1
|
Zhu L, Shi W, Tuoheti Y, Gong GJ, Chen M, Liang ZH, Abudureheman A, Gao WG. Long noncoding RNA LINC01811 sponges miR-214-3p and upregulates YAP1 thereby promoting the migration and invasion of colorectal cancer. 3 Biotech 2025; 15:123. [PMID: 40225417 PMCID: PMC11985869 DOI: 10.1007/s13205-025-04292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) exert significant influence on the development of cancer. However, their role in colorectal cancer (CRC) is not fully clarified. The expression levels of LINC01811 in CRC samples were determined using differential expression analysis and validated by RT-qPCR assays. Transwell assays were conducted to investigate the biological function of LINC01811 in CRC. To elucidate the mechanism by which LINC01811 acts as a molecular sponge for miR-214-3p and regulates YAP1 expression, binding site analysis, Luciferase reporter assay, RT-qPCR, and Western blotting were employed. We identified a novel oncogenic lncRNA LINC01811 in CRC tissues and cell lines. Our results showed that the suppression of LINC01811 significantly reduced CRC cell invasion and migration by regulating epithelial-mesenchymal transition-related markers, including MMP2, MMP9, vimentin, and E-cadherin in vitro. Furthermore, LINCO1811 modulated YAP1 expression by sequestering miR-214-3p, thereby promoting CRC progression by suppressing its activity. In summary, this study identified a novel lncRNA LINC01811 involved in CRC progression through the miR-214-3p/YAP1 axis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04292-8.
Collapse
Affiliation(s)
- Li Zhu
- Department of Colorectal Surgery Ward, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830000 China
| | - Wen Shi
- Department of Colorectal Surgery Ward, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830000 China
| | - Yiminjiang Tuoheti
- Department of Colorectal Surgery Ward, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830000 China
| | - Guo-jie Gong
- Department of Colorectal Surgery Ward, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830000 China
| | - Min Chen
- Department of Colorectal Surgery Ward, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830000 China
| | - Zong-hua Liang
- Department of Colorectal Surgery Ward, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830000 China
| | - Abuduweili Abudureheman
- Department of Colorectal Surgery Ward, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830000 China
| | - Wei-ge Gao
- Department of Colorectal Surgery Ward, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830000 China
| |
Collapse
|
2
|
Doghish AS, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Mohamed AH, Rizk NI, Abulsoud AI, Abdelmaksoud NM, El-Dakroury WA, Aly SH. Natural compounds as regulators of miRNAs: exploring a new avenue for treating colorectal cancer. Funct Integr Genomics 2025; 25:42. [PMID: 39982533 DOI: 10.1007/s10142-025-01547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related death globally, impacting both genders equally. The increasing global mortality rates from CRC are strongly linked to contemporary dietary habits, characterized by excessive meat consumption, alcohol intake, and insufficient physical activity. Thus, there is an unprecedented need to develop less hazardous and new therapies for CRC. CRC affects a substantial global population. The main treatments for CRC include chemotherapy and surgical intervention. Nonetheless, the advancement of innovative, safer, and more effective pharmaceuticals for CRC therapy is of paramount importance due to the widespread adverse effects and the dynamic nature of drug resistance. A growing amount of research suggests that natural chemicals may effectively battle CRC and, in certain cases, serve as alternatives to chemotherapeutics. Evidence suggests that miRNAs control important cancer features, including the maintenance of proliferative signals. These features also involve evasion of growth inhibition, resistance to cell death, and immortalization of replication. Additionally, miRNAs play a role in angiogenesis, invasion, and metastasis. Numerous compounds, including those exhibiting cytotoxic and apoptogenic properties against different malignancies, such as CRC, are sourced from diverse marine and medicinal plants. These chemicals stimulate several signaling pathways originating from different phytochemical families. This article evaluates the existing understanding of the anti-CRC capabilities of several phytochemical substances. Furthermore, their impact on several signaling pathways associated with cancer is examined. This article also highlights the potential of medicinal plants as a source of promising anti-CRC chemicals through modulating miRNA expression and the role of nanoparticle-based miRNA therapeutics in enhancing CRC treatment by improving tumor targeting and minimizing off-target effects.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo- Alexandria Agricultural Road, Tukh Tanbisha, Menofia, Egypt
| | - Ashraf Hassan Mohamed
- Faculty of Physical Therapy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| |
Collapse
|
3
|
Yao K, Fan H, Yang T, Yang C, Wang G, Li X, Ji XY, Wang Q, Lv S, Guo S. Identification of MYC and STAT3 for early diagnosis based on the long noncoding RNA-mRNA network and bioinformatics in colorectal cancer. Front Immunol 2025; 15:1497919. [PMID: 39830506 PMCID: PMC11739134 DOI: 10.3389/fimmu.2024.1497919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Background Colorectal cancer (CRC) ranks among the top three cancers globally in both incidence and mortality, posing a significant public health challenge. Most CRC cases are diagnosed at intermediate to advanced stages, and reliable biomarkers for early detection are lacking. Long non-coding RNAs (lncRNAs) have been implicated in various cancers, including CRC, playing key roles in tumor development, progression, and prognosis. Methods A comprehensive search of the PubMed database was conducted to identify relevant studies on the early diagnosis of CRC. Bioinformatics analysis was performed to explore lncRNA-mRNA networks, leading to the identification of five potential blood biomarkers. Expression analysis was carried out using the GEPIA and GEO online databases, focusing on MYC and STAT3. Differential expression between normal and CRC tissues was assessed, followed by Receiver Operating Characteristic (ROC) analysis to evaluate the diagnostic potential of these markers. Quantitative Real-Time PCR (qRT-PCR) was performed to validate MYC and STAT3 expression levels, and findings were further confirmed using the Human Protein Atlas (HPA) database. Results Database analysis revealed significant differential expression of MYC and STAT3 between normal and CRC tissues. ROC analysis demonstrated the diagnostic potential of these markers. qRT-PCR validation confirmed the differential expression patterns observed in the databases. Validation through the HPA database further supported these findings, confirming the potential of MYC and STAT3 as diagnostic biomarkers for CRC. Conclusion Our results suggest that MYC and STAT3 are promising diagnostic biomarkers for CRC, offering new insights into its pathophysiology and potential for targeted therapies.
