1
|
Zhao L, Lee ZH, Shah YM. Ammonia as a critical metabolic modulator of anti-tumor immunity. Med Gas Res 2025; 15:446-447. [PMID: 40251027 PMCID: PMC12054676 DOI: 10.4103/mgr.medgasres-d-24-00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 04/20/2025] Open
Affiliation(s)
- Liang Zhao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Zheng Hong Lee
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Jalali P, Rezaee M, Yaghoobi A, Piroozkhah M, Zabihi MR, Aliyari S, Salehi Z. Bioinformatics analysis reveals shared molecular pathways for relationship between ulcerative colitis and primary sclerosing cholangitis. Genomics Inform 2025; 23:12. [PMID: 40375266 DOI: 10.1186/s44342-025-00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/09/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease, affecting the gastrointestinal tract and is associated with high morbidity and mortality. Accumulating evidence indicates that IBD not only impacts the gastrointestinal tract but also affects multiple extraintestinal organs, which may manifest prior to the diagnosis of IBD. Among these extraintestinal manifestations associated with IBD, primary sclerosing cholangitis (PSC) stands out as a prominent example. PSC is recognized as a progressive cholestatic disorder, characterized by the narrowing of bile ducts, eventual development of liver cirrhosis, end-stage liver disease, and the potential emergence of cholangiocarcinoma. This study aimed to identify the molecular contributors in UC-induced PSC by detecting the essential regulatory genes that are differentially expressed in both diseases. MATERIALS AND METHODS The common single-nucleotide polymorphisms (SNPs) and differentially expressed genes (DEGs) were detected using DisGeNET and GEO databases, respectively. Then, the top module and hub genes within the protein-protein interaction network were identified. Furthermore, the co-expression network of the top module was constructed using the HIPPIE database. Additionally, the gene regulatory network was constructed based on miRNAs and circRNAs. Finally, we searched the DGIdb database for possible interacting drugs with UC-PSC top module genes. RESULTS A total of 132 SNPs and their associated genes were found to be shared between UC and PSC. Gene expression analysis identified 56 common DEGs between the two diseases. Following functional enrichment analysis, 207 significant biological processes (BP), 48 molecular functions (MF), and 8 KEGG pathways, with notable enrichment in mRNA-related processes such as mRNA splicing and RNA binding, were defined. Particularly, the PTPN2 gene was the only gene common between UC and PSC at both the SNP level and the expression level. Additionally, the top cluster of PPI network analysis was consisted of PABPC1, SNRPA1, NOP56, NHP2L1, and HNRNPA2B1 genes. Finally, ceRNA network involving 4 mRNAs, 94 miRNAs, and 200 selected circRNAs was constructed. CONCLUSION The present study provides novel potential candidate genes that may be involved in the molecular association between ulcerative colitis and primary sclerosing cholangitis, resulting in the development of diagnostic tools and therapeutic targets to prevent the progression of PSC from UC.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Aliyari
- Division of Applied Bioinformatics, German Cancer Research Center DKFZ Heidelberg, Heidelberg, Germany
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chauhan R, Damerla RR, Dhyani VS. Synthetic lethality in cancer: a protocol for scoping review of gene interactions from synthetic lethal screens and functional studies. Syst Rev 2025; 14:81. [PMID: 40200332 PMCID: PMC11978169 DOI: 10.1186/s13643-025-02814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Two genes are synthetically lethal if loss of function of either one of the two genes does not result in cell death, whereas loss of function of both genes together results in being detrimental to cell survival. This concept has been the basis for developing personalized, precision treatments, which can selectively damage tumor cells and minimize toxicity to normal tissues. Tumor cells often harbor mutations in genes involved in DNA repair pathways, forcing them to switch to alternative repair pathways, leading to chemotherapeutic resistance. These interactions, if targeted, could be synthetically lethal. We aimed to summarize synthetically lethal gene pairs that could be utilized to selectively target cancer cells and minimize side effects on normal tissues. The objective of this review is to study druggable synthetically lethal gene pairs for targeted cancer therapy that have been identified through various genetic screens and functional studies. METHODS A systematic literature search will be conducted to extract synthetically lethal gene pairs that can be specifically targeted to cancer cells. Owing to the relatively recent research pertaining to this field, the literature search will incorporate data from 1956. The search will be conducted on PubMed, Web of Science, Embase, and Scopus. The narrative approach will guide the analysis and synthesis of the results. DISCUSSION This review highlights scientific articles that report druggable synthetically lethal gene pairs by testing the efficacy of targeted inhibitors in clonogenic assays. These include research studies that identify synthetically lethal gene pairs detected through CRISPR screens by knocking out one or two genes within the same cell and testing the potency of inhibitors to specifically kill malignant cells. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.17605/OSF.IO/5BCW6 .
