1
|
Li B, Qi J, Cao Y, Long Y, Wei Z, Wang W, Hu S, Wang Y, Zhu Q, Hu X, Sun Z, Zhu J, Ye T, Yao Y, Meng Y, Bian X, Dong X, Guan H, Huang Y, Sun Y. From Invaginating Site to Deep Lesion: Spatial Transcriptomics Unravels Ectopic Endometrial Penetration Features in Adenomyosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411752. [PMID: 40190183 PMCID: PMC12120721 DOI: 10.1002/advs.202411752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/28/2025] [Indexed: 06/01/2025]
Abstract
Adenomyosis, characterized by clinical intractability, significantly impacts female fertility and life quality due to the absence of definitive diagnostic markers and effective treatment options. The invagination theory is a primary hypothesis for adenomyosis, but the underlying molecular mechanisms remain unclear. In this study, a spatial transcriptional landscape of adenomyosis with an evident invagination structure is mapped from the endometrial invaginating site to ectopic lesions utilizing spatial transcriptomics and single-cell RNA sequencing. In addition, the authors employ bulk RNA sequencing deconvolution to assess the significance of core spatial ecotypes, use histological techniques to target specific cell types, and conduct in vitro experiments for validation. At the invagination site, SFRP5+ epithelial cells promote endometrial proliferation and angiogenesis through secretion of IHH. During the invading process, ESR1+ smooth muscle cells (SMCs) facilitate invasion by creating migratory tracts via collagen degradation. Within deep lesions, CNN1+ stromal fibroblasts induce fibrosis by undergoing a fibroblast-to-myofibroblast transition (FMT) in response to pathologic profibrogenic signals in the microenvironment of lesions. This work offers an in-depth understanding of the molecular mechanisms underlying the pathological processes of adenomyosis with invagination. Furthermore, this work introduces the first transcriptomics web source of adenomyosis, which is expected to be a valuable resource for subsequent research.
Collapse
Affiliation(s)
- Boyu Li
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Jia Qi
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yumeng Cao
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yijing Long
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Zhe Wei
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Wang‐Sheng Wang
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Shuanggang Hu
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yuan Wang
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Qinling Zhu
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xiao Hu
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Zhe Sun
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Jie Zhu
- Department of Obstetrics and GynecologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
- Shanghai Key Laboratory of Gynecologic OncologyShanghai200127P. R. China
| | - Taiyang Ye
- Department of Obstetrics and GynecologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
- Shanghai Key Laboratory of Gynecologic OncologyShanghai200127P. R. China
| | - Yejie Yao
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yiwen Meng
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xuejiao Bian
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xinyi Dong
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Hengyu Guan
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yunfei Huang
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yun Sun
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| |
Collapse
|
2
|
Yang Y, Kang Z, Cai J, Jia S, Fan S, Zhu H. Role of FHOD1 in tumor cells and tumor immune microenvironment. Front Immunol 2025; 16:1514488. [PMID: 40364836 PMCID: PMC12069282 DOI: 10.3389/fimmu.2025.1514488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
FHOD 1 (Formin homology 2 domain containing protein 1) is a member of Diaphanous-related formins (DRFs) which contains a GTP-binding domain (GBD), formin homology (FH) 1 and FH 2 domains, a coiled-coil, and a diaphanous-like autoregulatory domain. Studies have shown that FHOD1 can not only regulate intracellular signals in tumor cells but also regulate various components of the tumor microenvironment (TME), such as T cells, B cells, cancer-associated fibroblasts (CAFs), some cytokines. Aberrant expression and dysfunction of the FHOD1 protein play a key role in tumor immunosuppression. Specifically, FHOD1 can impair function of chemokine receptors that are supposed to direct immune cells to localize to the tumor site accurately. As a result of this impairment, immune cells cannot migrate efficiently into TME, thereby impairing their ability to attack tumor cells. In addition, FHOD1 activated signaling pathways within the immune cells abnormally, resulting in their inability to recognize and destroy tumor cells effectively. Therefore, FHOD1 ultimately leads to a state of immunosuppression in TME, providing favorable conditions for the growth and spread of tumor cells. Altogether this review provides an in-depth understanding of the role of FHOD1 in tumor immunosuppression.
Collapse
Affiliation(s)
| | | | | | | | | | - Huifang Zhu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Feng T, Li P, Li S, Wang Y, Lv J, Xia T, Lee HJ, Piao HL, Chen D, Ma Y. Metabolic state uncovers prognosis insights of esophageal squamous cell carcinoma patients. J Transl Med 2025; 23:342. [PMID: 40098145 PMCID: PMC11912770 DOI: 10.1186/s12967-025-06087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Metabolite-protein interactions (MPIs) are crucial regulators of cancer metabolism; however, their roles and coordination within the esophageal squamous cell carcinoma (ESCC) microenvironment remain largely unexplored. This study is the first to comprehensively map the metabolic landscape of the ESCC microenvironment by integrating an MPI network with multi-scale transcriptomics data. METHODS First, we characterized the metabolic states of cells in ESCC using single-cell transcriptome profiles of key metabolite-interacting proteins. Next, we determined the metabolic patterns of each ESCC patient based on the composition of different metabolic states within bulk samples. Finally, the ESCC samples were clustered into unique subtypes. RESULTS Sixteen ESCC metabolic states across 7 cell types were identified based on the re-analysis of single-cell RNA-sequencing data of 208,659 cells in 64 ESCC samples. Each of the 7 cell types within the tumor microenvironment exhibited distinct metabolic states, highlighting the high metabolic heterogeneity of ESCC. Based on differences in the compositions of the metabolic states, 4 ESCC subtypes were identified in two independent cohorts (n = 79 and 119), which were associated with significant variations in prognosis, clinical features, gene expression, and pathways. Notably, the inactivation of cellular detoxification processes may contribute to the poor prognosis of ESCC patients. CONCLUSIONS Overall, we redefined robust ESCC prognostic subtypes and identified key MPI pathways that link metabolism to tumor heterogeneity. This study provides the first comprehensive mapping of the ESCC metabolic microenvironment, offering novel insights into ESCC metabolic diversity and its clinical applications.
