1
|
Ning X, Xu W, Ma J, Chen S, Ma R. Development of novel prognostic protein signatures in ovarian cancer: Molecular structure and immune function of AQP5 protein and CTDP1 protein. Int J Biol Macromol 2025; 310:143474. [PMID: 40286746 DOI: 10.1016/j.ijbiomac.2025.143474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Ovarian cancer is a serious gynecological malignancy, and early identification of prognostic markers is critical to improve clinical outcomes. Aquaporin 5 (AQP5) and cell cycle regulatory protein CTDP1 are considered as potential prognostic protein markers, but their specific molecular structure and immune function have not been thoroughly studied. The aim of this study was to investigate the molecular structure of AQP5 and CTDP1 and their immune function in ovarian cancer, to evaluate their potential as prognostic markers, and to provide new ideas for the diagnosis and efficacy monitoring of ovarian cancer. Cox regression analysis and LASSO regression were used to construct the risk prognosis model, and the preliminary verification was carried out. Finally, cell culture and high-resolution gene expression analysis were used to investigate the expression of AQP5 and CTDP1 and their roles in the immune microenvironment. The results showed that AQP5 and CTDP1 were highly expressed in ovarian cancer cell lines and were closely related to tumor immune invasion. The immunomicroenvironment analysis based on GRN showed that they showed a positive correlation with tumor-related immune cells. Through the constructed risk model, AQP5 and CTDP1 significantly affect patient prognosis, suggesting their potential as prognostic markers.
Collapse
Affiliation(s)
- Xin Ning
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Wei Xu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Jiaxin Ma
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Sining Chen
- Department of mathematics, King's College London, London, United Kingdom
| | - Rong Ma
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
2
|
Sun Y, Puspanathan P, Lim T, Lin D. Advances and challenges in gastric cancer testing: the role of biomarkers. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0386. [PMID: 40126094 PMCID: PMC11976707 DOI: 10.20892/j.issn.2095-3941.2024.0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer. Several established biomarkers have been widely integrated into routine clinical diagnostics of gastric cancer to guide personalized treatment. Human epidermal growth factor receptor 2 (HER2) was the first molecular biomarker to be used in gastric cancer with trastuzumab being the first approved targeted therapy for HER2-positive gastric cancer. Programmed death-ligand 1 positivity and microsatellite instability can guide the use of immunotherapies, such as pembrolizumab and nivolumab. More recently, zolbetuximab has been approved for patients with claudin 18.2-positive diseases in some countries. More targeted therapies, including savolitinib for MET-positive patients, are currently under clinical investigation. However, the clinical application of these diagnostic approaches could be hampered by many existing challenges, including invasive and costly sampling methods, variability in immunohistochemistry interpretation, high costs and long turnaround times for next-generation sequencing, the absence of standardized and clinically validated diagnostic cut-off values for some biomarkers, and tumor heterogeneity. Novel testing and analysis techniques, such as artificial intelligence-assisted image analysis and multiplex immunohistochemistry, and emerging therapeutic strategies, including combination therapies that integrate immune checkpoint inhibitors with targeted therapies, offer potential solutions to some of these challenges. This article reviews recent progress in gastric cancer testing, outlines current challenges, and explores future directions for biomarker testing and targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | - Tony Lim
- Division of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
3
|
Xu N, Zhang T, Sun W, Ye C, Zhou H. Identification of an extracellular matrix signature for predicting prognosis and sensitivity to therapy of patients with gastric cancer. Sci Rep 2025; 15:7464. [PMID: 40032943 PMCID: PMC11876314 DOI: 10.1038/s41598-025-88376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Extracellular matrix (ECM) is a vital component of the tumor microenvironment and plays a crucial role in the development and progression of gastric cancer (GC). Co-expression networks were established by means of the "WGCNA" package, the optimal model for extracellular matrix scores (ECMs) was developed and validated, with its accuracy in predicting the prognosis and treatment sensitivity of GC patients assessed. We performed univariate cox regression analysis [HR = 6.8 ( 3.3-14 ), p < 0.001] which demonstrated that ECMs was an independent risk character and perceptibly superior to other factors with further analysis of multivariate Cox regression [HR = 8.68 ( 4.16-18.08 ), p < 0.001]. The nomogram, presenting the clinical prognosis model for GC patients, demonstrated accuracy through KM analysis [HR = 3.97 (2.56-6.16), p < 0.001] and ROC curves with AUC values of 0.70, 0.72, and 0.72 at 1, 3, and 5 years, respectively. Using the ECMs model, we stratified GC patients into high- and low-risk groups, enabling precise predictions of prognosis and drug sensitivity. This stratification provides a new strategic direction for the personalized treatment of GC.
