1
|
Chen S, Cheng J, Liu S, Shan D, Wang T, Wang X. Urinary exosomal lnc-TAF12-2:1 promotes bladder cancer progression through the miR-7847-3p/ASB12 regulatory axis. Genes Dis 2025; 12:101384. [PMID: 40297540 PMCID: PMC12036056 DOI: 10.1016/j.gendis.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/02/2024] [Accepted: 06/22/2024] [Indexed: 04/30/2025] Open
Abstract
Exosomes encompass a great deal of valuable biological information and play a critical role in tumor development. However, the mechanism of exosomal lncRNAs remains poorly elucidated in bladder cancer (BCa). In this study, we identified exosomal lnc-TAF12-2:1 as a novel biomarker in BCa diagnosis and aimed to investigate the underlying biological function. Dual luciferase reporter assay, RNA immunoprecipitation (RIP), RNA pulldown assays, and xenograft mouse model were used to verify the competitive endogenous RNA mechanism of lnc-TAF12-2:1. We found exosomal lnc-TAF12-2:1 up-regulated in urinary exosomes, tumor tissues of patients, and BCa cells. Down-regulation of lnc-TAF12-2:1 impaired BCa cell proliferation and migration, and promoted cell cycle arrest at the G0/G1 phase and cell apoptosis. The opposite effects were also observed when lnc-TAF12-2:1 was overexpressed. lnc-TAF12-2:1 was transferred by intercellular exosomes to modulate malignant biological behavior. Mechanistically, lnc-TAF12-2:1 packaged in the exosomes relieved the miRNA-mediated silence effect on ASB12 via serving as a sponger of miR-7847-3p to accelerate progression in BCa. ASB12 was also first proved as an oncogene to promote cell proliferation and migration and depress cell cycle arrest and cell apoptosis in our data. In conclusion, exosomal lnc-TAF12-2:1, located in the cytoplasm of BCa, might act as a competitive endogenous RNA to competitively bind to miR-7847-3p, and then be involved in miR-7847-3p/ASB12 regulatory axis to promote tumorigenesis, which provided a deeper insight into the molecular mechanism of BCa.
Collapse
Affiliation(s)
- Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Institute of Urology, Wuhan University, Wuhan, Hubei 430071, China
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, Hubei 430071, China
| | - Jie Cheng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shuangtai Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Institute of Urology, Wuhan University, Wuhan, Hubei 430071, China
| | - Danni Shan
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, Hubei 430071, China
| | - Ting Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Institute of Urology, Wuhan University, Wuhan, Hubei 430071, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Institute of Urology, Wuhan University, Wuhan, Hubei 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei 430071, China
- Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
2
|
Zhang Y, Chen M, Zheng X, Li K, Li Z, Li X. LncRNA PGM5-AS1 inhibits the progression of breast cancer by inhibiting miR-182-5p. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-14. [PMID: 40298102 DOI: 10.1080/15257770.2025.2498642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
LncRNAs serve as crucial regulators in the survival and proliferation of tumors. This study is dedicated to exploring the functional significance of lncRNA PGM5-AS1 in breast cancer (BRCA). First, the expression level of PGM5-AS1 in BRCA patients and its diagnostic ability for BRCA were analyzed by RT-qPCR and Receiver Operating Characteristic curve. Subsequently, LnCAR database was used to preliminarily explore the relationship between PGM5-AS1 and prognosis. Moreover, we investigated the effects PGM5-AS1 on proliferation, apoptosis, and migration of BRCA cells by MTT assay, flow cytometry, and Transwell assay. More importantly, the regulation effect of PGM5-AS1 on the downstream target miR-182-5p was verified by dual luciferase reporting experiment, and the role of miR-182-5p was further explored in vitro experiments. PGM5-AS1 is significantly decreased in both BRCA patients and BRCA cell lines. In the diagnosis of BRCA, the sensitivity and specificity of PGM5-AS1 were 81.5% and 78.5%. Furthermore, lower levels of PGM5-AS1 are associated with a poor prognosis for affected patients. In vitro studies demonstrate that the upregulation of PGM5-AS1 confers a protective effect against BRCA, markedly inhibiting the viability and migratory capacity of tumor cells. More importantly, overexpression of PGM5-AS1 inhibited the high expression of miR-182-5p in tumor cells. In fact, inhibition of miR-182-5p is detrimental to the proliferation and migration of BRCA cells in vitro. lncRNA PGM5-AS1 has potential as a diagnostic marker for BRCA and acts as an inhibitor in BRCA. It inhibits tumor proliferation and metastasis by targeting miR-182-5p.
Collapse
Affiliation(s)
- Yonghui Zhang
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Mingxi Chen
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xuan Zheng
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Kejia Li
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Zhi Li
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xuelian Li
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
3
|
Wang X, Ma S, Li S, Jia W, Zhang D. The regulatory effect of CoL10A1 to the intracranial vascular invasion and cell proliferation in breast cancer via EMT pathway. Sci Rep 2025; 15:11040. [PMID: 40169690 PMCID: PMC11962102 DOI: 10.1038/s41598-025-87475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/20/2025] [Indexed: 04/03/2025] Open
Abstract
With advances in breast cancer (BC) treatment technology, although it could prolong the BC patients' survival, brain metastasis (BM) is increasing gradually. Patients with brain metastasis of breast cancer (BMBC) could have the decline of survival rate and quality of life. Investigate the regulatory role of Collagen Type X Alpha 1 Chain (CoL10A1) in BMBC process was the aim of this study. CoL10A1 expression was analyzed from TCGA database and clinical tissues, and then detected the regulation of CoL10A1 on BC cells proliferation, migration, and invasion in BC cell lines and mouse models. Our findings indicated that BMBC tissues have significant levels of CoL10A1 expression. BC cells proliferation, migration and invasion may be inhibited by knocking down Co10A1 in vitro and in vivo. In addition, we found that knocking down CoL10A1 could reduce the penetration of 468 cells into hCMEC/D3 cells. Knocking down CoL10A1 regulated the epithelial-mesenchymal transition (EMT) pathway related proteins expression. CoL10A1 could regulate BC cells proliferation, migration and invasion, affect the penetration into hCMEC/D3 cells in vitro, and inhibit the intracranial vascular invasion in mouse models. These results suggested that CoL10A1 may be a new target for treating human BMBC.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th circular road, Fengtai District, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaomin Li
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th circular road, Fengtai District, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th circular road, Fengtai District, Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Liang Z, Deng L, Zhou X, Zhang Z, Zhao W. Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application. Biomedicines 2025; 13:210. [PMID: 39857793 PMCID: PMC11760447 DOI: 10.3390/biomedicines13010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Reprogramming energy metabolism is pivotal to tumor development. Ketone bodies (KBs), which are generated during lipid metabolism, are fundamental bioactive molecules that can be modulated to satisfy the escalating metabolic needs of cancer cells. At present, a burgeoning body of research is concentrating on the metabolism of KBs within tumors, investigating their roles as signaling mediators, drivers of post-translational modifications, and regulators of inflammation and oxidative stress. The ketogenic diet (KD) may enhance the sensitivity of various cancers to standard therapies, such as chemotherapy and radiotherapy, by exploiting the reprogrammed metabolism of cancer cells and shifting the metabolic state from glucose reliance to KB utilization, rendering it a promising candidate for adjunct cancer therapy. Nonetheless, numerous questions remain regarding the expression of key metabolic genes across different tumors, the regulation of their activities, and the impact of individual KBs on various tumor types. Further investigation is imperative to resolve the conflicting data concerning KB synthesis and functionality within tumors. This review aims to encapsulate the intricate roles of KBs in cancer metabolism, elucidating a comprehensive grasp of their mechanisms and highlighting emerging clinical applications, thereby setting the stage for future investigations into their therapeutic potential.