Collapse
Affiliation(s)
- Tingze Feng
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Pengfei Li
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
| | - Siyi Li
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuhan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jing Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tian Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hoy-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hai-Long Piao
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Di Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yegang Ma
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China.
| |
Collapse
|
4
|
Wu P, Qin G, Liu J, Zhao Q, Zhao X, Song X, Wang L, Yang S, Zhang Y. Distinct immune signatures for predicting the immunotherapy efficacy of esophageal squamous cell carcinoma or adenocarcinoma. Cancer Immunol Immunother 2025; 74:47. [PMID: 39751958 PMCID: PMC11698706 DOI: 10.1007/s00262-024-03904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are distinct histological subtypes of esophageal cancer. The tumor microenvironment of each subtype significantly influences the efficacy of immunotherapy. However, the characteristics of the tumor microenvironments of both subtypes, as well as their specific impacts on immunotherapy outcomes, still require further elucidation. Through the integration of gene expression profiles from ESCC and EAC obtained from The Cancer Genome Atlas database, alongside tumor tissues derived from Chinese patients, we identified TNFSF10, CXCL10, IL17RB, and CSF2 as pivotal immune molecules with significant prognostic implications. Elevated expression levels of TNFSF10 correlated with adverse outcomes in individuals diagnosed with ESCC. In contrast to patients from other geographical regions, CXCL10, IL17RB, and CSF2 exhibited distinct prognostic implications in Chinese patients with esophageal cancer. The Cox risk scores derived from the molecules TNFSF10 and CXCL10 for ESCC and IL17RB and CSF2 for EAC were used to assess their predictive capacity for immunotherapy efficacy. The results indicate that patients with lower Cox risk scores demonstrated an enhanced response to immunotherapeutic interventions. This study revealed significant disparities in the expression and functionality of immune-related molecules between ESCC and EAC and highlighted the potential of Cox risk scores derived from immune-related molecules to predict the efficacy of immunotherapy in patients. The findings underscore the clinical relevance of these biomarkers and emphasize the necessity for developing ethnic-specific biomarkers to guide personalized immunotherapy strategies between ESCC and EAC.
Collapse
Affiliation(s)
- Peng Wu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shengli Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Center for Translational Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- School of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Liang L, Chai C, Liu A, Nadukkandy AS, Kalaiselvan S, Brandt CB, Zhao W, Li H, Lin L, Wu J, Luo Y. Single-cell transcriptome analysis reveals reciprocal epithelial and endothelial cell evolution in ovarian cancer. iScience 2024; 27:111417. [PMID: 39717089 PMCID: PMC11665315 DOI: 10.1016/j.isci.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/26/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
Tumor neovascularization mediated by endothelial cells (ECs) is essential for ovarian cancer (OC) progression, but interactions between epithelial cells and ECs are not well understood. Here, we analyze single-cell transcriptome of 87,847 epithelial cells and 11,696 ECs from fallopian tubes, primary and metastatic ovarian tumors. Cell differentiation trajectory analysis reveals that fallopian tube cells exhibit a potential development trend toward primary OC epithelial cells. We identify a sub-population of fallopian tube epithelial cells (FTSEC3), which highly express tumor cell markers and are enriched in vascular endothelial growth factor production. Two neovascularization-related EC phenotypes (MKI67+ proliferating ECs and ESM1+ tip cells) are specially found in ovarium tumors, which exhibit strong interactions with FTSEC3. We validate that genetic disruption of LAMININ and TGF-β with CRISPR in ECs inhibits sprouting angiogenesis. In summary, this study reveals a reciprocal evolution and interaction between epithelial and ECs in OC development and progression.
Collapse
Affiliation(s)
- Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Science, BGI-Research, Qingdao 266555, China
| | - Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Science, BGI-Research, Qingdao 266555, China
| | - Anmin Liu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | | | | | | | - Wandong Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Science, BGI-Research, Qingdao 266555, China
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Science, BGI-Research, Qingdao 266555, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jianmin Wu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Xia T, Zhang Y, Peng H, Jia X, Yang D, Wei L, Li T, Yao W. EVA1B facilitates esophageal squamous carcinoma progression and recruitment of immunosuppressive myeloid-derived suppressor cells in the tumor microenvironment. Pharmacol Res 2024; 210:107521. [PMID: 39603573 DOI: 10.1016/j.phrs.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Eva-1 Homolog B (EVA1B) has been preliminarily found to be associated with prognostic outcomes and immune microenvironment in several human cancer types, but the implications of EVA1B in ESCC remain unclear. Human ESCC and paracancerous tissues were gathered in this study, and EVA1B expression was measured via immunoblotting. EC109 and KYSE-180 ESCC cells were stably infected by sh-EVA1B lentivirus, and functional experiments were subsequently implemented. Syngeneic mouse models were built, and the expansion and recruitment of myeloid-derived suppressor cells (MDSCs) were then evaluated. The results showed that EVA1B presented the notable up-regulation in clinical ESCC tissues versus controls, and was connected to more advanced stages and the abundance of MDSCs. Silencing EVA1B notably attenuated proliferation of ESCC cells and tumor growth in syngeneic mouse models. Moreover, EVA1B suppression resulted in apoptosis and cell cycle arrest, and impaired ESCC cell aggressiveness. Among ESCC patients, EVA1B was strongly correlated to EMT pathway activity. Targeted suppression of EVA1B mitigated the expression of Wnt3a, β-catenin and LRP6 in ESCC cells and tumor xenografts. Additionally, inhibition of EVA1B attenuated the expansion and recruitment of MDSCs within the immune microenvironment based upon the reduction in the percentage of CD11b+Gr-1+ immunosuppressive MDSCs as well as the expression of MDSC expansion stimulators (S100A8, S100A9, Arg-1, and VEGF). Collectively, our findings unveiled the contribution of high expression of EVA1B to ESCC progression and MDSCs expansion and recruitment, indicating that targeted suppression of EVA1B may be a potential treatment choice for ESCC patients.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Yongkang Zhang
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Haodong Peng
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Xiangbo Jia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Dong Yang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Tian Li
- Tianjin Medical University, Tianjin 300102, China.
| | - Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
7
|
Cao S, Li M, Cui Z, Li Y, Niu W, Zhu W, Li J, Duan L, Lun S, Gao Z, Zhang Y. Establishment and validation of the prognostic risk model based on the anoikis-related genes in esophageal squamous cell carcinoma. Ann Med 2024; 56:2418338. [PMID: 39444152 PMCID: PMC11504171 DOI: 10.1080/07853890.2024.2418338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a malignant condition in humans. Anoikis-related genes (ARGs) are crucial to cancer progression. Therefore, more studies on the relationship between ARGs and ESCC are warranted. METHODS The study acquired ESCC-related transcriptome data from TCGA. Differentially expressed ARGs (DE-ARGs) were obtained by differential analysis and candidates were filtered out by survival analysis. Prognostic genes were determined by Cox and LASSO regression. A risk model was constructed based on prognostic gene expressions. An immune infiltration study was done to explain how these genes contribute to ESCC development. The IC50 test was adopted to assess the clinical response of chemotherapy drugs. Single cell analysis was performed on the GSE145370 dataset. Moreover, the prognostic gene expressions were detected by qRT-PCR. RESULTS 53 DE-ARGs were screened and four candidate genes including PBK, LAMC2, TNFSF10 and KL were obtained. Cox and LASSO regression identified the two prognostic genes, TNFSF10 and PBK. Immuno-infiltration analysis revealed positive associations of PBK with Macrophages M0 cells, and TNFSF10 with Macrophages M1 cells. The IC50 values of predicted drugs, in the case of Tozasertib 1096 and WIKI4 1940, were significantly variant between risk groups. Single cell analysis revealed that TNFSF10 and PBK levels were higher in epithelial cells than in other cells. The prognostic genes expression results by qRT-PCR were compatible with the dataset analysis. CONCLUSION The study established an ARG prognosis model of ESCC. It provided a reference for the research of ARGs in ESCC.