Collapse
Affiliation(s)
- Raashi Chauhan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Vijay Shree Dhyani
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Yan Z, He A, Wan L, Gao Q, Jiang Y, Wang Y, Wang E, Li C, Yang Y, Li Y, Guo P, Han D. Structural Insights into an Antiparallel Chair-Type G-Quadruplex From the Intron of NOP56 Oncogene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406230. [PMID: 40047221 PMCID: PMC12021085 DOI: 10.1002/advs.202406230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/08/2025] [Indexed: 04/26/2025]
Abstract
G-quadruplex (G4) structures play important roles in various biological processes, especially the gene regulation. Nucleolar protein 56 (NOP56) is an essential component in ribosome biogenesis while its overexpression associates with various types of cancers, rendering it a significant therapeutic target. Here for the first time, an antiparallel chair-type G4 structure formed by a 21-nt DNA sequence from the intron 1 of NOP56 is reported, and its high-resolution structure is determined using solution nuclear magnetic resonance spectroscopy. The NOP56-G4 has a special fold containing two G-tetrads and a C·G·C·G tetrad, which is further capped by a C∙C base pair. The G4 ligand pyridostatin (PDS) binds at the terminal G-tetrad through π-π stacking and electrostatic interactions, increasing the melting temperature of NOP56-G4 by ≈14 °C. This study further shows that PDS can significantly reduce NOP56 mRNA levels in three cancer cell lines. This work provides an unprecedented high-resolution structural basis for a special G4 structure from the intron of NOP56 and suggests a feasibility of targeting intronic G4 for gene regulation, propelling new avenues for G4 structure-based drug design and therapeutic strategy.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Axin He
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| | - Liqi Wan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| | - Qian Gao
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310013China
| | - Yan Jiang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | | | - Changling Li
- College of Chemistry and Materials ScienceShanghai Normal UniversityShanghai200234China
| | - Yingquan Yang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yingjie Li
- Department of PharmacologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Pei Guo
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Da Han
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
5
|
Uchiya TDS, Cunha HND, Casotti MC, Castro GDSCD, Pereira GF, Moura JAD, Machado AM, Rocha FVV, Mauricio LSR, Lopes VA, Pesente F, Giacinti GM, Coelho FF, Carvalho EFD, Louro ID, Meira DD. Resilience in adversity: Exploring adaptive changes in cancer cells under stress. Tissue Cell 2025; 93:102756. [PMID: 39864208 DOI: 10.1016/j.tice.2025.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Cancer cells undergo adaptive processes that favor their survival and proliferation when subjected to different types of cellular stress. These changes are linked to oncogenic processes such as genetic instability, tumor proliferation, therapy resistance, and invasion. Therefore, this study aimed to review studies that discuss possible morphological and genetic changes acquired by neoplastic cells under stressful conditions. METHODS The articles used in this integrative review were searched on PubMed, Web of Science, CAPES, BVS and Scopus. Studies that discussed how cells undergo morphogenetic changes as an adaptive response to stress in cancer were included. RESULTS This article reviewed 82 studies that highlighted multiple types of stress to which cancer can be subjected, such as oxidative, thermal and mechanical stress; glucose and other nutrients deficiency; hypoxia and chemotherapy. Neoplastic cells under stress can undergo adaptive changes that make it possible to overcome this obstacle. In this adaptive process, the acquisition of certain mutations implies cellular morphological changes such as Epithelial-Mesenchymal Transition, polyploidy, mitochondrial and cytoskeletal changes. These adaptive changes occur concomitantly with processes related to oncogenesis such as gene instability, tumor proliferation, resistance to therapy and invasion. CONCLUSIONS This study reveals that adaptations to cellular stress promote morphological and functional changes that accompany or accelerate oncogenesis. It has been revised how epithelial-mesenchymal transition, polyploidy and mitochondrial dysfunctions not only reinforce the survival of tumor cells in adverse environments, but also increase therapeutic resistance and invasive capacity. Also noteworthy are the contributions on genomic instability associated with stress and the potential of senescent cells in tumor heterogeneity, both as factors of tumor resistance and progression. These insights suggest new therapeutic targets and prognostic biomarkers, expanding the possibilities for more effective strategies to combat cancer.