Collapse
Affiliation(s)
- Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Hao Fan
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Tiancheng Yang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Can Yang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Guibin Wang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Xingwang Li
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Department of General Surgery, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Qun Wang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Shaojiang Lv
- Department of General Surgery, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Shihao Guo
- Department of Colorectal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Luo Q, Shen F, Zhao S, Dong L, Wei J, Hu H, Huang Q, Wang Q, Yang P, Liang W, Li W, He F, Cao J. LINC00460/miR-186-3p/MYC feedback loop facilitates colorectal cancer immune escape by enhancing CD47 and PD-L1 expressions. J Exp Clin Cancer Res 2024; 43:225. [PMID: 39135122 PMCID: PMC11321182 DOI: 10.1186/s13046-024-03145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been implicated as critical regulators of cancer tumorigenesis and progression. However, their functions and molecular mechanisms in colorectal cancer (CRC) still remain to be further elucidated. METHODS LINC00460 was identified by differential analysis between human CRC and normal tissues and verified by in situ hybridization (ISH) and qRT-PCR. We investigated the biological functions of LINC00460 in CRC by in vitro and in vivo experiments. We predicted the mechanism and downstream functional molecules of LINC00460 by bioinformatics analysis, and confirmed them by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP), RNA pull-down, etc. RESULTS: LINC00460 was found to be significantly overexpressed in CRC and associated with poor prognosis. Overexpression of LINC00460 promoted CRC cell immune escape and remodeled a suppressive tumor immune microenvironment, thereby promoting CRC proliferation and metastasis. Mechanistic studies showed that LINC00460 served as a molecular sponge for miR-186-3p, and then promoted the expressions of MYC, CD47 and PD-L1 to facilitate CRC cell immune escape. We also demonstrated that MYC upregulated LINC00460 expression at the transcriptional level and formed a positive feedback loop. CONCLUSIONS The LINC00460/miR-186-3p/MYC feedback loop promotes CRC cell immune escape and subsequently facilitates CRC proliferation and metastasis. Our findings provide novel insight into LINC00460 as a CRC immune regulator, and provide a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Qingqing Luo
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China
- Department of Thyroid surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Sheng Zhao
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Lan Dong
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Jianchang Wei
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - He Hu
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Qing Huang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Qiang Wang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Ping Yang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Wenlong Liang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Wanglin Li
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Feng He
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| | - Jie Cao
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
5
|
Li KZ, Liao XM, Li SQ, Wei HT, Liang ZJ, Ge LX, Zhou SF, Hu BL. Identification and diagnostic potential of hsa_circ_101303 in colorectal cancer: unraveling a regulatory network. BMC Cancer 2024; 24:671. [PMID: 38824581 PMCID: PMC11144310 DOI: 10.1186/s12885-024-12458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/31/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The role of novel circular RNAs (circRNAs) in colorectal cancer (CRC) remains to be determined. This study aimed to identify a novel circRNA involved in CRC pathogenesis, assess its diagnostic value, and construct a regulatory network. METHODS Differential expression analysis was conducted using circRNA datasets to screen for differentially expressed circRNAs. The expression of selected circRNAs was validated in external datasets and clinical samples. Diagnostic value of plasma circRNA levels in CRC was assessed. A competing endogenous RNA (ceRNA) network was constructed for the circRNA using TCGA dataset. RESULTS Analysis of datasets revealed that hsa_circ_101303 was significantly overexpressed in CRC tissues compared to normal tissues. The upregulation of hsa_circ_101303 in CRC tissues was further confirmed through the GSE138589 dataset and clinical samples. High expression of hsa_circ_101303 was associated with advanced N stage, M stage, and tumor stage in CRC. Plasma levels of hsa_circ_101303 were markedly elevated in CRC patients and exhibited moderate diagnostic ability for CRC (AUC = 0.738). The host gene of hsa_circ_101303 was also found to be related to the TNM stage of CRC. Nine miRNAs were identified as target miRNAs for hsa_circ_101303, and 27 genes were identified as targets of these miRNAs. Subsequently, a ceRNA network for hsa_circ_101303 was constructed to illustrate the interactions between the nine miRNAs and 27 genes. CONCLUSIONS The study identifies hsa_circ_101303 as a highly expressed circRNA in CRC, which is associated with the progression of the disease. Plasma levels of hsa_circ_101303 show promising diagnostic potential for CRC. The ceRNA network for hsa_circ_101303 provides valuable insights into the regulatory mechanisms underlying CRC.