Collapse
Affiliation(s)
- Shasha Cao
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Ming Li
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhiying Cui
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Yutong Li
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Wei Niu
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Weiwei Zhu
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Junkuo Li
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Lijuan Duan
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Shumin Lun
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhaowei Gao
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Yaowen Zhang
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| |
Collapse
|
8
|
Groeger S, Meyle J. The role of programmed death receptor (PD-)1/PD-ligand (L)1 in periodontitis and cancer. Periodontol 2000 2024; 96:150-169. [PMID: 38351432 PMCID: PMC11579837 DOI: 10.1111/prd.12548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 11/22/2024]
Abstract
The programmed-death-ligand-1 (PD-L1) is an immune-modulating molecule that is constitutively expressed on various immune cells, different epithelial cells and a multitude of cancer cells. It is a costimulatory molecule that may impair T-cell mediated immune response. Ligation to the programmed-death-receptor (PD)-1, on activated T-cells and further triggering of the related signaling pathways can induce T-cells apoptosis or anergy. The upregulation of PD-L1 in various cancer types, including oral squamous cell carcinomas, was demonstrated and has been linked to immune escape of tumors and poor prognosis. A bidirectional relationship exists between the increased PD-L1 expression and periodontitis as well as the epithelial-mesenchymal transition (EMT), a process of interconversion of epithelial cells to mesenchymal cells that may induce immune escape of tumors. Interaction between exosomal PD-L1 and PD-1 on T-cells may cause immunosuppression by blocking the activation and proliferation of T-cells. The efficacy and importance of treatment with PD-1/PD-L1 checkpoint inhibitors and their prognostic influence on human cancers was demonstrated. Regarding PD-1/PD-L1 checkpoint inhibitors, resistances exist or may develop, basing on various factors. Further investigations of the underlying mechanisms will help to overcome the therapeutic limitations that result from resistances and to develop new strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
- Department of Orthodontics, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of Periodontology, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
9
|
Xu D, Zhang N, Shen Y, Zheng D, Xu Z, Li P, Cai J, Tian G, Wei Q, Wang H, Jiang H, Cao M, Wang B, Li K. Single-cell sequencing analysis reveals the dynamic tumour ecosystems of primary and metastatic lymph nodes in nasopharyngeal carcinoma. J Cell Mol Med 2024; 28:e70137. [PMID: 39392128 PMCID: PMC11467730 DOI: 10.1111/jcmm.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Lymph node metastasis contributed to the leading cause and treatment failure in nasopharyngeal carcinoma (NPC). The microenvironment and the cellular communications of lymph node metastasized tumours determine the tumour progression and therapeutic effect, but the ecosystems about the lymph node metastasis (LNM) for NPC patients remain poorly characterized. Here, we integrated the transcriptomes of 47,618 single cells from eight samples related to NPC LNM. The dynamic immune ecosystems and immunosuppressive microenvironment including T cells, myeloid cells and B cells were observed in the lymph node metastatic samples compared with primary tumours. Additionally, the heterogeneity of epithelial cells was also revealed, and several clusters with expression programs that were associated with the progression-free survival of NPC patients were identified. Additionally, our data revealed the complex intercellular communications from primary to lymph node metastasis. The rewiring of CCL signalling which plays an important role in tumour metastasis was further identified. Altogether, we systematically characterized the ecosystem of NPC primary and lymph node metastasized tumours, which may shed light on the development of a therapeutic strategy to improve clinical outcomes of NPC patients with lymph node metastasis.
Collapse
Affiliation(s)
- Dahua Xu
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Nihui Zhang
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Yutong Shen
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Dehua Zheng
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Zhizhou Xu
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Peihu Li
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Jiale Cai
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Guanghui Tian
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Qingchen Wei
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
| | - Hong Wang
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Hongyan Jiang
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
| | - Meng Cao
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| | - Bo Wang
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
| | - Kongning Li
- College of Biomedical Information and EngineeringHainan General Hospital and Hainan Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Hainan Engineering Research Center for Health Big DataHainan Medical UniversityHaikouChina
| |
Collapse
|
10
|
Deng Q, Chen L, Zhang G, Liu L, Luo SM, Gao X. TRIAL-based combination therapies in cancers. Int Immunopharmacol 2024; 138:112570. [PMID: 38971105 DOI: 10.1016/j.intimp.2024.112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.
Collapse
Affiliation(s)
- Qiumin Deng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Luxuan Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gui Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shi-Ming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Sun X, Wu H, Tang L, Al-Danakh A, Jian Y, Gong L, Li C, Yu X, Zeng G, Chen Q, Yang D, Wang S. GALNT6 promotes bladder cancer malignancy and immune escape by epithelial-mesenchymal transition and CD8 + T cells. Cancer Cell Int 2024; 24:308. [PMID: 39245709 PMCID: PMC11382498 DOI: 10.1186/s12935-024-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Bladder cancer (BC) ranks as the sixth cancer in males and the ninth most common cancer worldwide. Conventional treatment modalities, including surgery, radiation, chemotherapy, and immunotherapy, have limited efficacy in certain advanced instances. The involvement of GALNT6-mediated aberrant O-glycosylation modification in several malignancies and immune evasion is a subject of speculation. However, its significance in BC has not been investigated. Through the integration of bioinformatics analysis and laboratory experimentation, we have successfully clarified the role of GALNT6 in BC. Our investigation revealed that GALNT6 has significant expression in BC, and its high expression level correlates with advanced stage and high grade, leading to poor overall survival. Moreover, both in vitro and in vivo experiments demonstrate a strong correlation between elevated levels of GALNT6 and tumor growth, migration, and invasion. Furthermore, there is a negative correlation between elevated GALNT6 levels, the extent of CD8+ T cell infiltration in the tumor microenvironment, and the prognosis of patients. Functional experiments have shown that the increased expression of GALNT6 could enhance the malignant characteristics of cancer cells by activating the epithelial-mesenchymal transition (EMT) pathway. In brief, this study examined the impact of GALNT6-mediated abnormal O-glycosylation on the occurrence and progression of bladder cancer and its influence on immune evasion. It also explored the possible molecular mechanism underlying the interaction between tumor cells and immune cells, as well as the bidirectional signaling involved. These findings offer a novel theoretical foundation rooted in glycobiology for the clinical application of immunotherapy in BC.