Collapse
Affiliation(s)
- Nan Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Taojing Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiwei Sun
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenxiao Ye
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huamiao Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Fan X, Han F, Wang H, Shu Z, Qiu B, Zeng F, Chen H, Wu Z, Lin Y, Lan Z, Ye Z, Ying Y, Geng T, Xian Z, Niu X, Wu J, Mo K, Zheng K, Ye Y, Cui C. YTHDF2-mediated m 6A modification of ONECUT2 promotes stemness and oxaliplatin resistance in gastric cancer through transcriptionally activating TFPI. Drug Resist Updat 2025; 79:101200. [PMID: 39823826 DOI: 10.1016/j.drup.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
AIMS Chemoresistance results in poor outcomes of patients with gastric cancer (GC). This study aims to identify oxaliplatin resistance-related cell subpopulations in the tumor microenvironment (TME) and decipher the involved molecular mechanisms. METHODS Through single-cell RNA sequencing, a unique ONECUT2+TFPI+ GC cell subset was identified in the oxaliplatin-resistant TME. The functional roles and molecular mechanisms of ONECUT2 in oxaliplatin resistance were investigated in cellular and mouse models. Therapeutic efficacy of small molecule inhibitor of ONECUT2 was also evaluated. RESULTS The abundance of ONECUT2+TFPI+ GC cell subset was elevated in oxaliplatin-resistant GC tumors. ONECUT2 was up-regulated and associated with undesirable prognostic outcomes of patients with GC. ONECUT2 facilitated GC cell migration, stemness properties and oxaliplatin resistance. YTHDF2, an m6A "reader", was down-regulated in GC, and its overexpression facilitated ONECUT2 mRNA degradation through m6A modification. Furthermore, ONECUT2 transcriptionally activated TFPI through binding to its promoter. Small molecule inhibitor CSRM617 targeting ONECUT2 was well tolerated in GC mouse models, and could effectively improve therapeutic efficacy of oxaliplatin against GC. CONCLUSIONS Our study demonstrates that YTHDF2-mediated m6A modification of ONECUT2 results in stemness and oxaliplatin resistance in GC through transcriptionally activating TFPI, which provides a novel therapeutic target against oxaliplatin-resistant GC.
Collapse
Affiliation(s)
- Xingdi Fan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Fangyi Han
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haocheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhilin Shu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Hongzhen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ziying Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yongwei Lin
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhien Lan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhiwei Ye
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yao Ying
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tiansu Geng
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ziqian Xian
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong
| | - Junming Wu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong
| | - Ke Mo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong.
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
5
|
Ma Q, Gao J, Hui Y, Zhang ZM, Qiao YJ, Yang BF, Gong T, Zhao DM, Huang BR. Single-cell RNA-sequencing and genome-wide Mendelian randomisation along with abundant machine learning methods identify a novel B cells signature in gastric cancer. Discov Oncol 2025; 16:11. [PMID: 39760915 PMCID: PMC11703799 DOI: 10.1007/s12672-025-01759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) has a poor prognosis, considerable cellular heterogeneity, and ranks fifth among malignant tumours. Understanding the tumour microenvironment (TME) and intra-tumor heterogeneity (ITH) may lead to the development of novel GC treatments. METHODS The single-cell RNA sequencing (scRNA-seq) dataset was obtained from the Gene Expression Omnibus (GEO) database, where diverse immune cells were isolated and re-annotated based on cell markers established in the original study to ascertain their individual characteristics. We conducted a weighted gene co-expression network analysis (WGCNA) to identify genes with a significant correlation to GC. Utilising bulk RNA sequencing data, we employed machine learning integration methods to train specific biomarkers for the development of novel diagnostic combinations. A two-sample Mendelian randomisation study was performed to investigate the causal effect of biomarkers on gastric cancer (GC). Ultimately, we utilised the DSigDB database to acquire associations between signature genes and pharmaceuticals. RESULTS The 18 genes that made up the signature were as follows: ZFAND2A, PBX4, RAMP2, NNMT, RNASE1, CD93, CDH5, NFKBIE, VWF, DAB2, FAAH2, VAT1, MRAS, TSPAN4, EPAS1, AFAP1L1, DNM3. Patients were categorised into high-risk and low-risk groups according to their risk scores. Individuals in the high-risk cohort exhibited a dismal outlook. The Mendelian randomisation study demonstrated that individuals with a genetic predisposition for elevated NFKBIE levels exhibited a heightened likelihood of acquiring GC. Molecular docking indicates that gemcitabine and chloropyramine may serve as effective therapeutics against NFKBIE. CONCLUSIONS We developed and validated a signature utilising scRNA-seq and bulk sequencing data from gastric cancer patients. NFKBIE may function as a novel biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Qi Ma
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Jie Gao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Hui
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Zhi-Ming Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Yu-Jie Qiao
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Bin-Feng Yang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Ting Gong
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Duo-Ming Zhao
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Bang-Rong Huang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China.