Collapse
Affiliation(s)
- Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Xiao-Min Liao
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Hao-Tang Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| | - Zhi-Jian Liang
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Liu-Xin Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, China
| | - Su-Fang Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, China.
- Key Laboratory of the Ministry of Education Project for Early Prevention and Treatment of Regional High-Risk Tumors & Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, 530021, China.
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China.
| |
Collapse
|
6
|
Li L, Song Q, Zhou J, Ji Q. Controllers of histone methylation-modifying enzymes in gastrointestinal cancers. Biomed Pharmacother 2024; 174:116488. [PMID: 38520871 DOI: 10.1016/j.biopha.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Gastrointestinal (GI) cancers have been considered primarily genetic malignancies, caused by a series of progressive genetic alterations. Accumulating evidence shows that histone methylation, an epigenetic modification program, plays an essential role in the different pathological stages of GI cancer progression, such as precancerous lesions, tumorigenesis, and tumor metastasis. Histone methylation-modifying enzymes, including histone methyltransferases (HMTs) and demethylases (HDMs), are the main executor of post-transcriptional modification. The abnormal expression of histone methylation-modifying enzymes characterizes GI cancers with complex pathogenesis and progression. Interactions between upstream controllers and histone methylation-modifying enzymes have recently been revealed, and have provided numerous opportunities to elucidate the pathogenesis of GI cancers in depth and clearly. Here we focus on the association between histone methylation-modifying enzymes and their controllers, aiming to provide a new perspective on the molecular research and clinical management of GI cancers.
Collapse
Affiliation(s)
- Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF, Mohamadtahr S. Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:615-632. [PMID: 37767111 PMCID: PMC10520679 DOI: 10.1016/j.ncrna.2023.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as the world's third-most prevalent cancer, and metastatic CRC considerably increases cancer-related fatalities globally. A number of complex mechanisms that are strictly controlled at the molecular level are involved in metastasis, which is the primary reason for death in people with CRC. Recently, it has become clear that exosomes, which are small extracellular vesicles released by non-tumorous and tumorigenic cells, play a critical role as communication mediators among tumor microenvironment (TME). To facilitate communication between the TME and cancer cells, non-coding RNAs (ncRNAs) play a crucial role and are recognized as potent regulators of gene expression and cellular processes, such as metastasis and drug resistance. NcRNAs are now recognized as potent regulators of gene expression and many hallmarks of cancer, including metastasis. Exosomal ncRNAs, like miRNAs, circRNAs, and lncRNAs, have been demonstrated to influence a number of cellular mechanisms that contribute to CRC metastasis. However, the molecular mechanisms that link exosomal ncRNAs with CRC metastasis are not well understood. This review highlights the essential roles that exosomal ncRNAs play in the progression of CRC metastatic disease and explores the therapeutic choices that are open to patients who have CRC metastases. However, exosomal ncRNA treatment strategy development is still in its early phases; consequently, additional investigation is required to improve delivery methods and find novel therapeutic targets as well as confirm the effectiveness and safety of these therapies in preclinical and clinical contexts.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| |
Collapse
|
9
|
Alshahrani SH, Al-Hadeithi ZSM, Almalki SG, Malviya J, Hjazi A, Mustafa YF, Alawady AHR, Alsaalamy AH, Joshi SK, Alkhafaji AT. LncRNA-miRNA interaction is involved in colorectal cancer pathogenesis by modulating diverse signaling pathways. Pathol Res Pract 2023; 251:154898. [PMID: 37924797 DOI: 10.1016/j.prp.2023.154898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
LncRNAs function as molecular sponges for miRNAs to control their availability for targeting mRNA molecules. This procedure indirectly regulates the expression of cancer-related genes. Some lncRNAs also directly interact with miRNAs, leading to their degradation or sequestration, which can negatively impact gene expression. miRNAs, on the other hand, play a critical role in controlling the expression of genes, including oncogenes and tumor suppressor genes. Multiple types of cancer have been linked to the onset and progression of miRNA dysregulation. Even though there is a lot of potential for treating CRC by targeting the LncRNA-miRNA axis, several challenges remain to be overcome. The specificity of the targeting approach, delivery methods, resistance, safety, and cost-effectiveness are critical research areas that must be addressed to advance this field and improve treatment outcomes for people with CRC.
Collapse
Affiliation(s)
| | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University Bhopal, Madhya Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Ahmed Hussien Radie Alawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - S K Joshi
- Mechanical Engineering Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | |
Collapse
|
10
|
Chen C, Lin HG, Yao Z, Jiang YL, Yu HJ, Fang J, Li WN. Transcription factor glucocorticoid modulatory element-binding protein 1 promotes hepatocellular carcinoma progression by activating Yes-associate protein 1. World J Gastrointest Oncol 2023; 15:988-1004. [PMID: 37389116 PMCID: PMC10302989 DOI: 10.4251/wjgo.v15.i6.988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Glucocorticoid modulatory element-binding protein 1 (GMEB1), which has been identified as a transcription factor, is a protein widely expressed in various tissues. Reportedly, the dysregulation of GMEB1 is linked to the genesis and development of multiple cancers.