Collapse
Affiliation(s)
- Xiaoxin Sun
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Haotian Wu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ling Tang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yuli Jian
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Gong
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Congchen Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guang Zeng
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, 210096, Nanjing, China.
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Shujing Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
12
|
Luo C, He S, Shi F, Zhou J, Shang L. The Role of TRAIL Signaling in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:521. [PMID: 39056714 PMCID: PMC11274015 DOI: 10.3390/biology13070521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cancer continues to pose a significant threat to global health, with its status as a leading cause of death remaining unchallenged. Within the realm of cancer research, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stands out as a critical player, having been identified in the 1990s as the tenth member of the TNF family. This review examines the pivotal role of TRAIL in cancer biology, focusing on its ability to induce apoptosis in malignant cells through both endogenous and exogenous pathways. We provide an in-depth analysis of TRAIL's intracellular signaling and intercellular communication, underscoring its potential as a selective anticancer agent. Additionally, the review explores TRAIL's capacity to reshape the tumor microenvironment, thereby influencing cancer progression and response to therapy. With an eye towards future developments, we discuss the prospects of harnessing TRAIL's capabilities for the creation of tailored, precision-based cancer treatments, aiming to enhance efficacy and improve patient survival rates.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| | - Li Shang
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| |
Collapse
|
13
|
Guo D, Sheng K, Zhang Q, Li P, Sun H, Wang Y, Lyu X, Jia Y, Wang C, Wu J, Zhang X, Wang D, Sun Y, Huang S, Yu J, Zhang J. Single-cell transcriptomic analysis reveals the landscape of epithelial-mesenchymal transition molecular heterogeneity in esophageal squamous cell carcinoma. Cancer Lett 2024; 587:216723. [PMID: 38342234 DOI: 10.1016/j.canlet.2024.216723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignant disease. The epithelial-mesenchymal transition (EMT) is crucial in promoting ESCC development. However, the molecular heterogeneity of ESCC and the potential inhibitory strategies targeting EMT remain poorly understood. In this study, we analyzed high-resolution single-cell transcriptome data encompassing 209,231 ESCC cells from 39 tumor samples and 16 adjacent samples obtained from 44 individuals. We identified distinct cell populations exhibiting heterogeneous EMT characteristics and identified 87 EMT-associated molecules. The expression profiles of these EMT-associated molecules showed heterogeneity across different stages of ESCC progression. Moreover, we observed that EMT primarily occurred in early-stage tumors, before lymph node metastasis, and significantly promoted the rapid deterioration of ESCC. Notably, we identified SERPINH1 as a potential novel marker for ESCC EMT. By classifying ESCC patients based on EMT gene sets, we found that those with high EMT exhibited poorer prognosis. Furthermore, we predicted and experimentally validated drugs targeting ESCC EMT, including dactolisib, docetaxel, and nutlin, which demonstrated efficacy in inhibiting EMT and metastasis in ESCC. Through the integration of scRNA-seq, RNA-seq, and TCGA data with experimental validation, our comprehensive analysis elucidated the landscape of EMT during the entire course of ESCC development and metastasis. These findings provide valuable insights and a reference for refining ESCC clinical treatment strategies.
Collapse
Affiliation(s)
- Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Kaiwen Sheng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Qi Zhang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Pin Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Haoqiang Sun
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yongjie Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xinxing Lyu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250117, China.
| | - Caifan Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jing Wu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiaohang Zhang
- Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| | - Dandan Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yawen Sun
- Department of Clinical Epidemiology and Biostatistics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jingze Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
14
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
15
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
16
|
Zhang J, Xin Y, Ling X, Liang H, Zhang L, Fang C, Ma J. Nucleoporin 93, a new substrate of the E3 ubiquitin protein ligase HECTD1, promotes esophageal squamous cell carcinoma progression. Hum Cell 2024; 37:245-257. [PMID: 37993750 DOI: 10.1007/s13577-023-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Nucleoporin 93 (NUP93) is an important component of the nuclear pore complex, exhibiting pro-tumorigenic properties in some cancers. However, its function in esophageal squamous cell carcinoma (ESCC) has not been elucidated. This study aimed to investigate the effects of NUP93 in ESCC and the underlying mechanisms involved. Through analysis of public human cancer datasets, we observed higher expression of NUP93 in esophageal cancer tissues than in normal tissues. Stable ESCC cell lines with NUP93 overexpression or knockdown were established by lentiviral vector transduction and puromycin selection. NUP93 knockdown suppressed the proliferation, colony formation, cell cycle transition, migration, and invasion of ESCC cells, while the overexpression of NUP93 displayed opposite effects. NUP93 positively regulated epithelial-mesenchymal transition and AKT signaling transduction in ESCC cells. In addition, NUP93 increased the expression of programmed death ligand 1 (PD-L1) in ESCC cells and attenuated NK cell-mediated lysis of ESCC cells. In vivo experiments demonstrated that NUP93 promotes the growth of ESCC in nude mice, enhances Ki67 and PD-L1 expression, and promotes AKT signaling transduction in xenografts. Mechanistically, we demonstrated that the HECT domain E3 ubiquitin protein ligase 1 (HECTD1) contributes to the ubiquitination and degradation of NUP93 and acts as a tumor suppressor in ESCC. To conclude, this study has shown that NUP93 has pro-tumor properties in ESCC and that HECTD1 functions as an upstream regulator of NUP93 in ESCC. These findings may contribute to the investigation of potential therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Yanzhong Xin
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Xiaodong Ling
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Hao Liang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Luquan Zhang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Chengyuan Fang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, 150# Haping Road, Harbin, Heilongjiang, China.
| |
Collapse
|
17
|
Horan G, Ye Y, Adams M, Parton A, Cedzik D, Tang S, Brown EA, Liu L, Nissel J, Carayannopoulos LN, Gaudy A, Schafer P, Palmisano M, Ramirez-Valle F. Safety, Pharmacokinetics, and Antifibrotic Activity of CC-90001 (BMS-986360), a c-Jun N-Terminal Kinase Inhibitor, in Pulmonary Fibrosis. Clin Pharmacol Drug Dev 2023. [PMID: 37378860 DOI: 10.1002/cpdd.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Approved treatments for idiopathic pulmonary fibrosis have tolerability concerns and limited efficacy. CC-90001, a c-Jun N-terminal kinase inhibitor, is under investigation as a therapy for fibrotic diseases. A Phase 1b safety, pharmacokinetics, and pharmacodynamics study of oral CC-90001 (100, 200, or 400 mg) administered once daily for 12 weeks was conducted in patients with pulmonary fibrosis (NCT02510937). Sixteen patients with a mean age of 68 years were studied. The most common treatment-emergent adverse events were nausea and headache; all events were of mild or moderate intensity. Pharmacokinetic profiles were similar between the patients in this trial and healthy adults in previous studies. Forced vital capacity increased in the 200- and 400-mg cohorts from baseline to Week 12, and dose-dependent reductions in fibrosis biomarkers were observed. Antifibrotic activity of CC-90001 was also evaluated in vitro in transforming growth factor beta 1 (TGF-β1)-stimulated cells. CC-90001 reduced in vitro profibrotic gene expression in both lung epithelial cells and fibroblasts, supporting a potential direct antifibrotic action of c-Jun N-terminal kinase inhibition in either or both cell types. Overall, CC-90001 was generally safe and well tolerated, and treatment was associated with forced vital capacity improvement and reductions in profibrotic biomarkers.