| |
Collapse
|
6
|
Zhang Q, Tian H, Ge K, Wang F, Gao P, Chen AM, Wang L, Zhao Y, Lian C, Wang F. PGD2/PTGDR2 signaling pathway affects the self-renewal capacity of gastric cancer stem cells by regulating ATG4B ubiquitination. Front Oncol 2024; 14:1496050. [PMID: 39777337 PMCID: PMC11703842 DOI: 10.3389/fonc.2024.1496050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background Prostaglandin D2 (PGD2) inhibits the development of different malignant tumors; however, the underlying mechanism of inhibiting tumor development is not yet clear. This study aimed to elucidate how PGD2 inhibits the stemness of gastric cancer stem cells (GCSCs) via autophagy and its underlying molecular mechanism to provide a theoretical basis for the treatment of gastric cancer. Methods In this study, GCSCs were enriched in vitro by serum-free incubation. Furthermore, the effects of PGD2 and PGD2 receptor (PTGDR2) on autophagy were detected by Western blotting, immunofluorescence analysis, and transmission electron microscopy. Moreover, the ATG4B ubiquitination levels were assessed via immunoprecipitation and other methods. Results The results indicated that PGD2 induced LC3I/LC3II conversion in GCSCs to activate autophagy, while PGD2 promoted the expression of PTGDR2, thereby further activating autophagy. Furthermore, PTGDR2 competes with ATG4B for binding with E3 ligase RNF5 (also known as RMA1) to promote autophagy protein ATG4B expression. Moreover, PTGDR2 knockdown blocked the activation of autophagy by PGD2 and the level of ATG4B ubiquitination in GCSCs. Conclusions In summary, it was elucidated that the PGD2/PTGDR2 signaling cascade affects GCSCs stemness by regulating autophagy, suggesting that the PGD2/PTGDR2 signaling pathway could serve as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - HengJin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Kunpeng Ge
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - FeiFan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - PeiYao Gao
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - AMin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lulu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - YanMing Zhao
- Department of Clinical Laboratory, The Second People’s Hospital of Bengbu, Bengbu, China
| | - Chaoqun Lian
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - FengChao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
7
|
Chen Z, Gao Y, Zhang P, Liu Y, Wei B, Chen L, Xi H. Identification of gastric cancer stem cells with CD44 and Lgr5 double labelling and their initial roles on gastric cancer malignancy and chemotherapy resistance. Cell Biol Toxicol 2024; 41:12. [PMID: 39707072 PMCID: PMC11662044 DOI: 10.1007/s10565-024-09960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Accumulating evidences have indicated that cancer stem cells (CSCs) can initiate tumor progression and cause recurrence after therapy. However, specific markers of gastric CSCs (GCSCs) from different origins have not been comprehensively revealed. Here, we further detected whether cell populations labelled with CD44 and Lgr5, well-recognized stem markers for gastric cancer (GC), can better emphasize cancer initiation, therapeutic resistance and recurrence. Flow cytometry was utilized to sort the CD44 + Lgr5 + and CD44 + Lgr5- cells from GC cell line HGC-27 and primary GC cells. The influences of CD44 and Lgr5 GCSCs on the malignant behaviors and their potential mechanisms was investigated, respectively. In our study, we reported the identification and validation of CD44 + Lgr5 + cells that presented stronger stemness characteristics, as evidenced by increase of sphere forming ability, elevation of stem cell transcriptional activity. Additionally, CD44 + Lgr5 + double positive cells have lower apoptosis, greater chemotherapy resistance, and higher EMT capacity and LC3 density compared with CD44 + Lgr5- cells. Tumor xenograft experiments also verified the faster carcinogenesis of CD44 + Lgr5 + GCSCs. Furthermore, a series of key proteins in the Wnt, Hedgehog, Notch, and TGF-β pathways were elevated in the CD44 + Lgr5 + double positive subpopulation, except for Notch 1 and Smad 1. In conclusion, the binding of CD44 and Lgr5 can serve as a precise GCSCs marker that initiate malignant progression and chemotherapy resistance in GC by activating Wnt, Hedgehog, Notch, TGF-β pathways. Those evidences raise the needs to target both markers simultaneously as a potential approach for the GC treatment.