Collapse
Affiliation(s)
- Taissa Dos Santos Uchiya
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Helena Napoli da Cunha
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | | | - Gabrielle Feu Pereira
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - João Augusto Diniz Moura
- Laboratório de Oncologia Clínica e Experimental (LOCE), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - André Manhães Machado
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Fabio Victor Vieira Rocha
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Lorena Souza Rittberg Mauricio
- Laboratório de Oncologia Clínica e Experimental (LOCE), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Victor Alves Lopes
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Giulia Maria Giacinti
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Francisco Felipe Coelho
- Departamento de Biblioteconomia, Federal University of Espírito Santo, Espírito Santo, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil.
| |
Collapse
|
6
|
Zhao L, Deng H, Zhang J, Zamboni N, Yang H, Gao Y, Yang Z, Xu D, Zhong H, van Geest G, Bruggmann R, Zhou Q, Schmid RA, Marti TM, Dorn P, Peng RW. Lactate dehydrogenase B noncanonically promotes ferroptosis defense in KRAS-driven lung cancer. Cell Death Differ 2025; 32:632-645. [PMID: 39643712 PMCID: PMC11982314 DOI: 10.1038/s41418-024-01427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Ferroptosis is an oxidative, non-apoptotic cell death frequently inactivated in cancer, but the underlying mechanisms in oncogene-specific tumors remain poorly understood. Here, we discover that lactate dehydrogenase (LDH) B, but not the closely related LDHA, subunits of active LDH with a known function in glycolysis, noncanonically promotes ferroptosis defense in KRAS-driven lung cancer. Using murine models and human-derived tumor cell lines, we show that LDHB silencing impairs glutathione (GSH) levels and sensitizes cancer cells to blockade of either GSH biosynthesis or utilization by unleashing KRAS-specific, ferroptosis-catalyzed metabolic synthetic lethality, culminating in increased glutamine metabolism, oxidative phosphorylation (OXPHOS) and mitochondrial reactive oxygen species (mitoROS). We further show that LDHB suppression upregulates STAT1, a negative regulator of SLC7A11, thereby reducing SLC7A11-dependent GSH metabolism. Our study uncovers a previously undefined mechanism of ferroptosis resistance involving LDH isoenzymes and provides a novel rationale for exploiting oncogene-specific ferroptosis susceptibility to treat KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Jingyi Zhang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology/ETH Zürich, Zurich, Switzerland
- PHRT Swiss Multi-Omics Center, smoc.ethz.ch, Zurich, Switzerland
| | - Haitang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou City, Fujian, China
| | - Duo Xu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiqing Zhong
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ralph A Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Zheng H, Wang J, Zheng Y, Hong X, Wang L. Identification of genetic associations between acute myocardial infarction and non-small cell lung cancer. Front Mol Biosci 2024; 11:1502509. [PMID: 39712244 PMCID: PMC11659147 DOI: 10.3389/fmolb.2024.1502509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction A growing body of evidence suggests a potential connection between myocardial infarction (MI) and lung cancer (LC). However, the underlying pathogenesis and molecular mechanisms remain unclear. This research aims to identify common genes and pathways between MI and LC through bioinformatics