Collapse
Affiliation(s)
| | - Ying Ye
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Mary Adams
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | | - Jim Nissel
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
18
|
Pimentel JM, Zhou JY, Wu GS. The Role of TRAIL in Apoptosis and Immunosurveillance in Cancer. Cancers (Basel) 2023; 15:2752. [PMID: 37345089 DOI: 10.3390/cancers15102752] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that selectively induces apoptosis in tumor cells without harming normal cells, making it an attractive agent for cancer therapy. TRAIL induces apoptosis by binding to and activating its death receptors DR4 and DR5. Several TRAIL-based treatments have been developed, including recombinant forms of TRAIL and its death receptor agonist antibodies, but the efficacy of TRAIL-based therapies in clinical trials is modest. In addition to inducing cancer cell apoptosis, TRAIL is expressed in immune cells and plays a critical role in tumor surveillance. Emerging evidence indicates that the TRAIL pathway may interact with immune checkpoint proteins, including programmed death-ligand 1 (PD-L1), to modulate PD-L1-based tumor immunotherapies. Therefore, understanding the interaction between TRAIL and the immune checkpoint PD-L1 will lead to the development of new strategies to improve TRAIL- and PD-L1-based therapies. This review discusses recent findings on TRAIL-based therapy, resistance, and its involvement in tumor immunosurveillance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
19
|
Extracellular vesicles derived from M2-polarized tumor-associated macrophages promote immune escape in ovarian cancer through NEAT1/miR-101-3p/ZEB1/PD-L1 axis. Cancer Immunol Immunother 2023; 72:743-758. [PMID: 36319716 DOI: 10.1007/s00262-022-03305-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Evidence has been presented demonstrating that CD8+ T cells confer anti-cancer effects, which offers a promising approach to enhance immunotherapy. M2-polarized tumor-associated macrophages (TAMs) could transfer RNA to cancer cells by secreting extracellular vesicles (EVs) and stimulate immune escape of cancer cells. Thus, the current study aimed at exploring how EVs derived from M2-polarized TAMs (M2-TAMs) affected the proliferation of ovarian cancer (OC) cells and apoptosis of CD8+ T cells. M2-TAMs were observed in OC tissues, which promoted proliferation of OC cells and CD8+ T cell apoptosis by secreting EVs. OC-associated differentially expressed gene NEAT1 was screened by bioinformatics analysis. The in vitro and in vivo effects of TAM-EVs-NEAT1 and its regulatory mechanism were assessed using gain- and loss-of-function assays in co-culture systems of TAMs-derived EVs, OC cells, and CD8+ T cells and in tumor-bearing mice. NEAT1 was highly expressed in M2-derived EVs and OC cells co-cultured with M2-derived EVs. NEAT1 sponged miR-101-3p to increase ZEB1 and PD-L1 expression. In vitro and in vivo assays confirmed the tumor-supporting effects of NEAT1 delivered by M2-derived EVs on OC cell proliferation and CD8+ T cell apoptosis as well as tumor growth. Collectively, M2-derived EVs containing NEAT1 exerted a tumor-promoting role in OC via the miR-101-3p/ZEB1/PD-L1 axis.
Collapse
|
20
|
Roles of oncogenes in esophageal squamous cell carcinoma and their therapeutic potentials. Clin Transl Oncol 2023; 25:578-591. [PMID: 36315334 DOI: 10.1007/s12094-022-02981-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer (EC) in Asia. It is a malignant digestive tract tumor with abundant gene mutations. Due to the lack of specific diagnostic markers and early cancer screening markers, most patients are diagnosed at an advanced stage. Genetic and epigenetic changes are closely related to the occurrence and development of ESCC. Here, We review the activation of proto-oncogenes into oncogenes through gene mutation and gene amplification in ESCC from a genetic and epigenetic genome perspective, We also discuss the specific regulatory mechanisms through which these oncogenes mainly affect the biological function and occurrence and development of ESCC through specific regulatory mechanisms. In addition, we summarize the clinical application value of these oncogenes is summarized, and it provides a feasible direction for clinical use as potential therapeutic and diagnostic markers.
Collapse
|
21
|
Pimentel JM, Zhou JY, Wu GS. Regulation of programmed death ligand 1 (PD-L1) expression by TNF-related apoptosis-inducing ligand (TRAIL) in triple-negative breast cancer cells. Mol Carcinog 2023; 62:135-144. [PMID: 36239572 PMCID: PMC10015553 DOI: 10.1002/mc.23471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that lacks targeted therapies. Previous studies have shown that TNBC cells are highly sensitive to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), making it a promising agent for treating TNBC. However, the development of TRAIL resistance limits its further clinical development, and the underlying mechanisms are not fully understood. In this study, we report the role of PD-L1 in TRAIL resistance. Specifically, we found that TRAIL treatment increases PD-L1 expression in TRAIL-sensitive cells and that basal PD-L1 expression is increased in acquired TRAIL-resistant cells. Mechanistically, we found that increased PD-L1 expression was accompanied by increased extracellular signal-regulated kinase (ERK) activation. Using both genetic and pharmacological approaches, we showed that knockdown of ERK by siRNA or inhibition of ERK activation by the mitogen-activated protein kinase kinase inhibitor U0126 decreased PD-L1 expression and increased TRAIL-induced cell death. Furthermore, we found that knockout or knockdown of PD-L1 enhances TRAIL-induced apoptosis, suggesting that PD-L1-mediated TRAIL resistance is independent of its ability to evade immune suppression. Therefore, this study identifies a noncanonical mechanism by which PD-L1 promotes TRAIL resistance, which can be potentially exploited for immune checkpoint therapy.