Collapse
Affiliation(s)
- Zhida Chen
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China
- PLA School of Medicine, Beijing, 100853, China
| | - Yunhe Gao
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China
| | - Pengfei Zhang
- PLA School of Medicine, Beijing, 100853, China
- Department of Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi Liu
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China
- PLA School of Medicine, Beijing, 100853, China
| | - Bo Wei
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China
| | - Lin Chen
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China.
| | - Hongqing Xi
- Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
8
|
Zhang G, Xia G, Zhang C, Li S, Wang H, Zheng D. Combined single cell and spatial transcriptome analysis reveals cellular heterogeneity of hedgehog pathway in gastric cancer. Genes Immun 2024; 25:459-470. [PMID: 39251886 DOI: 10.1038/s41435-024-00297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Gastric cancer (GC) is one of the most common and deadly malignancies in the world. Abnormal activation of hedgehog pathway is closely related to tumor development and progression. However, potential therapeutic targets for GC based on the hedgehog pathway have not been clearly identified. In the present study, we combined single-cell sequencing data and spatial transcriptomics to deeply investigate the role of hedgehog pathway in GC. Based on a comprehensive scoring algorithm, we found that fibroblasts from GC tumor tissues were characterized by a highly enriched hedgehog pathway. By analyzing the development process of fibroblasts, we found that CCND1 plays an important role at the end stage of fibroblast development, which may be related to the formation of tumor-associated fibroblasts. Based on spatial transcriptome data, we deeply mined the role of CCND1 in fibroblasts. We found that CCND1-negative and -positive fibroblasts have distinct characteristics. Based on bulk transcriptome data, we verified that highly infiltrating CCND1 + fibroblasts are a risk factor for GC patients and can influence the immune and chemotherapeutic efficacy of GC patients. Our study provides unique insights into GC and hedgehog pathways and also new directions for cancer treatment strategies.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Guojun Xia
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Chunxu Zhang
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Shaodong Li
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Huangen Wang
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Difeng Zheng
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China.
| |
Collapse
|
9
|
Shi Y, An K, ShaoX zhou, Zhang X, Kan Q, Tian X. Integration of single-cell sequencing and bulk transcriptome data develops prognostic markers based on PCLAF + stem-like tumor cells using artificial neural network in gastric cancer. Heliyon 2024; 10:e38662. [PMID: 39524750 PMCID: PMC11547969 DOI: 10.1016/j.heliyon.2024.e38662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Gastric cancer stem cells (GCSCs) are important tumour cells involved in tumourigenesis and gastric cancer development. However, their clinical value remains unclear due to the limitations of the available technologies. This study aims to explore the clinical significance of GCSCs, their connection to the tumour microenvironment, and their underlying molecular mechanisms. Methods Stem-like tumour cells were identified by mining single-cell transcriptomic data from multiple samples. Integrated analysis of single-cell and bulk transcriptome data was performed to analyse the role of stem-like tumour cells in predicting clinical outcomes by introducing the intermediate variable mRNA stemness degree (SD). Consensus clustering analysis was performed to develop an SD-related molecular classification strategy to assess the clinical characteristics in gastric cancer. A prognostic model was constructed using a customized approach that comprehensively considered SD-related gene signatures based on an artificial neural network. Results By analysing single-cell data and validating immunofluorescence results, we identified a PCLAF+ stem-like tumour cell population in GC. By calculating SD, we observed that PCLAF+ stem-like tumour cells were associated with poor prognosis and certain clinical features. The SD was negatively correlated with the abundance of most immune cell types. Furthermore, we proposed an SD-related classification method and prognostic model. In addition, the customised prognostic model can be used to predict whether a patient respond to PD-1/PD-L1 immunotherapy. Conclusion We identified a cluster of stem-like cells and elucidated their clinical significance, highlighting the possibility of their use as immunotherapeutic targets.