AIM To explore GMEB1’s biological functions in hepatocellular carcinoma (HCC) and figuring out the molecular mechanism.
METHODS GMEB1 expression in HCC tissues was analyzed employing the StarBase database. Immunohistochemical staining, Western blotting and quantitative real-time PCR were conducted to examine GMEB1 and Yes-associate protein 1 (YAP1) expression in HCC cells and tissues. Cell counting kit-8 assay, Transwell assay and flow cytometry were utilized to examine HCC cell proliferation, migration, invasion and apoptosis, respectively. The JASPAR database was employed for predicting the binding site of GMEB1 with YAP1 promoter. Dual-luciferase reporter gene assay and chromatin immunoprecipitation-qPCR were conducted to verify the binding relationship of GMEB1 with YAP1 promoter region.
RESULTS GMEB1 was up-regulated in HCC cells and tissues, and GMEB1 expression was correlated to the tumor size and TNM stage of HCC patients. GMEB1 overexpression facilitated HCC cell multiplication, migration, and invasion, and suppressed the apoptosis, whereas GMEB1 knockdown had the opposite effects. GMEB1 bound to YAP1 promoter region and positively regulated YAP1 expression in HCC cells.
CONCLUSION GMEB1 facilitates HCC malignant proliferation and metastasis by promoting the transcription of the YAP1 promoter region.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| | - Hai-Guan Lin
- Department of General Surgery, People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Zheng Yao
- Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang Province, China
| | - Yi-Ling Jiang
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| | - Hong-Jin Yu
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| | - Jing Fang
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| | - Wei-Na Li
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| |
Collapse
|
11
|
Chen LJ, Chen X, Niu XH, Peng XF. LncRNAs in colorectal cancer: Biomarkers to therapeutic targets. Clin Chim Acta 2023; 543:117305. [PMID: 36966964 DOI: 10.1016/j.cca.2023.117305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in men and women worldwide. As early detection is associated with lower mortality, novel biomarkers are urgently needed for timely diagnosis and appropriate management of patients to achieve the best therapeutic response. Long noncoding RNAs (lncRNAs) have been reported to play essential roles in CRC progression. Accordingly, the regulatory roles of lncRNAs should be better understood in general and for identifying diagnostic, prognostic and predictive biomarkers in CRC specifically. In this review, the latest advances on the potential diagnostic and prognostic lncRNAs as biomarkers in CRC samples were highlighted, Current knowledge on dysregulated lncRNAs and their potential molecular mechanisms were summarized. The potential therapeutic implications and challenges for future and ongoing research in the field were also discussed. Finally, novel insights on the underlying mechanisms of lncRNAs were examined as to their potential role as biomarkers and therapeutic targets in CRC. This review may be used to design future studies and advanced investigations on lncRNAs as biomarkers for the diagnosis, prognosis and therapy in CRC.
Collapse
Affiliation(s)
- Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
12
|
Ma FY, Zhou XH, Liang Q. Advances in understanding of role and mechanism of Hippo signaling pathway in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:14-19. [DOI: 10.11569/wcjd.v31.i1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors, and most patients have a poor prognosis. Many studies have shown that the Hippo signaling pathway plays a key role in the occurrence and development of CRC by regulating CRC cell proliferation and apoptosis, tumor invasion and metastasis, autophagy, metabolic reprogramming, drug resistance, and other processes. This article reviews the latest progress in research of the expression of key molecules of the Hippo signaling pathway in CRC as well as the understanding of the mechanism by which this pathway regulates the occurrence and development of CRC.
Collapse
Affiliation(s)
- Fu-Yan Ma
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Han Zhou
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qiao Liang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Zhang H, Li X, Jia M, Ji J, Wu Z, Chen X, Yu D, Zheng Y, Zhao Y. Roles of H19/miR-29a-3p/COL1A1 axis in COE-induced lung cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120194. [PMID: 36150622 DOI: 10.1016/j.envpol.2022.120194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Occupational lung cancer caused by coke oven emissions (COE) has attracted increasing attention, but the mechanism is not clear. Many evidences show ceRNA (competing endogenous RNA) networks play important regulatory roles in cancers. In this study, we aimed to construct and verify the ceRNA regulatory network in the occurrence of COE-induced lung squamous cell carcinoma (LUSC). We performed RNA sequencing with lung bronchial epithelial cell (16HBE) and COE induced malignant transformed cell (Rf). Furthermore, we analyzed RNA sequencing data of LUSC and adjacent tissues in the cancer genome atlas (TCGA) database. Combined our data and TCGA data to determine the differentially expressed lncRNAs, miRNAs, mRNAs. lncBASE, miRDB and miRTarBase were used to predict the binding relationship between lncRNA and miRNA, miRNA and mRNA. Based on these, we construct the ceRNA network. FREMSA, dual-luciferase reporter assay, quantitative real-time PCR (qRT-PCR), western-blot were used to verify the regulatory axis. CCK8 assay, phalloidin staining, p53 detection were used to explore the roles of this axis in the COE induced malignant transformation. Results showed 7 lncRNAs, 7 miRNAs and 146 mRNAs were identified. Among these, we constructed a ceRNA network including 1 lncRNA, 2 miRNAs and 9 mRNAs. Further verification confirmed the trend of lncRNA H19, miR-29a-3p and COL1A1 were consistent with sequencing results. H19 and COL1A1 were significantly higher in Rf than in 16HBE and miR-29a-3p was reverse. Regulatory investigation revealed H19 increased COL1A1 expression by sponging miR-29a-3p. Knockdown of H19, COL1A1 or overexpression of miR-29a-3p in Rf cells could inhibit cell proliferation, increased cell adhesion and p53 level. However, knockdown of H19 while suppressing the miR-29a-3p partially rescue the malignant phenotype of Rf caused by H19. In conclusion, all these indicated H19 functioned as a ceRNA to increase COL1A1 by sponging miR-29a-3p and promoted COE-induced cell malignant transformation.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinmei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Mengmeng Jia