Collapse
Affiliation(s)
- Julio M. Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
22
|
Ooki A, Osumi H, Chin K, Watanabe M, Yamaguchi K. Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma. Ther Adv Med Oncol 2023; 15:17588359221138377. [PMID: 36872946 PMCID: PMC9978325 DOI: 10.1177/17588359221138377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/21/2022] [Indexed: 01/15/2023] Open
Abstract
Esophageal cancer (EC) remains a public health concern with a high mortality and disease burden worldwide. Esophageal squamous cell carcinoma (ESCC) is a predominant histological subtype of EC that has unique etiology, molecular profiles, and clinicopathological features. Although systemic chemotherapy, including cytotoxic agents and immune checkpoint inhibitors, is the main therapeutic option for recurrent or metastatic ESCC patients, the clinical benefits are limited with poor prognosis. Personalized molecular-targeted therapies have been hampered due to the lack of robust treatment efficacy in clinical trials. Therefore, there is an urgent need to develop effective therapeutic strategies. In this review, we summarize the molecular profiles of ESCC based on the findings of pivotal comprehensive molecular analyses, highlighting potent therapeutic targets for establishing future precision medicine for ESCC patients, with the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31
Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Keisho Chin
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| |
Collapse
|
23
|
Burger GA, Nesenberend DN, Lems CM, Hille SC, Beltman JB. Bidirectional crosstalk between epithelial-mesenchymal plasticity and IFN γ-induced PD-L1 expression promotes tumour progression. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220186. [PMID: 36397970 PMCID: PMC9626257 DOI: 10.1098/rsos.220186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) and immunoevasion through upregulation of programmed death-ligand 1 (PD-L1) are important drivers of cancer progression. While EMT has been proposed to facilitate PD-L1-mediated immunosuppression, molecular mechanisms of their interaction remain obscure. Here, we provide insight into these mechanisms by proposing a mathematical model that describes the crosstalk between EMT and interferon gamma (IFNγ)-induced PD-L1 expression. Our model shows that via interaction with microRNA-200 (miR-200), the multi-stability of the EMT regulatory circuit is mirrored in PD-L1 levels, which are further amplified by IFNγ stimulation. This IFNγ-mediated effect is most prominent for cells in a fully mesenchymal state and less strong for those in an epithelial or partially mesenchymal state. In addition, bidirectional crosstalk between miR-200 and PD-L1 implies that IFNγ stimulation allows cells to undergo EMT for lower amounts of inducing signal, and the presence of IFNγ accelerates EMT and decelerates mesenchymal-epithelial transition (MET). Overall, our model agrees with published findings and provides insight into possible mechanisms behind EMT-mediated immune evasion, and primary, adaptive, or acquired resistance to immunotherapy. Our model can be used as a starting point to explore additional crosstalk mechanisms, as an improved understanding of these mechanisms is indispensable for developing better diagnostic and therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Gerhard A. Burger
- Division of Drug Discovery and Safety, Leiden University, Leiden, The Netherlands
| | - Daphne N. Nesenberend
- Division of Drug Discovery and Safety, Leiden University, Leiden, The Netherlands
- Mathematical Institute, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Carlijn M. Lems
- Division of Drug Discovery and Safety, Leiden University, Leiden, The Netherlands
| | - Sander C. Hille
- Mathematical Institute, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden University, Leiden, The Netherlands
| |
Collapse
|
24
|
Wang XP, Huang Z, Li YL, Jin KY, Dong DJ, Wang JX, Zhao XF. Krüppel-like factor 15 integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20-hydroxyecdysone regulation. PLoS Genet 2022; 18:e1010229. [PMID: 35696369 PMCID: PMC9191741 DOI: 10.1371/journal.pgen.1010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
The regulation of glycometabolism homeostasis is vital to maintain health and development of animal and humans; however, the molecular mechanisms by which organisms regulate the glucose metabolism homeostasis from a feeding state switching to a non-feeding state are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the steroid hormone 20-hydroxyecdysone (20E) upregulated the expression of transcription factor Krüppel-like factor (identified as Klf15) to promote macroautophagy/autophagy, apoptosis and gluconeogenesis during metamorphosis. 20E via its nuclear receptor EcR upregulated Klf15 transcription in the fat body during metamorphosis. Knockdown of Klf15 using RNA interference delayed pupation and repressed autophagy and apoptosis of larval fat body during metamorphosis. KLF15 promoted autophagic flux and transiting to apoptosis. KLF15 bound to the KLF binding site (KLF bs) in the promoter of Atg8 (autophagy-related gene 8/LC3) to upregulate Atg8 expression. Knockdown Atg8 reduced free fatty acids (FFAs), glycerol, free amino acids (FAAs) and glucose levels. However, knockdown of Klf15 accumulated FFAs, glycerol, and FAAs. Glycolysis was switched to gluconeogenesis, trehalose and glycogen synthesis were changed to degradation during metamorphosis, which were accompanied by the variation of the related genes expression. KLF15 upregulated phosphoenolpyruvate carboxykinase (Pepck) expression by binding to KLF bs in the Pepck promoter for gluconeogenesis, which utilised FFAs, glycerol, and FAAs directly or indirectly to increase glucose in the hemolymph. Taken together, 20E via KLF15 integrated autophagy and gluconeogenesis by promoting autophagy-related and gluconeogenesis-related genes expression. Glucose is the direct substrate for energy production in animal and humans. Autophagy and gluconeogenesis are known to help organisms maintaining energy substrates; however, the mechanism of integration of autophagy and gluconeogenesis is unclear. Holometabolous insects stop feeding during metamorphosis under steroid hormone 20-hydroxyecdysone (20E) regulation, providing a good model for the study. Using lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that Krüppel-like factor 15 (KLF15) integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20E regulation. 20E increased Klf15 expression, and KLF15 in turn promoted autophagy-related and gluconeogenesis-related genes expression during metamorphosis. Autophagy and apoptosis of the fat body provided substrates for gluconeogenesis. This work clarified the important functions and mechanisms of KLF15 in autophagy and glycometabolism reprogramming for glucose homeostasis after feeding stop during insect metamorphosis.
Collapse
Affiliation(s)
- Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhen Huang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- * E-mail:
| |
Collapse
|
25
|
Duan X, Yang L, Wang L, Liu Q, Zhang K, Liu S, Liu C, Gao Q, Li L, Qin G, Zhang Y. m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer. Cell Biosci 2022; 12:60. [PMID: 35568876 PMCID: PMC9107638 DOI: 10.1186/s13578-022-00798-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epitranscriptomics studies have contributed greatly to the development of research on human cancers. In recent years, N6-methyladenosine (m6A), an RNA modification on the N-6 position of adenosine, has been found to play a potential role in epigenetic regulation. Therefore, we aimed to evaluate the regulation of cancer progression properties by m6A. RESULTS We found that m6A demethylase fat mass and obesity-associated protein (FTO) was highly expressed in esophageal cancer (EC) stem-like cells, and that its level was also substantially increased in EC tissues, which was closely correlated with a poor prognosis in EC patients. FTO knockdown significantly inhibited the proliferation, invasion, stemness, and tumorigenicity of EC cells, whereas FTO overexpression promoted these characteristics. Furthermore, integrated transcriptome and meRIP-seq analyses revealed that HSD17B11 may be a target gene regulated by FTO. Moreover, FTO promoted the formation of lipid droplets in EC cells by enhancing HSD17B11 expression. Furthermore, depleting YTHDF1 increased the protein level of HSD17B11. CONCLUSIONS These data indicate that FTO may rely on the reading protein YTHDF1 to affect the translation pathway of the HSD17B11 gene to regulate the formation of lipid droplets in EC cells, thereby promoting the development of EC. The understanding of the role of epitranscriptomics in the development of EC will lay a theoretical foundation for seeking new anticancer therapies.