Collapse
Affiliation(s)
- Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - ShaoX zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - XuR. Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - QuanC. Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
10
|
Jin M, Zhang G, Wang S, Zhao R, Zhang H. ISL1 and AQP5 complement each other to enhance gastric cancer cell stemness by regulating CD44 expression. Transl Cancer Res 2024; 13:5484-5496. [PMID: 39525012 PMCID: PMC11543036 DOI: 10.21037/tcr-24-248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Background Gastric cancer, a prevalent and life-threatening malignancy, is believed to involve cancer stem cells (CSCs) as a contributing factor to tumor progression. Insulin gene enhancer binding protein-1 (ISL1) is a transcription factor, and it has not been elucidated how ISL1 regulates gastric carcinogenesis. The aim of this paper is to investigate the role of ISL1 in gastric cancer development. Methods In this study, we investigated the effects of ISL1 on the stem-like properties of human gastric cancer cells by applying transcriptional, flow, and immunofluorescence techniques. Results In human gastric cancer samples, there is an observed elevation in ISL1 expression, which correlates with the expression of stem cell markers, notably LGR5. Functionally, ISL1 fosters the self-renewal, cell proliferation, migration, and the clonogenic potential of gastric cancer cells in vitro. Furthermore, it enhances the ability of these cells to form tumors and metastasize in vivo. Additionally, ISL1 collaborates with AQP5, collectively intensifying the tumorigenicity of gastric cancer cells. Mechanistically, transcriptomic analysis of cells overexpressing ISL1 unveils a notable activation of the forkhead box O (FOXO) pathway. This activation leads to increased nuclear expression of forkhead box O3 (FOXO3), subsequently resulting in elevated expression of the stemness-associated gene CD44 in gastric cancer cells. Conclusions These findings shed light on the role of ISL1 in promoting the stem-like characteristics of gastric cancer cells and emphasize the connection between ISL1 and AQP5 as a novel therapeutic target for individuals with gastric cancer.
Collapse
Affiliation(s)
- Meng Jin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Shouqi Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Haitao Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Tan Z, Pan K, Sun M, Pan X, Yang Z, Chang Z, Yang X, Zhu J, Zhan L, Liu Y, Li X, Lin K, Chen L, Mo H, Luo W, Kan C, Duan L, Zheng H. CCKBR+ cancer cells contribute to the intratumor heterogeneity of gastric cancer and confer sensitivity to FOXO inhibition. Cell Death Differ 2024; 31:1302-1317. [PMID: 39164456 PMCID: PMC11445462 DOI: 10.1038/s41418-024-01360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
The existence of heterogeneity has plunged cancer treatment into a challenging dilemma. We profiled malignant epithelial cells from 5 gastric adenocarcinoma patients through single-cell sequencing (scRNA-seq) analysis, demonstrating the heterogeneity of gastric adenocarcinoma (GA), and identified the CCKBR+ stem cell-like cancer cells associated poorly differentiated and worse prognosis. We further conducted targeted analysis using single-cell transcriptome libraries, including 40 samples, to confirm these screening results. In addition, we revealed that FOXOs are involved in the progression and development of CCKBR+ gastric adenocarcinoma. Inhibited the expression of FOXOs and disrupting cancer cell stemness reduce the CCKBR+ GA organoid formation and impede tumor progression. Mechanically, CUT&Tag sequencing and Lectin pulldown revealed that FOXOs can activate ST3GAL3/4/5 as well as ST6GALNAC6, promoting elevated sialyation levels in CCKBR+ tumor cells. This FOXO-sialyltransferase axis contributes to the maintenance of homeostasis and the growth of CCKBR+ tumor cells. This insight provides novel perspectives for developing targeted therapeutic strategies aimed at the treating CCKBR associated gastric cancer.