Collapse
Affiliation(s)
- Ziyuan Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China; (Z.L.); (L.D.); (X.Z.)
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Lixian Deng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China; (Z.L.); (L.D.); (X.Z.)
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China; (Z.L.); (L.D.); (X.Z.)
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Pei D, Zhang D, Guo Y, Chang H, Cui H. Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy. Int J Mol Sci 2025; 26:694. [PMID: 39859408 PMCID: PMC11766336 DOI: 10.3390/ijms26020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play a pivotal role in regulating gene expression and are critically involved in the progression of malignant brain tumors, including glioblastoma, medulloblastoma, and meningioma. These lncRNAs interact with microRNAs (miRNAs), proteins, and DNA, influencing key processes such as cell proliferation, migration, and invasion. This review highlights the multifaceted impact of lncRNA dysregulation on tumor progression and underscores their potential as therapeutic targets to enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy. The insights provided offer new directions for advancing basic research and clinical applications in malignant brain tumors.
Collapse
Affiliation(s)
| | | | | | | | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; (D.P.); (D.Z.); (Y.G.); (H.C.)
| |
Collapse
|
6
|
Liu X, Min Q, Cheng X, Zhang W, Wu Q, Chen X, Lv M, Liu S, Zhao H, Yang D, Tai Y, Lei X, Wang Y, Zhan Q. Quiescent cancer cells induced by high-density cultivation reveals cholesterol-mediated survival and lung metastatic traits. Br J Cancer 2024; 131:1591-1604. [PMID: 39390252 PMCID: PMC11555385 DOI: 10.1038/s41416-024-02861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The metastatic cascade, a multifaceted and highly aggressive process, is the primary cause of mortality. The survival of quiescent cancer cells in circulatory system during metastasis is crucial, yet our comprehension is constrained by the absence of universally accepted quiescent cancer models. METHOD We developed a quiescent cancer cell model using high-density cultivation. Based on the scRNA-seq analysis, IP-MS, metabolomics, mouse lung metastasis models, cholesterol assay, PLA and other molecular experiments, we explored the molecular mechanism. Immunofluorescence, atomic force microscope, FluidFM, and shear stress stimulation were used to analyze the cytoskeleton and membrane properties contributing to mechanical force resistance. RESULT We established a quiescent cancer cell model induced by high-density cultivation. Single-cell RNA sequencing (scRNA-seq) analysis reveals that CDC25A plays a crucial role in the transition to quiescence, with its expression significantly elevated in the quiescent state. Depletion of CDC25A leads to an increased proliferative capacity, and reduced metastasis under high-density conditions. Mechanistically, upregulated CDC25A in quiescent cells enhances cholesterol metabolism via endosome pathways, leading to cell cycle arrest. This increase in cholesterol reinforces the cytoskeleton, alters membrane properties, and improves resistance to mechanical forces in circulatory system. CONCLUSION CDC25A significantly increased the cholesterol metabolism through endosome pathway in quiescent cancer cells, leading to the significant changes in cytoskeleton and membrane properties so as to enhance the resistance of mechanical force in circulatory system, facilitating lung metastasis. In high-density cultivation, quiescent cancer cells, up-regulate cholesterol metabolism by CDC25A through endosome pathway, enhancing the resistance to mechanical force in circulatory system, facilitating lung metastasis.
Collapse
Affiliation(s)
- Xingyang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Qinjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Xinxin Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xu Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Siqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Huihui Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yidi Tai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Xiao Lei
- Peking University International Cancer Institute, 100191, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Peking University International Cancer Institute, 100191, Beijing, China.
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, 100730, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
| |
Collapse
|
7
|
Tonon CR, Polegato BF. Long Non-Coding RNA, Apoptosis, and Doxorubicin-Induced Cardiotoxicity. Arq Bras Cardiol 2024; 121:e20240331. [PMID: 39194066 PMCID: PMC11364448 DOI: 10.36660/abc.20240331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Carolina R Tonon
- Faculdade de Medicina de Botucatu - Departamento de Clínica Médica - Universidade Estadual Paulista (UNESP), Botucatu, SP - Brasil
| | - Bertha F Polegato
- Faculdade de Medicina de Botucatu - Departamento de Clínica Médica - Universidade Estadual Paulista (UNESP), Botucatu, SP - Brasil
| |
Collapse
|
8
|
Chen Z, Liu Y, Ma R, Zhang M, Wu X, Pen H, Gui F, Liu Y, Xia H, Hu N, Ai B, Xiong J, Xia H, Li W, Ai F. Protective Effect of Long Noncoding RNA OXCT1-AS1 on Doxorubicin-Induced Apoptosis of Human Myocardial Cells by the Competitive Endogenous RNA Pattern. Arq Bras Cardiol 2024; 121:e20230675. [PMID: 38958296 PMCID: PMC11216341 DOI: 10.36660/abc.20230675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The anthracycline chemotherapeutic antibiotic doxorubicin (DOX) can induce cumulative cardiotoxicity and lead to cardiac dysfunction. Long non-coding RNAs (lncRNAs) can function as important regulators in DOX-induced myocardial injury. OBJECTIVE This study aims to investigate the functional role and molecular mechanism of lncRNA OXCT1 antisense RNA 1 (OXCT1-AS1) in DOX-induced myocardial cell injury in vitro. METHODS Human cardiomyocytes (AC16) were stimulated with DOX to induce a myocardial cell injury model. OXCT1-AS1, miR-874-3p, and BDH1 expression in AC16 cells were determined by RT-qPCR. AC16 cell viability was measured by XTT assay. Flow cytometry was employed to assess the apoptosis of AC16 cells. Western blotting was used to evaluate protein levels of apoptosis-related markers. Dual-luciferase reporter assay was conducted to verify the binding ability between miR-874-3p and OXCT1-AS1 and between miR-874-3p and BDH1. The value of p<0.05 indicated statistical significance. RESULTS OXCT1-AS1 expression was decreased in DOX-treated AC16 cells. Overexpression of OXCT1-AS1 reversed the reduction of cell viability and promotion of cell apoptosis caused by DOX. OXCT1-AS1 is competitively bound to miR-874-3p to upregulate BDH1. BDH1 overexpression restored AC16 cell viability and suppressed cell apoptosis under DOX stimulation. Knocking down BDH1 reversed OXCT1-AS1-mediated attenuation of AC16 cell apoptosis under DOX treatment. CONCLUSION LncRNA OXCT1-AS1 protects human myocardial cells AC16 from DOX-induced apoptosis via the miR-874-3p/BDH1 axis.