Collapse
Affiliation(s)
- Xiaoran Duan
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, 450052, Henan, P.R. China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, P.R. China
| | - Liuya Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Qinghua Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Kai Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Chaojun Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Qun Gao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, 450052, Henan, P.R. China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, P.R. China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, P.R. China.
| |
Collapse
|
26
|
Gao Z, Chen JF, Li XG, Shi YH, Tang Z, Liu WR, Zhang X, Huang A, Luo XM, Gao Q, Shi GM, Ke AW, Zhou J, Fan J, Fu XT, Ding ZB. KRAS acting through ERK signaling stabilizes PD-L1 via inhibiting autophagy pathway in intrahepatic cholangiocarcinoma. Cancer Cell Int 2022; 22:128. [PMID: 35305624 PMCID: PMC8933925 DOI: 10.1186/s12935-022-02550-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND While the correlation between PD-L1 expression and KRAS mutation has been previously reported in other solid tumors such as non-small cell lung cancer (NSCLC), whether PD-L1 can be modulated by ERK signaling downstream of KRAS in intrahepatic cholangiocarcinoma (iCCA) and the underlying molecular regulatory mechanism remain unclear. METHODS The expression of ERK, p-ERK, PD-L1 and autophagy markers following KRAS knockdown or Ras/Raf/MEK/ERK signaling inhibitors treatment was examined in two human iCCA cell lines (HuCCT1 and RBE) using western blotting and immunofluorescence. Both pharmacological autophagy inhibitors and short-interfering RNA against ATG7 were applied to inhibit autophagy. The apoptosis rates of iCCA cell lines were detected by flow cytometry and CCK-8 after co-culturing with CD3/CD28-activated human CD8+ T lymphocytes. Immunohistochemistry was applied to detect the correlation of ERK, p-ERK and PD-L1 in 92 iCCA tissues. RESULTS The present study demonstrated that the PD-L1 expression level was distinctly reduced in KRAS-mutated iCCA cell lines when ERK signaling was inhibited and ERK phosphorylation levels were lowered. The positive association between p-ERK and PD-L1 was also verified in 92 iCCA tissue samples. Moreover, ERK inhibition induced autophagy activation. Both inhibiting autophagy via autophagy inhibitors and genetically silencing the ATG7 expression partially reversed the reduced PD-L1 expression caused by ERK inhibition. In addition, ERK-mediated down-regulation of PD-L1 via autophagy pathways induced the apoptosis of iCCA cells when co-cultured with CD3/CD28-activated human CD8+ T lymphocytes in vitro. CONCLUSIONS Our results suggest that ERK signaling inhibition contributes to the reduction of PD-L1 expression through the autophagy pathway in iCCA. As a supplement to anti-PD-1/PD-L1 immunotherapy, ERK-targeted therapy may serve as a potentially novel treatment strategy for human KRAS-mutated iCCA.
Collapse
Affiliation(s)
- Zheng Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jia-Feng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiao-Gang Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xuan-Ming Luo
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
27
|
Zhang Y, Du T, Chen X. ANXA2P2: A Potential Immunological and Prognostic Signature in Ovarian Serous Cystadenocarcinoma via Pan-Carcinoma Synthesis. Front Oncol 2022; 12:818977. [PMID: 35211410 PMCID: PMC8860902 DOI: 10.3389/fonc.2022.818977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background Although the effect of pseudogene ANXA2P2 on some tumors has been reported in a few literatures, the therapeutic potential and prognostic value of ANXA2P2 in ovarian serous cystadenocarcinoma (OV) have not been elucidated. Methods The correlation for ANXA2P2 expression patterns to prognostic characteristics, tumor immune microenvironment, immune cell infiltration level, tumor mutation burden (TMB), tumor microsatellite instability (MSI), drug sensitivity, and pathway function enrichment were investigated in pan-carcinoma via TCGA and GTEx databases. Subsequently, the role of ANXA2P2 expression levels in the pathway enrichments and prognosis prediction in OV were further explored using weighted correlation network analysis (WGCNA) analysis, gene mutation analysis, and risk-independent prognostic analysis. Results ANXA2P2 was frequently overexpressed in a variety of tumors compared with normal tissues. The correlation analysis for prognostic characteristics, tumor immune microenvironment, immune cell infiltration level, TMB, MSI, drug sensitivity, and pathway function enrichment revealed that ANXA2P2 expression patterns might deal a significant impact on the pathogenesis, development, and prognosis of various tumors. Then, GSVA, GSEA, WGCNA, gene mutation, and independent prognostic analysis for OV have indicated that high expression in ANXA2P2 could be mostly enriched in TNF-α signaling-via-NF-κB, epithelial-mesenchymal transition, apical junction, IL-6-JAK STAT3 signaling, etc., which were also proved to act as crucial factors on tumorigenesis, development, invasion, and metastasis. The mutation of TP53 (94%), TTN (24%), and CSMD3 (9%) in the biological process of tumor had been confirmed by relevant studies. Finally, the independent prognostic analysis demonstrated that ANXA2P2 expression in OV contributes greatly to the dependability of 3- and 5-year survival prediction. Conclusion In summary, our findings might provide a helpful foundation for prospective explorative researches, afford new strategies for the clinical treatment, deal prognosis prediction, and give new hope for OV patients.