Collapse
Affiliation(s)
- Zhenya Tan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ke Pan
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Minqiong Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xianzhu Pan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical College, Hefei, 230032, China
| | - Zhi Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiling Chang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xue Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jicheng Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Li Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaofei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Keqiong Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lin Chen
- Department of General Surgery, Anhui Provincial Cancer Hospital, Hefei, 230032, China
| | - Hui Mo
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Luo
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Lunxi Duan
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Hong Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Li X, Chen M, Cao J, Chen X, Song H, Shi S, He B, Zhang B, Zhang Z. Human umbilical cord mesenchymal stem cell-derived exosomes mitigate diabetic nephropathy via enhancing M2 macrophages polarization. Heliyon 2024; 10:e37002. [PMID: 39286156 PMCID: PMC11402917 DOI: 10.1016/j.heliyon.2024.e37002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Background and objectives Exosomes, which are small nanoscale vesicles capable of secretion, have garnered significant attention in recent years because of their therapeutic potential, particularly in the context of kidney diseases. Notably, human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Exos) are emerging as promising targeted therapies for renal conditions. The aim of this study was to investigate the therapeutic effects of hucMSC-Exos on diabetic kidney disease (DKD) both in vivo and in vitro. Additionally, this study seeks to elucidate cellular and molecular differentials, as well as the expression of relevant signaling pathways, through single-cell RNA sequencing. This endeavor was designed to enhance our understanding of the connection between hucMSC-Exos and the pathogenesis of DKD. Methods and results The study commenced with the extraction and characterization of hucMSC-Exos, including the determination of their concentrations. Animal experiments were conducted to evaluate the therapeutic potential of hucMSC-Exos in a DKD mouse model. Subsequently, single-cell sequencing was employed to investigate the molecular mechanisms underlying the efficacy of extracellular vesicles in ameliorating DKD. These findings were further substantiated by cell-based experiments. Importantly, the results indicate that hucMSC-Exos can impede the progression of DKD in mice, with macrophage activation playing a pivotal role in this process. Conclusions The in vivo experiments conclusively established hucMSC-Exos as a pivotal component in preserving renal function and retarding the progression of DKD. Our utilization of single-cell sequencing technology, in conjunction with in vivo and in vitro experiments, provides compelling evidence that M2 macrophages are instrumental in enhancing the amelioration of diabetic nephropathy.
Collapse
Affiliation(s)
- Xueting Li
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Mingkai Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, PR China
| | - Jinghe Cao
- Department of Reproductive Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, PR China
| | - Xinke Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, PR China
| | - Hui Song
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, PR China
| | - Shuo Shi
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, PR China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, PR China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, PR China
| | - Ziteng Zhang
- Departments of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
- Departments of Thoracic Surgery, Qinghai Red Cross Hospital, Xining, Qinghai, 81000, PR China
| |
Collapse
|
13
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
14
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
15
|
Wang J, Hou Q, Qu J, Huo X, Li H, Feng Y, Wang Q, Chang L, Xu C. Polyhedral magnetic nanoparticles induce apoptosis in gastric cancer stem cells and suppressing tumor growth through magnetic force generation. J Control Release 2024; 373:370-384. [PMID: 39032573 DOI: 10.1016/j.jconrel.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Gastric cancer is a prevalent malignant tumor worldwide, posing challenges due to its poor prognosis and limited treatment options. Cancer stem cells (CSCs) were demonstrated as a subset of cancer cells responsible for tumor initiation and progression, and their inherent resistance to conventional chemotherapy and radiotherapy critically contributes to tumor recurrence and metastasis. Promoting the eradication of cancer stem cells is crucial for enhancing the efficacy of cancer treatments. This study introduces a novel therapeutic strategy utilizing polyhedral magnetic nanoparticles (PMNPs) functionalized with CD44 antibodies and cell-penetrating peptides (CPPs) to improve uptake by gastric cancer stem cells (MCSCs). PMNPs, synthesized via thermal decomposition, exhibited a diameter of 90 nm ± 9 nm and a saturation magnetization of 79.9 emu/g. Functionalization enhanced their uptake capabilities. Under a rotating magnetic field (RMF) of 15 Hz, PMNPs disrupted cellular structure, leading to apoptosis and ferroptosis in MCSCs. The in vitro studies showed significant reduction in MCSCs viability, while in vivo studies demonstrated tumor growth suppression with minimal side effects and high biocompatibility. This work presents a novel strategy for designing magnetic nanoparticles to mechanically destroy cancer stem cells, offering a more efficient and safety treatment option for gastric cancer.
Collapse
Affiliation(s)
- Jianhua Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Second Department of General Surgery, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Qiang Hou
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Jie Qu
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Huiting Li
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Yangmeng Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Qiyu Wang
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China.
