostasis and the dysregulation of endoplasmic reticulum (ER) stress, oxidative stress and hypoxia. In addition, changes in ARC transcription and translation levels in the heart can cause a series of physiological and pathological changes, and ARC can also perform corresponding functions through interactions with other molecules. Although there has been much research on ARC, the functional redundancy among proteins shows that ARC still has much research value. This review summarizes the molecular characteristics of ARC, its roles in the various death modes in cardiomyocytes and the roles of ARC in cardiac pathophysiology. This article also describes the potential therapeutic effect and research prospects of ARC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, 266000, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xianxin Zheng
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Peiyan Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
44
|
Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep 2021; 17:1215-1238. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Liu
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
45
|
Ye Z, Zheng M, Zeng Y, Wei S, Wang Y, Lin Z, Shu C, Xie Y, Zheng Q, Chen L. Bioinformatics Analysis Reveals an Association Between Cancer Cell Stemness, Gene Mutations, and the Immune Microenvironment in Stomach Adenocarcinoma. Front Genet 2020; 11:595477. [PMID: 33362856 PMCID: PMC7759681 DOI: 10.3389/fgene.2020.595477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs), characterized by infinite proliferation and self-renewal, greatly challenge tumor therapy. Research into their plasticity, dynamic instability, and immune microenvironment interactions may help overcome this obstacle. Data on the stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor mutation burden (TMB), and corresponding clinical characteristics were obtained from The Cancer Genome Atlas (TCGA) and UCSC Xena Browser. The infiltrating immune cells in stomach adenocarcinoma (STAD) tissues were predicted using the CIBERSORT method. Differentially expressed genes (DEGs) between the normal and tumor tissues were used to construct prognostic models with weighted gene co-expression network analysis (WGCNA) and Lasso regression. The association between cancer stemness, gene mutations, and immune responses was evaluated in STAD. A total of 6,739 DEGs were identified between the normal and tumor tissues. DEGs in the brown (containing 19 genes) and blue (containing 209 genes) co-expression modules were used to perform survival analysis based on Cox regression. A nine-gene signature prognostic model (ARHGEF38-IT1, CCDC15, CPZ, DNASE1L2, NUDT10, PASK, PLCL1, PRR5-ARHGAP8, and SYCE2) was constructed from 178 survival-related DEGs that were significantly related to overall survival, clinical characteristics, tumor microenvironment immune cells, TMB, and cancer-related pathways in STAD. Gene correlation was significant across the prognostic model, CNVs, and drug sensitivity. Our findings provide a prognostic model and highlight potential mechanisms and associated factors (immune microenvironment and mutation status) useful for targeting CSCs.
Collapse
Affiliation(s)
- Zaisheng Ye
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Miao Zheng
- Department of Clinical Laboratory, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yi Zeng
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Shenghong Wei
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yi Wang
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zhitao Lin
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Chen Shu
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yunqing Xie
- Department of Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Qiuhong Zheng
- Department of Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Luchuan Chen
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
46
|
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, Zhao Y. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res 2020; 10:2993-3036. [PMID: 33042631 PMCID: PMC7539784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the past decade, there have been improvements in non-drug therapies and drug therapies for HCC treatment. Non-drug therapies include hepatic resection, liver transplantation, transarterial chemoembolization (TACE) and ablation. The former two surgical treatments are beneficial for patients with early and mid-stage HCC. As the first choice for non-surgical treatment, different TACE methods has been developed and widely used in combination therapy. Ablation has become an important alternative therapy for the treatment of small HCC or cases of unresectable surgery. Meanwhile, the drugs including small molecule targeted drugs like sorafenib and lenvatinib, monoclonal antibodies such as nivolumab are mainly used for the systematic treatment of advanced HCC. Besides strategies described above are recommended as first-line therapies due to their significant increase in mean overall survival, there are also potential drugs in clinical trials or under preclinical development. In addition, a number of potential preclinical surgical or adjuvant therapies are being studied, such as oncolytic virus, mesenchymal stem cells, biological clock, gut microbiome composition and peptide vaccine, all of which have shown different degrees of inhibition on HCC. With some potential anti-HCC drugs being reported, many promising therapeutic targets in related taxonomic signaling pathways including cell cycle, epigenetics, tyrosine kinase and so on that affect the progression of HCC have also been found. Together, the rational application of existing therapies and drugs as well as the new strategies will bring a bright future for the global cure of HCC in the coming decades.
Collapse
Affiliation(s)
- Zhiqian Chen
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Hao Xie
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Mingming Hu
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Tianyi Huang
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Yanan Hu
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Na Sang
- Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan UniversityChengdu 610041, China
| | - Yinglan Zhao
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
- Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan UniversityChengdu 610041, China
| |
Collapse
|
47
|
RNA-binding protein Musashi2 regulates Hippo signaling via SAV1 and MOB1 in pancreatic cancer. Med Oncol 2020; 37:84. [PMID: 32780197 DOI: 10.1007/s12032-020-01384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Musashi 2 (MSI2), a member of the Musashi RNA-binding family, is reported to be an oncoprotein in pancreatic ductal adenocarcinoma (PDAC), but the mechanisms of MSI2 in the development and progression of PDAC have not been fully demonstrated. In this research, we studied the clinical significance, biologic effects and the underlying mechanism of MSI2 in the progression of PDAC. The expression of MSI2, Mps-binding protein 1 (MOB1) and Salvador family WW domain-containing protein 1 (SAV1) in PDAC tissues were analyzed immunohistochemically. The biologic effects of MSI2 regarding PDAC cell proliferation, migration and invasion were studied using gain- and loss-of-function assays. MSI2 regulated Hippo signaling pathway via SAV1 and MOB1 was tested in several PDAC cell lines, and the mechanisms were studied using molecular biologic methods. The expression of MSI2 was significantly increased in PDAC cell lines and tissues, and positively associated with tumor poorer differentiation, lymph nodes metastasis and TNM stages. Overexpression of MSI2 promoted PDAC cells proliferation, migration and invasion. Further studies demonstrated that MSI2 regulated the Hippo signaling pathway via directly binding to the mRNAs of SAV1 and MOB1, and controlled the translation and stability of SAV1 and the translation of MOB1. This study demonstrated that MSI2 regulated the Hippo signaling pathway via suppressing SAV1 and MOB1 at post-transcriptional level and promoted PDAC progression.
Collapse
|