analysis. Methods Two public datasets (GSE166780 and GSE8569) were analyzed to identify differentially expressed genes (DEGs). Common DEGs were enriched using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Hub genes were identified and their diagnostic performance was evaluated. Gene co-expression networks, as well as regulatory networks involving miRNA-hub genes and TF-hub genes, were also constructed. Finally, candidate drugs were predicted. Results Among the datasets, 34 common trend DEGs were identified. Enrichment analysis linked these DEGs to key biological processes, cellular components, and molecular functions. Eight hub genes (CEBPA, TGFBR2, EZH2, JUNB, JUN, FOS, PLAU, COL1A1) were identified, demonstrating promising diagnostic accuracy. Key transcription factors associated with these hub genes include SP1, ESR1, CREB1, ETS1, NFKB1, and RELA, while key miRNAs include hsa-mir-101-3p, hsa-mir-124-3p, hsa-mir-29c-3p, hsa-mir-93-5p, and hsa-mir-155-5p. Additionally, potential therapeutic drugs were identified, with zoledronic acid anhydrous showing potential value in reducing the co-occurrence of the two diseases. Discussion This study identified eight common signature genes shared between NSCLC and AMI. Validation datasets confirmed the diagnostic value of key hub genes COL1A1 and PLAU. These findings suggest that shared hub genes may serve as novel therapeutic targets for patients with both diseases. Ten candidate drugs were predicted, with zoledronic acid showing potential for targeting dual hub genes, offering a promising therapeutic approach for the comorbidity of lung cancer and myocardial infarction.
Collapse
Affiliation(s)
- Hao Zheng
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jie Wang
- Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Yijia Zheng
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaofan Hong
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
9
|
Gong X, Du J, Peng RW, Chen C, Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel) 2024; 16:460. [PMID: 38275900 PMCID: PMC10814442 DOI: 10.3390/cancers16020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland;
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
10
|
Guo Y, Tian J, Guo Y, Wang C, Chen C, Cai S, Yu W, Sun B, Yan J, Li Z, Fan J, Qi Q, Zhang D, Jin W, Hua Z, Chen G. Oncogenic KRAS effector USP13 promotes metastasis in non-small cell lung cancer through deubiquitinating β-catenin. Cell Rep 2023; 42:113511. [PMID: 38043062 DOI: 10.1016/j.celrep.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
KRAS mutations are frequently detected in non-small cell lung cancers (NSCLCs). Although covalent KRASG12C inhibitors have been developed to treat KRASG12C-mutant cancers, effective treatments are still lacking for other KRAS-mutant NSCLCs. Thus, identifying a KRAS effector that confers poor prognosis would provide an alternative strategy for the treatment of KRAS-driven cancers. Here, we show that KRAS drives expression of deubiquitinase USP13 through Ras-responsive element-binding protein 1 (RREB1). Elevated USP13 promotes KRAS-mutant NSCLC metastasis, which is associated with poor prognosis in NSCLC patients. Mechanistically, USP13 interacts with and removes the K63-linked polyubiquitination of β-catenin at lysine 508, which enhances the binding between β-catenin and transcription factor TCF4. Importantly, we identify 2-methoxyestradiol as an effective inhibitor for USP13 from a natural compound library, and it could potently suppress the metastasis of KRAS-mutant NSCLC cells in vitro and in vivo. These findings identify USP13 as a therapeutic target for metastatic NSCLC with KRAS mutations.