| |
Collapse
|
16
|
Zheng L, Lu J, Kong D, Zhan Y. Single-cell sequencing analysis revealed that WDR72 was a novel cancer stem cells related gene in gastric cancer. Heliyon 2024; 10:e35549. [PMID: 39170171 PMCID: PMC11336769 DOI: 10.1016/j.heliyon.2024.e35549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Background Cancer stem cells (CSCs) are pivotal in tumor resistance to chemotherapy and gastric cancer's rapid proliferation and metastasis. We aimed to explore the CSCs-related genes in gastric cancer epithelial cells. Methods The mRNA expression profile and single-cell sequencing data of gastric cancer were downloaded from the public database. Results We identified WDR72 as a CSCs-related gene in gastric cancer epithelial cells. WDR72 was highly expressed in gastric cancer tissues, and high expression of WDR72 was associated with inferior prognosis of patients. WDR72 expression had a significant negative correlation with the infiltration of CD8 + T cells and activated memory CD4 + T cells. PD-L1 expression was significantly reduced in gastric cancer patients with high WDR72 expression. WDR72 was correlated with IC50 of multiple small-molecule drugs. Conclusion We identified a novel CSCs-related gene in gastric cancer epithelial cells, WDR72, which was highly expressed in patients with high stemness scores.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, China
| | - Jia Lu
- Department of Infection Management, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, China
| | - Dalu Kong
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, China
| | - Yang Zhan
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, China
| |
Collapse
|
17
|
Wang J, Qu J, Hou Q, Huo X, Zhao X, Chang L, Xu C. Strategies for the Isolation and Identification of Gastric Cancer Stem Cells. Stem Cells Int 2024; 2024:5553852. [PMID: 38882596 PMCID: PMC11178399 DOI: 10.1155/2024/5553852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Gastric cancer stem cells (GCSCs) originate from both gastric adult stem cells and bone marrow cells and are conspicuously present within the histological milieu of gastric cancer tissue. GCSCs play pivotal and multifaceted roles in the initiation, progression, and recurrence of gastric cancer. Hence, the characterization of GCSCs not only facilitates precise target identification for prospective therapeutic interventions in gastric cancer but also has significant implications for targeted therapy and the prognosis of gastric cancer. The prevailing techniques for GCSC purification involve their isolation using surface-specific cell markers, such as those identified by flow cytometry and immunomagnetic bead sorting techniques. In addition, in vitro culture and side-population cell sorting are integral methods in this context. This review discusses the surface biomarkers, isolation techniques, and identification methods of GCSCs, as well as their role in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jianhua Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Jie Qu
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Qiang Hou
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
18
|
Tashakori N, Armanfar M, Mashhadi A, Mohammed AT, Karim MM, Hussein AHA, Adil M, Azimi SA, Abedini F. Deciphering the Role of Exosomal Non-Coding RNA (ncRNA) in Drug Resistance of Gastrointestinal Tumors; an Updated Review. Cell Biochem Biophys 2024; 82:609-621. [PMID: 38878101 DOI: 10.1007/s12013-024-01290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 08/25/2024]
Abstract
One of the most prevalent types of cancer worldwide today is gastric intestinal (GI) tumors. To guarantee their lives, people with a developed GI require palliative care. This covers the application of targeted medicines in addition to chemotherapy treatments including cisplatin, 5-fluorouracil, oxaliplatin, paclitaxel, and pemetrexed. Because of the evidence of drug resistance emerging in poor patient outcomes and prognoses, determining the exact process of medication resistance is motivated. Besides, it is noteworthy that exosomes and noncoding RNAs, like microRNAs and long non-coding RNAs (lncRNAs), produced from tumor cells are implicated in both GI medication resistance and the carcinogenesis and development of GI disease. Biochemical events related to the cell cycle, differentiation of cells, growth, and pluripotency, in addition to gene transcription, splicing, and epigenetics, are all regulated by noncoding RNAs (ncRNAs). Therefore, it should come as a wonder that several ncRNAs have been connected in recent years to drug susceptibility and resistance as well as tumorigenesis. Additionally, through communicating directly with medications, altering the transcriptome of tumor cells, and affecting the immune system, exosomes may govern treatment resistance. Because of this, exosomal lncRNAs often act as a competitive endogenous RNA (ceRNA) of miRNAs to carry out its role in modifying drug resistance. In light of this, we provide an overview of the roles and processes of ncRNA-enriched exosomes in GI medication resistance.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Medicine, Faculty of Internal Medicine, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Armanfar
- Department of Internal Medicine, Faculty of Internal Medicine, University of Shahid Beheshti Medical Science, Tehran, Iran
| | - Anahita Mashhadi
- Department of Medical Laboratory Science, Islamic Azad University, Arak branch, Arak, Iran
| | | | - Manal Morad Karim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Sajad Ataei Azimi
- Hematology-Oncology, Mashhad University of Medical Science, Mashhad, Iran.