Collapse
Affiliation(s)
- Zhen Chen
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Yijue Liu
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Rui Ma
- Hubei University of MedicineSinopharm Dongfeng General HospitalDepartment of Geriatric MedicineShiyanChinaDepartment of Geriatric Medicine – Sinopharm Dongfeng General Hospital – Hubei University of Medicine, Shiyan – China
| | - Mengli Zhang
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Xian Wu
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Huan Pen
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Feng Gui
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Yafeng Liu
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Hao Xia
- Renmin Hospital of Wuhan UniversityDepartment of CardiologyWuhanChinaDepartment of Cardiology – Renmin Hospital of Wuhan University, Wuhan – China
| | - Niandan Hu
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Bo Ai
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Jun Xiong
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Hongxia Xia
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Wenqiang Li
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Fen Ai
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| |
Collapse
|
9
|
Wu X, Yang C, Li Z, Lv P, An X, Peng X, Li Y, Jiang X, Mao X, Chen D, Jia L, Yuan W. Dihydroartemisinin inhibits HNSCC invasion and migration by controlling miR-195-5p expression. Heliyon 2024; 10:e32522. [PMID: 38961909 PMCID: PMC11219504 DOI: 10.1016/j.heliyon.2024.e32522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Objectives Dihydroartemisinin (DHA), an artemisinin derivative extracted from the traditional Chinese medicinal herb Artemisia annua, has the potential to suppress head and neck squamous cell carcinoma (HNSCC) progression. However, the mechanisms underlying these effects remain unclear. Therefore, we aimed to examine the mechanisms underlying the effects of DHA on tumor invasion and migration. Methods Human HNSCC cell lines CAL-27 and FaDu were exposed to varying DHA concentrations (0, 5, 20, and 80 μM) for 24 h. Cell proliferation, invasion, and migration were assessed using CCK8, transwell, and wound-healing assays, respectively. Quantitative real-time PCR, western blotting, and immunofluorescence were used to assess the expression levels of the target genes and proteins. Results DHA suppressed the invasion and migration of CAL-27 and FaDu cells. Additionally, miR-195-5p suppressed the invasion and migration of HNSCC cells. This study revealed significant differences in the expression of miR-195-5p and TENM2 between clinical samples and multiple public databases. DHA treatment and miR-195-5p overexpression significantly reduced TENM2 expression in HNSCC cells, which suggested that miR-195-5p overexpression enhanced the inhibitory effect of DHA on TENM2. Conclusions This study provides the first evidence that DHA inhibits cell invasion and migration by regulating the miR-195-5p/TENM2 axis in HNSCC cells, suggesting it as a potentially effective treatment strategy for HNSCC.
Collapse
Affiliation(s)
- Xiaolu Wu
- North Sichuan Medical College (University), Nanchong, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Congwen Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhongwan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ping Lv
- North Sichuan Medical College (University), Nanchong, China
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiang An
- Department of Otorhinolaryngology-Head and Neck Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Xiaohe Peng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - You Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | | | - Xuemei Mao
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Donghong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Lifeng Jia
- Department of Otorhinolaryngology-Head and Neck Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Wei Yuan
- North Sichuan Medical College (University), Nanchong, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Bazrgar M, Mirmotalebisohi SA, Ahmadi M, Azimi P, Dargahi L, Zali H, Ahmadiani A. Comprehensive analysis of lncRNA-associated ceRNA network reveals novel potential prognostic regulatory axes in glioblastoma multiforme. J Cell Mol Med 2024; 28:e18392. [PMID: 38864705 PMCID: PMC11167707 DOI: 10.1111/jcmm.18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Azimi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Dargahi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Hashemi M, Mousavian Roshanzamir S, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Deldar Abad Paskeh M, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res 2024; 9:508-522. [PMID: 38511060 PMCID: PMC10950594 DOI: 10.1016/j.ncrna.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
The brain tumors and especially glioblastoma, are affecting life of many people worldwide and due to their high mortality and morbidity, their treatment is of importance and has gained attention in recent years. The abnormal expression of genes is commonly observed in GBM and long non-coding RNAs (lncRNAs) have demonstrated dysregulation in this tumor. LncRNAs have length more than 200 nucleotides and they have been located in cytoplasm and nucleus. The current review focuses on the role of lncRNAs in GBM. There two types of lncRNAs in GBM including tumor-promoting and tumor-suppressor lncRNAs and overexpression of oncogenic lncRNAs increases progression of GBM. LncRNAs can regulate proliferation, cell cycle arrest and metastasis of GBM cells. Wnt, STAT3 and EZH2 are among the molecular pathways affected by lncRNAs in GBM and for regulating metastasis of GBM cells, these RNA molecules mainly affect EMT mechanism. LncRNAs are involved in drug resistance and can induce resistance of GBM cells to temozolomide chemotherapy. Furthermore, lncRNAs stimulate radio-resistance in GBM cells. LncRNAs increase PD-1 expression to mediate immune evasion. LncRNAs can be considered as diagnostic and prognostic tools in GBM and researchers have developed signature from lncRNAs in GBM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haleh Zokaee
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Salmani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Taube M, Lisiak N, Totoń E, Rubiś B. Human Vault RNAs: Exploring Their Potential Role in Cellular Metabolism. Int J Mol Sci 2024; 25:4072. [PMID: 38612882 PMCID: PMC11012908 DOI: 10.3390/ijms25074072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Non-coding RNAs have been described as crucial regulators of gene expression and guards of cellular homeostasis. Some recent papers focused on vault RNAs, one of the classes of non-coding RNA, and their role in cell proliferation, tumorigenesis, apoptosis, cancer response to therapy, and autophagy, which makes them potential therapy targets in oncology. In the human genome, four vault RNA paralogues can be distinguished. They are associated with vault complexes, considered the largest ribonucleoprotein complexes. The protein part of these complexes consists of a major vault protein (MVP) and two minor vault proteins (vPARP and TEP1). The name of the complex, as well as vault RNA, comes from the hollow barrel-shaped structure that resembles a vault. Their sequence and structure are highly evolutionarily conserved and show many similarities in comparison with different species, but vault RNAs have various roles. Vaults were discovered in 1986, and their functions remained unclear for many years. Although not much is known about their contribution to cell metabolism, it has become clear that vault RNAs are involved in various processes and pathways associated with cancer progression and modulating cell functioning in normal and pathological stages. In this review, we discuss known functions of human vault RNAs in the context of cellular metabolism, emphasizing processes related to cancer and cancer therapy efficacy.