Collapse
Affiliation(s)
- Yanna Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Du
- Noncoding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Lee SS, Park J, Oh S, Kwack K. Downregulation of LOC441461 Promotes Cell Growth and Motility in Human Gastric Cancer. Cancers (Basel) 2022; 14:cancers14051149. [PMID: 35267457 PMCID: PMC8909665 DOI: 10.3390/cancers14051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer is a common tumor, with a high mortality rate. The severity of gastric cancer is assessed by TNM staging. Long noncoding RNAs (lncRNAs) play a role in cancer treatment; investigating the clinical significance of novel biomarkers associated with TNM staging, such as lncRNAs, is important. In this study, we investigated the association between the expression of the lncRNA LOC441461 and gastric cancer stage. LOC441461 expression was lower in stage IV than in stages I, II, and III. The depletion of LOC441461 promoted cell proliferation, cell cycle progression, apoptosis, cell motility, and invasiveness. LOC441461 downregulation increased the epithelial-to-mesenchymal transition, as indicated by increased TRAIL signaling and decreased RUNX1 interactions. The interaction of the transcription factors RELA, IRF1, ESR1, AR, POU5F1, TRIM28, and GATA1 with LOC441461 affected the degree of the malignancy of gastric cancer by modulating gene transcription. The present study identified LOC441461 and seven transcription factors as potential biomarkers and therapeutic targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sang-soo Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
| | - JeongMan Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
| | - Sooyeon Oh
- Chaum Life Center, CHA University School of Medicine, Seoul 06062, Korea;
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
- Correspondence: ; Tel.: +82-31-881-7141
| |
Collapse
|
29
|
Sahoo S, Nayak SP, Hari K, Purkait P, Mandal S, Kishore A, Levine H, Jolly MK. Immunosuppressive Traits of the Hybrid Epithelial/Mesenchymal Phenotype. Front Immunol 2022; 12:797261. [PMID: 34975907 PMCID: PMC8714906 DOI: 10.3389/fimmu.2021.797261] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Recent preclinical and clinical data suggests enhanced metastatic fitness of hybrid epithelial/mesenchymal (E/M) phenotypes, but mechanistic details regarding their survival strategies during metastasis remain unclear. Here, we investigate immune-evasive strategies of hybrid E/M states. We construct and simulate the dynamics of a minimalistic regulatory network encompassing the known associations among regulators of EMT (epithelial-mesenchymal transition) and PD-L1, an established immune-suppressor. Our simulations for the network consisting of SLUG, ZEB1, miR-200, CDH1 and PD-L1, integrated with single-cell and bulk RNA-seq data analysis, elucidate that hybrid E/M cells can have high levels of PD-L1, similar to those seen in cells with a full EMT phenotype, thus obviating the need for cancer cells to undergo a full EMT to be immune-evasive. Specifically, in breast cancer, we show the co-existence of hybrid E/M phenotypes, enhanced resistance to anti-estrogen therapy and increased PD-L1 levels. Our results underscore how the emergent dynamics of interconnected regulatory networks can coordinate different axes of cellular fitness during metastasis.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bangalore, India.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Prithu Purkait
- Undergraduate Program, Indian Institute of Science, Bangalore, India
| | - Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Akash Kishore
- Department of Computer Science & Engineering, Sri Sivasubramaniya Nadar (SSN) College of Engineering, Chennai, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, United States.,Departments of Physics and Bioengineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
30
|
Lu Y, Xin D, Guan L, Xu M, Yang Y, Chen Y, Yang Y, Wang-Gillam A, Wang L, Zong S, Wang F. Metformin Downregulates PD-L1 Expression in Esophageal Squamous Cell Catrcinoma by Inhibiting IL-6 Signaling Pathway. Front Oncol 2021; 11:762523. [PMID: 34881181 PMCID: PMC8645640 DOI: 10.3389/fonc.2021.762523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the mechanism by which metformin inhibits PD-L1 expression in esophageal squamous cell carcinoma (ESCC) and to evaluate the effect of metformin on the antitumor immune response. Methods The Cancer Genome Atlas (TCGA) database was used to analyze the correlations between IL-6 and prognosis and between IL-6 and PD-L1 gene expression in esophageal cancer. Reverse transcription-quantitative polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence were used to study the mechanism by which metformin affects PD-L1 expression. Additionally, T cell function was assessed in a coculture system containing ESCC cells and peripheral blood mononuclear cells (PBMCs) treated with metformin or IL-6. In an in vivo assay, we used a model established with NPIdKO™ mice, which have a reconstituted immune system generated by transplanting PBMCs through intravenous injection, to evaluate the effect of metformin on tumors. Results The TCGA esophageal cancer data showed that IL-6 expression was positively correlated with PD-L1 expression and that patients with high IL-6 expression had a significantly lower overall survival rate than patients with low IL-6 expression. PD-L1 expression in ESCC cell lines was significantly inhibited by metformin via the IL-6/JAK2/STAT3 signaling pathway but was not correlated with the canonical AMPK pathway. In the coculture system, the metformin pretreatment group showed higher T cell activation and better T cell killing function than the control group. Animal experiments confirmed that metformin downregulated PD-L1 expression and that combination treatment with metformin and PD-1 inhibitors synergistically enhanced the antitumor response. Conclusions Metformin downregulated PD-L1 expression by blocking the IL-6/JAK2/STAT3 signaling pathway in ESCC, which enhanced the antitumor immune response.
Collapse
Affiliation(s)
- Yao Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Xin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lulu Guan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengli Xu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yalan Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Andrea Wang-Gillam
- Department of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Li Wang
- Henan Academy of Medical Sciences, Zhengzhou, China
| | | | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Zhang W, Shi F, Kong Y, Li Y, Sheng C, Wang S, Wang Q. Association of PTPRT mutations with immune checkpoint inhibitors response and outcome in melanoma and non-small cell lung cancer. Cancer Med 2021; 11:676-691. [PMID: 34862763 PMCID: PMC8817076 DOI: 10.1002/cam4.4472] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/13/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Protein tyrosine phosphatase receptor type T (PTPRT), which is a well‐known phosphatase and mutates frequently in melanoma and non‐small cell lung cancer (NSCLC). Our research aims to elucidate its mutation association with immune checkpoint inhibitors (ICI) efficacy. Methods We integrated whole‐exome sequencing (WES)‐based somatic mutation profiles and clinical characteristics of 631 melanoma samples received ICI agents from eight studies and 109 NSCLC samples from two studies. For validation, 321 melanoma and 350 NSCLC immunotherapy samples with targeted next‐generation sequencing (NGS) were employed. Besides, an independent NSCLC cohort contained 240 samples was also collected for further corroboration. Distinct immune infiltration was evaluated according to the PTPRT mutational status. Results In the WES melanoma cohort, patients with PTPRT mutations harbored a significantly elevated ICI response rate (40.5% vs. 28.6%, p = 0.036) and a prolonged survival outcome (35.3 vs. 24.9 months, p = 0.006). In the WES NSCLC cohort, the favorable response and immunotherapy survival were also observed in PTPRT‐mutated patients (p = 0.036 and 0.019, respectively). For the validation cohorts, the associations of PTRPT mutations with better prognoses were identified in melanoma, NSCLC, and pan‐cancer patients with targeted‐NGS (all p < 0.05). Moreover, immunology analyses showed the higher mutation burden, increased lymphocyte infiltration, decreased‐ activated‐stroma, and immune response pathways were detected in patients with PTPRT mutations. Conclusion Our investigation indicates that PTPRT mutations may be considered as a potential indicator for assessing ICI efficacy in melanoma and NSCLC, even across multiple cancers. Further prospective validation cohorts are warranted.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Fuyan Shi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Yujia Kong
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Yuting Li
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chao Sheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Suzhen Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, China
| |
Collapse
|