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhaoxu Wu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Zhang M, Wu L, Wang X, Chen J. lncKRT16P6 promotes tongue squamous cell carcinoma progression by sponging miR‑3180 and regulating GATAD2A expression. Int J Oncol 2022; 61:111. [PMID: 35904180 PMCID: PMC9374467 DOI: 10.3892/ijo.2022.5401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 11/05/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is characterized by a poor prognosis and its 5‑year overall survival rate has not improved significantly. However, the precise molecular mechanisms underlying TSCC remain largely unknown. Through RNA screening, the present study identified a novel long noncoding RNA (lncRNA), keratin 16 pseudogene 6 (lncKRT16P6), which was upregulated in TSCC tissues and cell lines and associated with TSCC tumor stage and differentiation grade. Inhibition of lncKRT16P6 expression reduced TSCC cell migration, invasion and proliferation. lncKRT16P6 sponged microRNA (miR)‑3180 and upregulated GATA zinc finger domain containing 2A (GATAD2A) expression. miR‑3180 inhibition reversed the lncKRT16P6 depletion‑induced attenuation of TSCC malignancy and GATAD2A depletion reversed the miR‑3180 silencing‑induced enhancement of TSCC malignancy. In summary, the present study revealed a potential competitive endogenous RNA (ceRNA) regulatory pathway in which lncKRT16P6 modulates GATAD2A expression by binding miR‑3180, ultimately promoting tumorigenesis and metastasis in TSCC. Therefore, lncKRT16P6 may be used as a prognostic biomarker and therapeutic target for clinical intervention in TSCC.
Collapse
Affiliation(s)
- Mi Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Ling Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Xudong Wang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
15
|
Zhang Y, Wang Y, Ji H, Ding J, Wang K. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:202. [PMID: 35701841 PMCID: PMC9199231 DOI: 10.1186/s13046-022-02403-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was found coordinately modulates cell regeneration and organ size. Its dysregulation contributes to uncontrolled cell proliferation and malignant transformation. YAP/TAZ are two critical effectors of the Hippo pathway and have been demonstrated essential for the initiation or growth of most tumors. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have been shown to play critical roles in the development of many cancers. In the past few decades, a growing number of studies have revealed that ncRNAs can directly or indirectly regulate YAP/TAZ signaling. YAP/TAZ also regulate ncRNAs expression in return. This review summarizes the interactions between YAP/TAZ signaling and noncoding RNAs together with their biological functions on cancer progression. We also try to describe the complex feedback loop existing between these components.
Collapse
Affiliation(s)
- Yirao Zhang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
16
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
17
|
Li C, Zhu Z, Hou Q, Wang B, Zou L, Liu L, Gong W, Guo H. Revealing potential immunotherapy targets through analysis of a ceRNA network in human colon adenocarcinoma. Transl Cancer Res 2021; 10:5319-5336. [PMID: 35116380 PMCID: PMC8799078 DOI: 10.21037/tcr-21-2380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) is a special type of human colon adenocarcinoma (COAD) that responds well to immunotherapy. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which are important members of competing endogenous RNAs (ceRNAs) networks, are involved in the tumorigenesis and development of MSI-H COAD. This study aimed to establish a ceRNA network for MSI in COAD to identify targets and prognostic markers that may explain the effects of immunotherapy. METHODS COAD sequencing data were extracted from The Cancer Genome Atlas (TCGA), after which differentially expressed miRNAs, lncRNAs, and mRNAs were determined according to microsatellite status. After building a network based on the ceRNA hypothesis, the relationships between microsatellite status and clinical features were explored. Biological processes in the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were analyzed for specific miRNAs, lncRNAs, and mRNAs. Survival analysis was used to identify potential biomarkers. RESULTS Based on the inclusion criteria, a total of 363 COAD samples were obtained from TCGA. Strict screening criteria were used to identify differentially expressed RNAs in the MSI-H and microsatellite-stable groups, with 82 miRNAs, 1,280 lncRNAs, and 2121 mRNAs obtained (fold change >2, false discovery rate <0.01). Based on the RNA interaction mechanism, a miRNA-lncRNA-mRNA network was constructed, through which a subnetwork composed of 5 miRNAs was discovered. hsa-miR-31-5p, hsa-miR-302a-3p, hsa-miR-302b-3p, hsa-miR-302d-3p, hsa-miR-3619-5p and the RNAs interaction with them have the potential to become novel targets to change the effect of existing immunotherapy. GO and KEGG analyses showed that these differentially expressed miRNAs, lncRNAs, and mRNAs may play key roles in tumorigenesis, tumor development, and drug efficacy, with natural killer cells potentially becoming the next emerging targets for immunotherapy enhancement. Moreover, survival analysis identified 10 lncRNAs as potential survival markers. CONCLUSIONS This study identified novel immunotherapy targets and revealed potential biomarkers for COAD according to microsatellite status.