Collapse
Affiliation(s)
| | | | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.T.); (N.L.); (E.T.)
| |
Collapse
|
13
|
Zhang T, Zheng Y, Zhang F, Wang X, Du J, Wang X. MiR-199a-5p inhibits dermal papilla cells proliferation by regulating VEGFA expression in cashmere goat. Gene 2024; 893:147901. [PMID: 37839765 DOI: 10.1016/j.gene.2023.147901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Hair follicles undergo a renewal cycle consisting of anagen, telogen and catagen stages. MicroRNA (miRNA) plays a crucial role in this process. Recent studies have shown that miR-199a-5p, which exhibits differential expression between anagen and telogen stages in the hair follicle cycle of cashmere goats, inhibits the proliferation of various cell types, including skin keratinocytes and vascular endothelial cells. Since the proliferation of dermal papilla cells (DPCs) is a key factor in the hair follicle cycle, we utilized DPCs to investigate the function and molecular mechanism of miR-199a-5p in cashmere goats. Our functional analysis revealed that miR-199a-5p significantly suppressed cell viability and proliferation of DPCs, as evidenced by MTT, EdU and RT-qPCR methods. Subsequently, we investigated the regulatory mechanism of miR-199a-5p. Through bioinformatics analysis, a potential correlation between lnc102173187 and miR-199a-5p was predicted. However, the dual luciferase reporter assay revealed no interaction between lnc102173187 and miR-199a-5p. Further investigation using dual-luciferase reporter assay, RT-qPCR, and western blot results confirmed that VEGFA was the target gene of miR-199a-5p from. The functional experiment demonstrated that VEGFA promoted the proliferation of DPCs, and antagonized the inhibitory effect of miR-199a-5p on DPCs proliferation. Taken together, this research revealed the role of miR-199a-5p and VEGFA on the proliferation of dermal papilla cells in cashmere goat, which would enrich the theoretical basis for hair follicle development, and could also serve as a marker cofactor to play an important reference and guidance role in the breeding, improvement and optimization of cashmere goat breeds.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yujie Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinmiao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiamian Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Ma L, Ma Q, Deng Q, Zhou J, Zhou Y, Wei Q, Huang Z, Lao X, Du P. N7-methylguanosine-related miRNAs predict hepatocellular carcinoma prognosis and immune therapy. Aging (Albany NY) 2023; 15:12192-12208. [PMID: 37925170 PMCID: PMC10683595 DOI: 10.18632/aging.205172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
N7-methylguanosine (m7G) modification has been notably linked with the development of many tumors. However, no investigations have been conducted on whether m7G-related miRNA (m7G-miRNA) is a prognostic index of hepatocellular carcinoma (HCC). Therefore, this investigation aimed to establish a predictive m7G-miRNA signature for efficient HCC prognosis and elucidate the associated immune cell infiltration (ICI) and functions in the tumor microenvironment. RNA sequencing and clinical data on 375 HCC and 50 healthy tissue samples were acquired from The Cancer Genome Atlas database. The m7G-miRNA regulators methyltransferase-like 1 and WD repeat domain 4 were acquired from the TargetScan database. Univariate Cox regression analysis was conducted on the 63 differentially expressed m7G-miRNAs identified. A prognostic signature that consisted of seven miRNAs was identified. According to their risk scores, individuals with HCC were divided into high-risk (HR) and low-risk (LR) cohorts. A Kaplan-Meier test revealed that survival in the HR HCC patients was poorer than in the LR cohort (p < 0.001). The area under the receiver operating characteristic curves of 1-, 3-, and 5-year overall survival were 0.706, 0.695, and 0.715, respectively. A nomogram of sex, risk score, age, and stage indicated the HCC patients' overall survival. Furthermore, it was indicated that the HR and LR patients had different degrees of ICI and immune function. A pathway enrichment analysis revealed the association of several immunity-linked pathways with the risk model. In conclusion, the signature established has great prognostic value and could be used as a new immunotherapy target for individuals with HCC.
Collapse
Affiliation(s)
- Liping Ma
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingwei Ma
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaomei Deng
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jilu Zhou
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yingpei Zhou
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qianqian Wei
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhihu Huang
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoxia Lao
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Du
- Department of Gynecology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Li F, Chen X. Contribution and underlying mechanisms of lncRNA TRPM2-AS in the development and progression of human cancers. Pathol Res Pract 2023; 251:154887. [PMID: 37871443 DOI: 10.1016/j.prp.2023.154887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Long-stranded non-coding RNAs (lncRNAs) are RNA molecules that are longer than 200 nucleotides and do not code for proteins. They play a significant role in various biological processes, including epigenetics, cell cycle, and cell differentiation. Many studies have shown that the occurrence of human cancer is closely related to the abnormal expression of lncRNA. In recent years, lncRNAs have been a hot topic in cancer research. TRPM2-AS, a novel lncRNA, is aberrantly expressed in many human cancers, and its overexpression is strongly linked to poor clinical outcomes in patients. It has been demonstrated that TRPM2-AS acts as a ceRNA, participates in signaling pathways, and interacts with biological proteins and other molecular mechanisms to regulate gene expression. In addition, it can regulate the proliferation, migration, invasion, apoptosis, and treatment resistance of cancer cells. As a result, TRPM2-AS may be a potential target for cancer treatment and a possible biomarker for cancer prognosis. This review outlined the expression, biological processes, and molecular mechanisms of TRPM2-AS in various malignancies, and discussed potential therapeutic uses.