Collapse
Affiliation(s)
- Yanguan Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Congcong Chen
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Songwang Cai
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Wenliang Yu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhonghua Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Fan
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Qi Qi
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China.
| |
Collapse
|
11
|
Karimi N, Moghaddam SJ. KRAS-Mutant Lung Cancer: Targeting Molecular and Immunologic Pathways, Therapeutic Advantages and Restrictions. Cells 2023; 12:749. [PMID: 36899885 PMCID: PMC10001046 DOI: 10.3390/cells12050749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
RAS mutations are among the most common oncogenic mutations in human cancers. Among RAS mutations, KRAS has the highest frequency and is present in almost 30% of non-small-cell lung cancer (NSCLC) patients. Lung cancer is the number one cause of mortality among cancers as a consequence of outrageous aggressiveness and late diagnosis. High mortality rates have been the reason behind numerous investigations and clinical trials to discover proper therapeutic agents targeting KRAS. These approaches include the following: direct KRAS targeting; synthetic lethality partner inhibitors; targeting of KRAS membrane association and associated metabolic rewiring; autophagy inhibitors; downstream inhibitors; and immunotherapies and other immune-modalities such as modulating inflammatory signaling transcription factors (e.g., STAT3). The majority of these have unfortunately encountered limited therapeutic outcomes due to multiple restrictive mechanisms including the presence of co-mutations. In this review we plan to summarize the past and most recent therapies under investigation, along with their therapeutic success rate and potential restrictions. This will provide useful information to improve the design of novel agents for treatment of this deadly disease.
Collapse
Affiliation(s)
- Nastaran Karimi
- Faculty of Medicine, Marmara University, Istanbul 34899, Turkey
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
12
|
H3K27 acetylation activated-CCS regulates autophagy and apoptosis of lung cancer by alleviating oxidative stress. Tissue Cell 2023; 80:101964. [PMID: 36402120 DOI: 10.1016/j.tice.2022.101964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Copper chaperone for superoxide dismutase (CCS) is abnormally expressed in various human malignancies. However, the function and mechanism of CCS in lung cancer progression remain unclear. In the current study, CCS protein and mRNA levels were found to be increased in lung adenocarcinoma (LUAD) tissue and cell lines. Patients with higher CCS levels had a poorer prognosis. Decreasing the enrichment of histone H3 Lys27 acetylation (H3K27ac) by A-485 inhibited CCS expression. CCS depletion upregulated reactive oxygen species (ROS) levels, aggravated oxidative stress, inhibited autophagy, inhibited cell survival, and promoted apoptosis. The treatment of antioxidant N-Acetyl-L-cysteine (NAC) rescued these changes induced by CCS depletion. CCS also was found to be related to the immune infiltration of CD8 + T cells and regulatory T cells in LUAD. These data indicated that overexpression of CCS activated by H3K27 acetylation relieved oxidative stress, promoted autophagy, and inhibited apoptosis. CCS may be regarded as a potential therapeutic target for LUAD.
Collapse
|
13
|
Zhao S, Zhang D, Liu S, Huang J. The roles of NOP56 in cancer and SCA36. Pathol Oncol Res 2023; 29:1610884. [PMID: 36741964 PMCID: PMC9892063 DOI: 10.3389/pore.2023.1610884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
NOP56 is a highly conserved nucleolar protein. Amplification of the intron GGCCTG hexanucleotide repeat sequence of the NOP56 gene results in spinal cerebellar ataxia type 36 (SCA36). NOP56 contains an N-terminal domain, a coiled-coil domain, and a C-terminal domain. Nucleolar protein NOP56 is significantly abnormally expressed in a number of malignant tumors, and its mechanism is different in different tumors, but its regulatory mechanism in most tumors has not been fully explored. NOP56 promotes tumorigenesis in some cancers and inhibits tumorigenesis in others. In addition, NOP56 is associated with methylation in some tumors, suggesting that NOP56 has the potential to become a tumor-specific marker. This review focuses on the structure, function, related signaling pathways, and role of NOP56 in the progression of various malignancies, and discusses the progression of NOP56 in neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Shimin Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongdong Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Jun Huang,
| |
Collapse
|