Collapse
Affiliation(s)
- Changhao Li
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenyu Zhu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingsheng Hou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bishi Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weipeng Gong
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongliang Guo
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
18
|
Zhu H, Zhu C, Feng X, Luo Y. Long noncoding RNA SNHG3 promotes malignant phenotypes in cervical cancer cells via association with YAP1. Hum Cell 2021; 35:320-332. [PMID: 34816392 DOI: 10.1007/s13577-021-00644-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Long non-coding RNA (LncRNA) Small Nucleolar RNA Host Gene 3 (SNHG3) is involved in the occurrence and development of various cancers. However, the exact function and mechanism of SNHG3 in cervical cancer (CC) are still unclear. In this context, we identified a significant increase of SNHG3 expression in CC tissues. Upregulation of SNHG3 expression was associated with advanced FIGO stage and metastasis, and indicated poor overall survival of the CC patients. Functionally, SNHG3 enhanced the proliferation, migration and invasion of CC cells in vitro, and facilitated CC growth in vivo. Further investigation uncovered that SNHG3 interacted with oncoprotein YAP1, thus suppressing its degradation. Additionally, SNHG3 modulated the transcription of several target genes of YAP1. The oncogenic role of SNHG3 was partially attributable to YAP1. Taken together, our research revealed the prognostic and functional roles for SNHG3 in CC, suggesting that SNHG3 could serve as a biomarker for prognosis and a therapeutic target for CC.
Collapse
Affiliation(s)
- Hongyu Zhu
- Gynecology Second Ward, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| | - Chenyu Zhu
- Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China
| | - Xiang Feng
- Obstetrics Department, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China
| | - Youzhen Luo
- Gynecology Second Ward, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| |
Collapse
|
19
|
Xian D, Niu L, Zeng J, Wang L. LncRNA KCNQ1OT1 Secreted by Tumor Cell-Derived Exosomes Mediates Immune Escape in Colorectal Cancer by Regulating PD-L1 Ubiquitination via MiR-30a-5p/USP22. Front Cell Dev Biol 2021; 9:653808. [PMID: 34350172 PMCID: PMC8326752 DOI: 10.3389/fcell.2021.653808] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background: This study tried to explore the mechanism of long non-coding RNA (lncRNA) KCNQ1OT1 in tumor immune escape. Methods: Gene Expression Omnibus (GEO) and microarray analysis were used to screen the differentially expressed lncRNA and microRNA (miRNA) in normal tissues and tumor tissues. Quantitative reverse transcription PCR (RT-qPCR) was used to quantify KCNQ1OT1, miR-30a-5p, ubiquitin-specific peptidase 22 (USP22), and programmed death-ligand 1 (PD-L1). The interactive relationship between KCNQ1OT1 and miR-30a-5p was verified using dual-luciferase reporter gene assay and ribonucleoprotein immunoprecipitation (RIP) assay. Cell Counting Kit (CCK)-8, clone formation, wound healing, and apoptosis are used to detect the occurrence of tumor cells after different treatments. Protein half-life and ubiquitination detection are used to study the influence of USP22 on PD-L1 ubiquitination. BALB/c mice and BALB/c nude mice are used to detect the effects of different treatments on tumor growth and immune escape in vivo. Results: The expression of lncRNA KCNQ1OT1 in tumor tissues and tumor cell-derived exosomes was significantly increased. The tumor-promoting effect of lncRNA KCNQ1OT1 was through the autocrine effect of tumor cell-derived exosomes, which mediates the miR-30a-5p/USP22 pathway to regulate the ubiquitination of PD-L1 and inhibits CD8+ T-cell response, thereby promoting colorectal cancer development. Conclusion: Tumor cell-derived exosomes' KCNQ1OT1 could regulate PD-L1 ubiquitination through miR-30a-5p/USP22 to promote colorectal cancer immune escape.