Collapse
Affiliation(s)
- Fei Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiuwei Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
16
|
Tian Y, Chen Z, Wu P, Zhang D, Ma Y, Liu X, Wang X, Ding D, Cao X, Yu Y. MIR497HG-Derived miR-195 and miR-497 Mediate Tamoxifen Resistance via PI3K/AKT Signaling in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204819. [PMID: 36815359 PMCID: PMC10131819 DOI: 10.1002/advs.202204819] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Tamoxifen is commonly used for the treatment of patients with estrogen receptor-positive (ER+) breast cancer, but the acquired resistance to tamoxifen presents a critical challenge of breast cancer therapeutics. Recently, long noncoding RNA MIR497HG and its embedded miR-497 and miR-195 are proved to play significant roles in many types of human cancers, but their roles in tamoxifen-resistant breast cancer remain unknown. The results indicate that MIR497HG deficiency induces breast cancer progression and tamoxifen resistance by inducing downregulation of miR-497/195. miR-497/195 coordinately represses five positive PI3K-AKT regulators (MAP2K1, AKT3, BCL2, RAF1, and CCND1), resulting in inhibition of PI3K-AKT signaling, and PI3K-AKT inhibition in tamoxifen-resistant cells restored tamoxifen responsiveness. Furthermore, ER α binds the MIR497HG promoter to activate its transcription in an estrogen-dependent manner. ZEB1 interacts with HDAC1/2 and DNMT3B at the MIR497HG promoter, resulting in promoter hypermethylation and histone deacetylation. The findings reveal that ZEB1-induced MIR497HG depletion contributes to breast cancer progression and tamoxifen resistance through PI3K-AKT signaling. MIR497HG can be used as a biomarker for predicting tamoxifen sensitivity in patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Yao Tian
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
- Department of General SurgeryTianjin Medical University General HospitalTianjin300052China
| | - Zhao‐Hui Chen
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Peng Wu
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Di Zhang
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Yue Ma
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Xiao‐Feng Liu
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Xin Wang
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Xu‐Chen Cao
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| | - Yue Yu
- The First Department of Breast CancerTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Cancer Prevention and TherapyTianjin300060China
- Tianjin's Clinical Research Center for CancerTianjin300060China
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical UniversityMinistry of EducationTianjin300060China
| |
Collapse
|
17
|
Li D, Hu J, Li S, Zhou C, Feng M, Li L, Gao Y, Chen X, Wu X, Cao Y, Hao B, Chen L. LINC01393, a Novel Long Non-Coding RNA, Promotes the Cell Proliferation, Migration and Invasion through MiR-128-3p/NUSAP1 Axis in Glioblastoma. Int J Mol Sci 2023; 24:ijms24065878. [PMID: 36982952 PMCID: PMC10056594 DOI: 10.3390/ijms24065878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a potential molecular marker and intervention target for glioblastoma (GBM). In this study, we aim to investigate upstream regulatory lncRNAs and miRNAs of NUSAP1 through both experimental and bioinformatic methods. We screened upstream lncRNAs and miRNAs of NUSAP1 through multiple databases based on ceRNA theory. Then, in vitro and in vivo experiments were performed to elucidate the relevant biological significance and regulatory mechanism among them. Finally, the potential downstream mechanism was discussed. LINC01393 and miR-128-3p were screened as upstream regulatory molecules of NUSAP1 by TCGA and ENCORI databases. The negative correlations among them were confirmed in clinical specimens. Biochemical studies revealed that overexpression or knockdown of LINC01393 respectively enhanced or inhibited malignant phenotype of GBM cells. MiR-128-3p inhibitor reversed LINC01393 knockdown-mediated impacts on GBM cells. Then, dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to validate LINC01393/miR-128-3p/NUSAP1 interactions. In vivo, LINC01393-knockdown decreased tumor growth and improved mice survival, while restoration of NUSAP1 partially reversed these effects. Additionally, enrichment analysis and western blot revealed that the roles of LINC01393 and NUSAP1 in GBM progression were associated with NF-κB activation. Our findings showed that LINC01393 sponged miR-128-3p to upregulate NUSAP1, thereby promoting GBM development and progression via activating NF-κB pathway. This work deepens understanding of GBM mechanisms and provides potential novel therapeutic targets for GBM.
Collapse
Affiliation(s)
- Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Junda Hu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaojun Wu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Niu X, Pan Q, Zhang Q, Wang X, Liu Y, Li Y, Zhang Y, Yang Y, Mao Q. Weighted correlation network analysis identifies multiple susceptibility loci for low-grade glioma. Cancer Med 2023; 12:6379-6387. [PMID: 36305248 PMCID: PMC10028094 DOI: 10.1002/cam4.5368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The current molecular classifications cannot completely explain the polarized malignant biological behavior of low-grade gliomas (LGGs), especially for tumor recurrence. Therefore, we tried to identify suspicious hub genes related to tumor recurrence in LGGs. METHODS In this study, we constructed a gene-miRNA-lncRNA co-expression network for LGGs by a weighted gene co-expression network analysis (WGCNA). GDCRNATools and the WGCNA R package were mainly used in data analysis. RESULTS Sequencing data from 502 LGG patients were analyzed in this study. Compared with recurrent glioma tissues, we identified 774 differentially expressed (DE) mRNAs, 49 DE miRNAs, and 129 DE lncRNAs in primary LGGs and ultimately determined that the expression of MKLN1 was related to tumor recurrence in LGG. CONCLUSION This study identified the potential biomarkers for the pathogenesis and recurrence of LGGs and proposed that MKLN1 could be a potential therapeutic target.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Pan
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Qianwen Zhang
- Department of out-patient, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Neurosurgery and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Li
- Department of Anesthesia, West China Hospital, Sichuan University, Chengdu, China
| | - Yuekang Zhang
- Department of Neurosurgery and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Neurosurgery and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Mao