Collapse
Affiliation(s)
- Di Xian
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Liangbo Niu
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jie Zeng
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lei Wang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
20
|
Zheng W, Wu F, Fu K, Sun G, Sun G, Li X, Jiang W, Cao H, Wang H, Tang W. Emerging Mechanisms and Treatment Progress on Liver Metastasis of Colorectal Cancer. Onco Targets Ther 2021; 14:3013-3036. [PMID: 33986602 PMCID: PMC8110277 DOI: 10.2147/ott.s301371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is currently the third largest malignant tumor in the world, with high new cases and high mortality. Metastasis is one of the most common causes of death of colorectal cancer, of which liver metastasis is the most fatal. Since the beginning of the Human Genome Project in 2001, people have gradually recognized the 3 billion base pairs that make up the human genome, of which only about 1.5% of the nucleic acid sequences are used for protein coding, including proto-oncogenes and tumor suppressor genes. A large number of differences in the expression of proto-oncogenes and tumor suppressor genes have also been found in the study of colorectal cancer, which proves that they are also actively involved in the progression of colorectal cancer and promote the occurrence of liver metastasis. Except for 1.5% of the coding sequence, the rest of the nucleic acid sequence does not encode any protein, which is called non-coding RNA. With the deepening of research, genome sequences without protein coding potential that were originally considered “junk sequences” may have important biological functions. Many years of studies have found that a large number of abnormal expression of ncRNA in colorectal cancer liver metastasis, indicating that ncRNA plays an important role in it. To explore the role and mechanism of these coding sequences and non-coding RNA in liver metastasis of colorectal cancer is very important for the early diagnosis and treatment of liver metastasis of colorectal cancer. This article reviews the coding genes and ncRNA that have been found in the study of liver metastasis of colorectal cancer in recent years, as well as the mechanisms that have been identified or are still under study, as well as the clinical treatment of liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Liao Z, Nie H, Wang Y, Luo J, Zhou J, Ou C. The Emerging Landscape of Long Non-Coding RNAs in Colorectal Cancer Metastasis. Front Oncol 2021; 11:641343. [PMID: 33718238 PMCID: PMC7947863 DOI: 10.3389/fonc.2021.641343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers, with extremely high rates of morbidity and mortality. The main cause of death in CRC is distant metastasis; it affects patient prognosis and survival and is one of the key challenges in the treatment of CRC. Long non-coding RNAs (lncRNAs) are a group of non-coding RNA molecules with more than 200 nucleotides. Abnormal lncRNA expression is closely related to the occurrence and progression of several diseases, including cancer. Recent studies have shown that numerous lncRNAs play pivotal roles in the CRC metastasis, and reversing the expression of these lncRNAs through artificial means can reduce the malignant phenotype of metastatic CRC to some extent. This review summarizes the major mechanisms of lncRNAs in CRC metastasis and proposes lncRNAs as potential therapeutic targets for CRC and molecular markers for early diagnosis.
Collapse
Affiliation(s)
- Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Luo
- Teaching and Research Room of Biochemistry and Molecular Biology, Medical School of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Ouyang J, Liu Z, Yuan X, Long C, Chen X, Wang Y, Liu L, Liu S, Liang H. LncRNA PRNCR1 Promotes Breast Cancer Proliferation and Inhibits Apoptosis by Modulating microRNA-377/CCND2/MEK/MAPK Axis. Arch Med Res 2021; 52:471-482. [PMID: 33608112 DOI: 10.1016/j.arcmed.2021.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/27/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have recently become the vital gene regulators in diverse cancers. In our study, we purposed to inquiry into the mechanisms of lncRNA PRNCR1 in breast cancer via microRNA-377 (miR-377)/CCND2/MEK/MAPK axis. METHODS PRNCR1 expression in breast cancer tissues was detected, and the correlation between PRNCR1 expression and prognostic survival was analyzed. The expressions of PRNCR1 and miR-377 in breast cancer cell lines were detected. Relationships among PRNCR1, miR-377 and CCND2 were confirmed by luciferase activity, RNA pull-down or RIP assays. Breast cancer cells were introduced with silenced PRNCR1 or restored miR-377 to explore their functions in malignant phenotype of breast cancer cells. The expression of MEK/MAPK pathway-related proteins was determined by western blot analysis. RESULTS PRNCR1 was highly expressed and miR-377 was poorly expressed in patients with breast cancer, and patients with high expression of PRNCR1 had a poor prognosis. PRNCR1 silencing or miR-377 overexpression resulted in suppressed breast cancer cell proliferation ability, blocked cell cycle process and induced apoptosis. PRNCR1 regulated CCND2 expression by competitively binding to miR-377. CCND2 activated the MEK/MAPK pathway, and after treatment with Mirdametinib, the MEK/MAPK pathway was inhibited, which was found to retard breast cancer growth. CONCLUSION Our study highlights that lncRNA PRNCR1 may competitively bind to miR-377, leading to upregulated CCND2, which in turn activated MEK/MAPK pathway to promote breast cancer growth.
Collapse
Affiliation(s)
- Jian Ouyang
- Department of Laboratory of Cancer Research, Pingxiang Health Vocational College, Anyuan District, Pingxiang, Jiangxi, P.R. China
| | - Zilong Liu
- Department of Laboratory of Cancer Research, Pingxiang Health Vocational College, Anyuan District, Pingxiang, Jiangxi, P.R. China
| | - Xiaobing Yuan
- Department of Laboratory of Cancer Research, Pingxiang Health Vocational College, Anyuan District, Pingxiang, Jiangxi, P.R. China
| | - Chunping Long
- Department of Laboratory of Cancer Research, Pingxiang Health Vocational College, Anyuan District, Pingxiang, Jiangxi, P.R. China
| | - Xia Chen
- Department of Laboratory of Cancer Research, Pingxiang Health Vocational College, Anyuan District, Pingxiang, Jiangxi, P.R. China
| | - Yongpeng Wang
- Department of Laboratory of Cancer Research, Pingxiang Health Vocational College, Anyuan District, Pingxiang, Jiangxi, P.R. China
| | - Lu Liu
- Department of Laboratory of Cancer Research, Pingxiang Health Vocational College, Anyuan District, Pingxiang, Jiangxi, P.R. China
| | - Shaohua Liu
- Department of Surgical Oncology, Jiangxi Pingxiang People's Hospital, Pingxiang, Jiangxi, P.R. China
| | - Hui Liang
- Department of Laboratory of Cancer Research, Pingxiang Health Vocational College, Anyuan District, Pingxiang, Jiangxi, P.R. China.