- Department of Neurosurgery and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Goenka A, Tiek DM, Song X, Iglesia RP, Lu M, Hu B, Cheng SY. The Role of Non-Coding RNAs in Glioma. Biomedicines 2022; 10:2031. [PMID: 36009578 PMCID: PMC9405925 DOI: 10.3390/biomedicines10082031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
For decades, research in cancer biology has been focused on the protein-coding fraction of the human genome. However, with the discovery of non-coding RNAs (ncRNAs), it has become known that these entities not only function in numerous fundamental life processes such as growth, differentiation, and development, but also play critical roles in a wide spectrum of human diseases, including cancer. Dysregulated ncRNA expression is found to affect cancer initiation, progression, and therapy resistance, through transcriptional, post-transcriptional, or epigenetic processes in the cell. In this review, we focus on the recent development and advances in ncRNA biology that are pertinent to their role in glioma tumorigenesis and therapy response. Gliomas are common, and are the most aggressive type of primary tumors, which account for ~30% of central nervous system (CNS) tumors. Of these, glioblastoma (GBM), which are grade IV tumors, are the most lethal brain tumors. Only 5% of GBM patients survive beyond five years upon diagnosis. Hence, a deeper understanding of the cellular non-coding transcriptome might help identify biomarkers and therapeutic agents for a better treatment of glioma. Here, we delve into the functional roles of microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) in glioma tumorigenesis, discuss the function of their extracellular counterparts, and highlight their potential as biomarkers and therapeutic agents in glioma.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Marie Tiek
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
20
|
STAT3-mediated upregulation of LINC00520 contributed to temozolomide chemoresistance in glioblastoma by interacting with RNA-binding protein LIN28B. Cancer Cell Int 2022; 22:248. [PMID: 35945579 PMCID: PMC9361558 DOI: 10.1186/s12935-022-02659-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
A considerable number of glioblastoma (GBM) patients developed drug resistance to Temozolomide (TMZ) during chemotherapy, resulting in therapeutic failure and tumor recurrence. However, the exact mechanism of TMZ chemoresistance in GBM is still poorly clarified. As a novel identified lncRNA, LINC00520 was located on chromosome 14 and overexpressed in multiple human cancers. This study was designed and conducted to investigate the role and underlying mechanism of LINC00520 in GBM chemoresistance to TMZ. The qRT-PCR assay demonstrated that LINC00520 was significantly overexpressed in TMZ-sensitive and/or TMZ-resistant GBM cells (P < 0.001). The silencing of LINC00520 markedly reduced the cell viability, suppressed colony formation, induced cell apoptosis and G1/S phase arrest in TMZ-resistant cells (P < 0.001). In contrast, overexpression of LINC00520 conferred TMZ-resistant phenotype of GBM cells in vitro (P < 0.001). The orthotopic xenograft model was established and the results indicated that the volume of tumor xenografts in vivo was markedly inhibited by TMZ treatment after the silencing of LINC00520 (P < 0.001). Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of transcription factor STAT3 to the promoter regions of LINC00520, suggesting that STAT3 mediated the aberrant expression of LINC00520 in GBM. Further experiments demonstrated that LINC00520 could interact with RNA-binding protein LIN28B to inhibit autophagy and reduce DNA damage, thereby contributing to TMZ chemoresistance in GBM. These findings suggested that STAT3/LINC00520/LIN28B axis might be a promising target to improve TMZ chemoresistance of GBM.
Collapse
|
21
|
Yang S, Zhang Y, Guo C, Liu R, Elkharti M, Ge Z, Liu Q, Liu S, Sun MZ. The homeostatic malfunction of a novel feedback pathway formed by lncRNA021545, miR-330-3p and epiregulin contributes in hepatocarcinoma progression via mediating epithelial-mesenchymal transition. Am J Cancer Res 2022; 12:2492-2525. [PMID: 35812040 PMCID: PMC9251696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023] Open
Abstract
A better understanding of tumor metastasis is urgently required for the treatment and prognosis of hepatocarcinoma patients. Current work contributes a novel ceRNA feedback regulation pathway composed of epiregulin (EREG), microRNA-330-3p (miR-330-3p) and long non-coding RNA 021545 (lncRNA021545) in regulating hepatocarcinoma malignancy via epithelial-mesenchymal transition (EMT) process. Closely correlated, the deficiencies of EREG and lncRNA021545 and the overexpression of miR-330-3p were involved in the clinical progression of hepatocarcinoma. In vitro results showed that 1) lncRNA021545 downregulation promoted, 2) miR-330-3p dysexpression positively correlated, and 3) EREG dysexpression reversely correlated with the migratory and invasive properties of hepatocarcinoma HCCLM3 and Huh7 cell lines. By directly binding to EREG and lncRNA021545, miR-330-3p expression change reversely correlated with their expressions in HCCLM3 and Huh7 cells, which was also confirmed in primary tumors from HCCLM3-xenograft mice in responding to miR-330-3p change. LncRNA021545 and EREG positively regulated each other, and lncRNA021545 negatively regulated miR-330-3p, while, EREG dysregulation unchanged miR-330-3p expression in hepatocarcinoma cells. Furthermore, systemic in vitro cellular characterizations showed that the malfunctions of the three molecules mediated the invasiveness of hepatocarcinoma cells via EMT process through affecting the expressions of E-cadherin, N-cadherin, vimentin, snail and slug, which was further confirmed by in vivo miR-330-3p promotion on the tumorigenicity and metastasis of HCCLM3 bearing nude mice and by in vitro miR-330-3p promotion on the migration and invasion of hepatocarcinoma cells to be antagonized by EREG overexpression through acting on EMT process. Our work indicates, that by forming a circuit signaling feedback pathway, the homeostatic expressions of lncRNA021545, miR-330-3p and EREG are important in liver health. Its collapse resulted from the downregulations of lncRNA021545 and EREG together with miR-330-3p overexpression promote hepatocarcinoma progression by enhancing the invasiveness of tumor cells through EMT activation. These discoveries suggest that miR-330-3p/lncRNA021545/EREG axis plays a critical role in hepatocarcinoma progression and as a candidate for its treatment.
Collapse
Affiliation(s)
- Siwen Yang
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Yunkun Zhang
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Chunmei Guo
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Rui Liu
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Maroua Elkharti
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Zhenhua Ge
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Qinlong Liu
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical UniversityDalian, Liaoning, China
| | - Shuqing Liu
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Ming-Zhong Sun
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| |
Collapse
|
22
|
Dai W, Liu H. MicroRNA-886 suppresses osteosarcoma cell proliferation and its maturation is suppressed by long non-coding RNA OXCT1-AS1. Bioengineered 2022; 13:5769-5778. [PMID: 35191809 PMCID: PMC8973740 DOI: 10.1080/21655979.2022.2031669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the roles of microRNA-886 (miR-886) and long non-coding RNA (lncRNA) OXCT1-AS1 in osteosarcoma (OS). We predicted that they might interact with each other. The expression of OXCT1-AS1 and miR-886 (mature and premature) in osteosarcoma and paired non-tumor tissues from 66 OS patients was negatively correlated. Overexpression and silencing assays showed that OXCT1-AS1 suppresses miR-886 maturation. RNA-RNA pulldown and subcellular fractionation assays demonstrated the direct interaction between OXCT1-AS1 and miR-886. BrdU proliferation assays revealed that OXCT1-AS1 promoted OS cell proliferation, and miR-886 reduced the enhancing effects of OXCT1-AS1 on OS cell proliferation. Western blot showed that OXCT1-AS1 had no effects on the levels of epithelial-mesenchymal transition biomarkers. Overall, OXCT1-AS1 suppresses miR-886 maturation to promote OS cell proliferation.
Collapse
Affiliation(s)
- Wen Dai
- Joint Surgery Department, First People's Hospital of Shangqiu City, Shangqiu City, Henan Province, China
| | - Han Liu
- General Medicine Department, First People's Hospital of Shangqiu City, Shangqiu City, Henan Province, China
| |
Collapse
|
23
|
Liu Q. The Emerging Landscape of Long Non-Coding RNAs in Wilms Tumor. Front Oncol 2022; 11:780925. [PMID: 35127486 PMCID: PMC8807488 DOI: 10.3389/fonc.2021.780925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) are transcripts of nucleic acid sequences with a length of more than 200 bp, which have only partial coding capabilities. Recent studies have shown that lncRNAs located in the nucleus or cytoplasm can be used as gene expression regulatory elements due to their important regulatory effects in a variety of biological processes. Wilms tumor (WT) is a common abdominal tumor in children whose pathogenesis remains unclear. In recent years, many specifically expressed lncRNAs have been found in WT, which affect the occurrence and development of WT. At the same time, lncRNAs may have the capacity to become novel biomarkers for the diagnosis and prognosis of WT. This article reviews related research progress on the relationship between lncRNAs and WT, to provide a new direction for clinical diagnosis and treatment of WT.
Collapse
|
24
|
D-Limonene inhibits the occurrence and progression of LUAD through suppressing lipid droplet accumulation induced by PM 2.5 exposure in vivo and in vitro. Respir Res 2022; 23:338. [PMID: 36496421 PMCID: PMC9741803 DOI: 10.1186/s12931-022-02270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND PM2.5 exposure is associated with lung adenocarcinoma (LUAD), but the mechanism is unclear. The lack of understanding impedes our effort on prevention. This study examined a possible mechanism of lung cancer caused by PM2.5 exposure, and aimed to find a potential intervention for people living in PM2.5 polluted regions. METHODS Electron microscopy and oil-red staining were conducted to examine the lipid droplet accumulation. Masson's trichrome staining, colony forming, scratch assay and transwell experiment were conducted to evaluate the effect of PM2.5 exposure and D-limonene intervention on the occurrence and progression of LUAD. Potential intervention targets were found by RNA-Seq and verified by luciferase reporter assay. MiR-195 KO mice constructed with CRISPR/Cas9 technology were used to investigate the pivotal role of D-limonene-miR-195-SREBP1/FASN axis. Cohort analysis of lung cancer patients, human LUAD tissues staining and human intervention trial were also conducted to validate the results of cell and animal experiments. RESULTS Our results showed that PM2.5 exposure induced accumulation of lipid droplets in LUAD cells which accompanied by increased malignant cellular behaviors. PM2.5 exposure led to cleaved N-SREBP1 translocation into nucleus, which activated the de novo lipogenesis pathway. Same changes were also observed in normal lung epithelial cells and normal lung tissue, and mice developed pulmonary fibrosis after long-term exposure to PM2.5. Furthermore, in a cohort of 11,712 lung cancer patients, significant lipid metabolism disorders were observed in higher PM2.5 polluted areas. In view of that, D-limonene was found to inhibit the changes in lipid metabolism through upregulating the expression of miR-195, which inhibited the expression of lipogenic genes (SREBF1/FASN/ACACA) specifically. And a small human intervention trial showed that serum miR-195 was upregulated after oral intake of D-limonene. CONCLUSION Our findings reveal a new mechanism of pulmonary fibrosis and LUAD that is related to PM2.5 exposure-induced lipid droplet accumulation. We also demonstrate that D-limonene-miR-195-SREBP1/FASN axis is a potential preventive intervention for mediating the progression and development of LUAD induced by PM2.5 exposure. Trial registration Chinese Clinical Trial Registry, ChiCTR2000030200. Registered 25 February 2020, http://www.chictr.org.cn/showproj.aspx?proj=48013.