| |
Collapse
|
23
|
Angius A, Scanu AM, Arru C, Muroni MR, Rallo V, Deiana G, Ninniri MC, Carru C, Porcu A, Pira G, Uva P, Cossu-Rocca P, De Miglio MR. Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. Int J Mol Sci 2021; 22:1603. [PMID: 33562604 PMCID: PMC7915330 DOI: 10.3390/ijms22041603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and about 20% is metastatic at diagnosis and untreatable. Increasing evidence suggests that the heterogeneous nature of CRC is related to colorectal cancer stem cells (CCSCs), a small cells population with stemness behaviors and responsible for tumor progression, recurrence, and therapy resistance. Growing knowledge of stem cells (SCs) biology has rapidly improved uncovering the molecular mechanisms and possible crosstalk/feedback loops between signaling pathways that directly influence intestinal homeostasis and tumorigenesis. The generation of CCSCs is probably connected to genetic changes in members of signaling pathways, which control self-renewal and pluripotency in SCs and then establish function and phenotype of CCSCs. Particularly, various deregulated CCSC-related miRNAs have been reported to modulate stemness features, controlling CCSCs functions such as regulation of cell cycle genes expression, epithelial-mesenchymal transition, metastasization, and drug-resistance mechanisms. Primarily, CCSC-related miRNAs work by regulating mainly signal pathways known to be involved in CCSCs biology. This review intends to summarize the epigenetic findings linked to miRNAome in the maintenance and regulation of CCSCs, including their relationships with different signaling pathways, which should help to identify specific diagnostic, prognostic, and predictive biomarkers for CRC, but also develop innovative CCSCs-targeted therapies.
Collapse
Affiliation(s)
- Andrea Angius
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Antonio Mario Scanu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Giulia Deiana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Maria Chiara Ninniri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Alberto Porcu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Paolo Uva
- IRCCS G. Gaslini, 16147 Genoa, Italy;
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
- Department of Diagnostic Services, “Giovanni Paolo II” Hospital, ASSL Olbia-ATS Sardegna, 07026 Olbia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| |
Collapse
|
24
|
Liu D, Zhao J, Wang H, Li H, Li Y, Qin W. Long Intergenic Non-Protein Coding RNA 519 Promotes the Biological Activities of Tongue Squamous Cell Carcinoma by Sponging microRNA-876-3p and Consequently Upregulating MACC1. Onco Targets Ther 2020; 13:11975-11990. [PMID: 33244240 PMCID: PMC7685361 DOI: 10.2147/ott.s279798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Long intergenic non-protein coding RNA 519 (LINC00519) promotes the development of lung squamous cell carcinoma. In this study, we detected the expression of LINC00519 in tongue squamous cell carcinoma (TSCC) and examined its clinical significance. Additionally, the regulatory effects of LINC00519 on behaviors of TSCC tumor cells were explored through functional experiments. Finally, mechanistic studies were performed to elucidate the molecular events underlying the tumor-promoting actions of LINC00519 in TSCC. Materials and Methods The expression of LINC00519 in TSCC tissues and cell lines was determined using quantitative reverse transcription-polymerase chain reaction. Cell counting kit-8 assay, flow cytometric analysis, cell migration and invasion assays and xenograft tumor model analyses were used to detect TSCC cell proliferation, apoptosis, migration and invasion and in vivo tumor growth, respectively. Mechanistic studies were performed using bioinformatics analysis, RNA immunoprecipitation assay, luciferase reporter assay and rescue experiments. Results LINC00519 was overexpressed in both TSCC tissues and cell lines. A high LINC00519 level was associated with poor overall survival in patients with TSCC. In vitro, LINC00519 played cancer-promoting roles in TSCC progression by facilitating cell proliferation, migration and invasion and restraining cell apoptosis. In vivo, LINC00519 downregulation resulted in decreased TSCC tumor growth. Mechanistically, LINC00519 acted as a competing endogenous RNA for microRNA-876-3p (miR-876-3p), which directly targets metastasis associated with colon cancer-1 (MACC1), in TSCC cells. LINC00519 upregulated the expression of MACC1 in TSCC cells by sequestering miR-876-3p. Rescue experiments further affirmed that miR-876-3p inhibition or MACC1 overexpression mitigated the inhibitory influences of LINC00519 depletion on cell proliferation, migration and invasion and neutralized the promoting actions of LINC00519 knockdown on cell apoptosis in TSCC. Conclusion LINC00519 aggravated the oncogenicity of TSCC by regulating the miR-876-3p/MACC1 axis. Our findings suggest that the LINC00519/miR-876-3p/MACC1 pathway may be an underlying therapeutic target in TSCC.
Collapse
Affiliation(s)
- Dejun Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Jing Zhao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Huiling Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Hui Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Yanjie Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Wangsen Qin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, People's Republic of China
| |
Collapse
|