Collapse
|
25
|
Zhou H, Liu W, Zhou Y, Hong Z, Ni J, Zhang X, Li Z, Li M, He W, Zhang D, Chen X, Zhu J. Therapeutic inhibition of GAS6-AS1/YBX1/MYC axis suppresses cell propagation and disease progression of acute myeloid leukemia. J Exp Clin Cancer Res 2021; 40:353. [PMID: 34753494 PMCID: PMC8576903 DOI: 10.1186/s13046-021-02145-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Its therapy has not significantly improved during the past four decades despite intense research efforts. New molecularly targeted therapies are in great need. The proto-oncogene c-Myc (MYC) is an attractive target due to its transactivation role in multiple signaling cascades. Deregulation of the MYC is considered one of a series of oncogenic events required for tumorigenesis. However, limited knowledge is available on which mechanism underlie MYC dysregulation and how long non-coding RNAs (lncRNAs) are involved in MYC dysregulation in AML. METHODS AML microarray chips and public datasets were screened to identify novel lncRNA GAS6-AS1 was dysregulated in AML. Gain or loss of functional leukemia cell models were produced, and in vitro and in vivo experiments were applied to demonstrate its leukemogenic phenotypes. Interactive network analyses were performed to define intrinsic mechanism. RESULTS We identified GAS6-AS1 was overexpressed in AML, and its aberrant function lead to more aggressive leukemia phenotypes and poorer survival outcomes. We revealed that GAS6-AS1 directly binds Y-box binding protein 1 (YBX1) to facilitate its interaction with MYC, leading to MYC transactivation and upregulation of IL1R1, RAB27B and other MYC target genes associated with leukemia progression. Further, lentiviral-based GAS6-AS1 silencing inhibited leukemia progression in vivo. CONCLUSIONS Our findings revealed a previously unappreciated role of GAS6-AS1 as an oncogenic lncRNA in AML progression and prognostic prediction. Importantly, we demonstrated that therapeutic targeting of the GAS6-AS1/YBX1/MYC axis inhibits AML cellular propagation and disease progression. Our insight in lncRNA associated MYC-driven leukemogenesis may contribute to develop new anti-leukemia treatment strategies.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongming Zhou
- Department of Hematology, The Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Ni
- Department of Oncology Clinical Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoping Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziping Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjuan He
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuexing Chen
- Department of Hematology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| | - Jianhua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Gao L, Li Q. Identification of Novel Pyroptosis-Related lncRNAs Associated with the Prognosis of Breast Cancer Through Interactive Analysis. Cancer Manag Res 2021; 13:7175-7186. [PMID: 34552353 PMCID: PMC8450763 DOI: 10.2147/cmar.s325710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 01/14/2023] Open
Abstract
Background The role of pyroptosis and lncRNAs in breast cancer remains controversial. This study aimed to explore the pyroptosis-related lncRNAs in breast cancer. Methods All the data used for bioinformatics analysis were downloaded from The Cancer Genome Atlas database. Limma package was used to perform difference analysis, and distinguish mRNA and lncRNA. Survival package was used to conduct prognosis analysis. LASSO algorithm, univariate cox analysis and multivariate cox analysis were used to construct the prognosis model. P value <0.05 was regarded as statistically significant. Results Based on the seven pyroptosis-related lncRNAs tightly associated with patients' prognosis, a prognostic prediction model was finally developed, which showed powerful effectiveness (Training cohort, one-year AUC = 0.82, 95% Cl = 0.69-0.95, three-year AUC = 0.77, 95% Cl = 0.68-0.85, five-year AUC = 0.74, 95% Cl = 0.66-0.82; Validation cohort, one-year AUC = 0.68, 95% Cl = 0.53-0.84, three-year AUC = 0.72, 95% Cl = 0.64-0.81, five-year AUC = 0.67, 95% Cl = 0.57-0.77). GSEA analysis demonstrated that the protein secretion, angiogenesis, TGF-β signaling and MTORC1 signaling might be involved in the high-risk patients. Moreover, immune infiltration analysis showed that the risk score was positively correlated with Tgd and Th2 cells, yet negatively correlated with CD8+ T cells, cytotoxic cells and T helper cells, which might partly explain the poor prognosis of high-risk patients. Finally, the expression level of seven model lncRNAs in the real world was validated by qRT-PCR using four cancer cell lines (MCF-7, T47D, MDA-MB-231, MDA-MB-469). Conclusion In conclusion, our study identified lncRNAs that are remarkably correlated with patients' survival and might participate in the pyroptosis process, which might be underlying tumor biomarker and therapeutic targets. This study may provide direction for future research.
Collapse
Affiliation(s)
- Lili Gao
- Department of Pathology, Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Qing Li
- Department of Pathology, Pudong New Area People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Yadav G, Kulshreshtha R. Metastasis associated long noncoding RNAs in glioblastoma: Biomarkers and therapeutic targets. J Cell Physiol 2021; 237:401-420. [PMID: 34533835 DOI: 10.1002/jcp.30577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and therapeutically challenging Grade IV tumor of the brain. Although the possibility of distant metastasis is extremely rare, GBM is known to cause intracranial metastasis forming aggressive secondary lesions resulting in a dismal prognosis. Metastasis also plays an important role in tumor dissemination and recurrence making GBM largely incurable. Recent studies have indicated the importance of long noncoding RNAs (lncRNAs) in GBM metastasis. lncRNAs are a class of regulatory noncoding RNAs (>200 nt) that interact with DNA, RNA, and proteins to regulate various biological processes. This is the first comprehensive review summarizing the lncRNAs associated with GBM metastasis and the underlying molecular mechanism involved in migration/invasion. We also highlight the complex network of lncRNA/miRNA/protein that collaborate/compete to regulate metastasis-associated genes. Many of these lncRNAs also show attractive potential as diagnostic/prognostic biomarkers. Finally, we discuss various therapeutic strategies and potential applications of lncRNAs as therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
28
|
Li X, Wang H. Long Non-Coding RNA GABPB1-AS1 Augments Malignancy of Glioma Cells by Sequestering MicroRNA-330 and Reinforcing the ZNF367/Cell Cycle Signaling Pathway. Neuropsychiatr Dis Treat 2021; 17:2073-2087. [PMID: 34276213 PMCID: PMC8280909 DOI: 10.2147/ndt.s305182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Deregulation of long non-coding RNAs (lncRNAs) is frequently relevant to the malignant phenotypical changes. This study aimed to explore the role of lncRNA GABPB1-AS1 in the malignancy of glioma cells. METHODS Abnormally expressed genes in glioma were analyzed using a GEO GSE2223 dataset. Short hairpin (sh) RNA silencing of GABPB1-AS1 was introduced in glioma cells to explore its correlation with the proliferation, apoptosis, and invasiveness of cancer cells. The target transcripts of GABPB1-AS1 were predicted by bioinformatics analyses. MicroRNA (miR)-330 inhibition was additionally introduced in the glioma cells after GABPB1-AS1 knockdown for rescue experiments. Animal studies were performed by inducing xenograft tumors in nude mice. RESULTS GABPB1-AS1 was highly expressed in the glioma tissues and associated with advanced WHO grades. GABPB1-AS1 knockdown reduced proliferation and invasiveness of glioma cells in vitro and in vivo. miR-330 was a target transcript of GABPB1-AS1. miR-330 inhibition restored the malignancy of glioma cells. miR-330 directly bound to ZNF367. ZNF367 was highly expressed in glioma tissues and positively correlated with GABPB1-AS1 expression, and it was relevant to the cell cycle signaling pathway. Downregulation of GABPB1-AS1 reduced the expression of ZNF367 and reduced the levels of cell cycle-related proteins PCNA, CDC20, CDC7 and CCNA1 in cells. CONCLUSION This study demonstrated that GABPB1-AS1 competitively bound to miR-330 and de-repressed ZNF367 expression, leading to activation of the cell cycle signaling pathway and the growth and metastasis of glioma cells.
Collapse
Affiliation(s)
- Xiulong Li
- Department of Neurosurgery, Caoxian People's Hospital, Heze, 274400, Shandong, People's Republic of China
| | - Hongfeng Wang
- Department of Neurosurgery, Yantai Harbour Hospital, Yantai, 264000, Shandong, People's Republic of China
| |
Collapse
|