| | - Fatemeh Abedini
- Department of Biology, Science and Art University, Yazd, Iran.
| |
Collapse
|
19
|
Heng Y, Zheng X, Xu Y, Yan J, Li Y, Sun L, Yang H. Microfluidic device featuring micro-constrained channels for multi-parametric assessment of cellular biomechanics and high-precision mechanical phenotyping of gastric cells. Anal Chim Acta 2024; 1301:342472. [PMID: 38553127 DOI: 10.1016/j.aca.2024.342472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Cellular biomechanics plays a significant role in the regulation of cellular physiological and pathological processes. In recent years, multiple methods have been developed to evaluate cellular biomechanics, such as atomic force microscopy (AFM), micropipette aspiration, and magnetic tweezers. However, most of these methods only focus on a single parameter and cannot automate the process at a high-efficiency level. A novel microfluidic method is necessary to achieve the simultaneous multi-parametric measurement of cellular biomechanics and high-precision cellular mechanical phenotyping at high throughput. RESULTS To tackle the issue concerning the low-throughput and cellular single-parameter evaluation, we designed and fabricated a microfluidic chip featuring multiple micro-constrained channels structure, providing a simultaneous multi-parametric assessment of cellular biomechanics, including elastic modulus, recovery capability, and deformability. We compared the biomechanical properties of normal human gastric mucosal epithelial cells (GES-1) and human gastric cancer cells (AGS and MKN-45) by the chip. Results demonstrated that the elastic modulus of GES-1, AGS, and MKN-45 cells decreased sequentially, which was the opposite of their invasiveness and metastasis potential, suggesting the inverse correlation between cellular elastic modulus and malignancy. Meanwhile, the recovery capability and deformability of GES-1, AGS, and MKN-45 cells increased sequentially, demonstrating the positive correlation between cellular deformability and malignancy. Furthermore, multiple parameters were used to distinguish gastric cancer cells from normal gastric cells via machine learning. An accuracy of over 94.8% for identifying gastric cancer cells was achieved. SIGNIFICANCE This study provides a deep insight into the biophysical mechanism of gastric cancer metastasis at the single-cell level and possesses great potential to function as a valuable tool for single-cell analysis, thereby facilitating high-precision and high-throughput discrimination of cellular phenotypes that are not easily discernible through single-marker analysis.
Collapse
Affiliation(s)
- Yang Heng
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Xinyu Zheng
- Suzhou Medical College of Soochow University, Suzhou, 215000, China; Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Youyuan Xu
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Jiaqi Yan
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Ying Li
- Department of Mechanical and Electrical Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Lining Sun
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
20
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
21
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
22
|
Xia L, Chen Y, Li J, Wang J, Shen K, Zhao A, Jin H, Zhang G, Xi Q, Xia S, Shi T, Li R. B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway. Chin Med J (Engl) 2023; 136:1977-1989. [PMID: 37488673 PMCID: PMC10431251 DOI: 10.1097/cm9.0000000000002772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism. METHODS GC stemness influenced by B7-H3 was detected both in vitro and in vivo . The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t -test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis. RESULTS B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo . Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis ( P = 0.02). CONCLUSIONS B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC.
Collapse
Affiliation(s)
- Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Naval Military Medical University, Shanghai 200433, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Suhua Xia
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
23
|
Zhou Z, Yang Z, Zhou L, Yang M, He S. The versatile roles of testrapanins in cancer from intracellular signaling to cell-cell communication: cell membrane proteins without ligands. Cell Biosci 2023; 13:59. [PMID: 36941633 PMCID: PMC10025802 DOI: 10.1186/s13578-023-00995-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
The tetraspanins (TSPANs) are a family of four-transmembrane proteins with 33 members in mammals. They are variably expressed on the cell surface, various intracellular organelles and vesicles in nearly all cell types. Different from the majority of cell membrane proteins, TSPANs do not have natural ligands. TSPANs typically organize laterally with other membrane proteins to form tetraspanin-enriched microdomains (TEMs) to influence cell adhesion, migration, invasion, survival and induce downstream signaling. Emerging evidence shows that TSPANs can regulate not only cancer cell growth, metastasis, stemness, drug resistance, but also biogenesis of extracellular vesicles (exosomes and migrasomes), and immunomicroenvironment. This review summarizes recent studies that have shown the versatile function of TSPANs in cancer development and progression, or the molecular mechanism of TSPANs. These findings support the potential of TSPANs as novel therapeutic targets against cancer.
Collapse
Affiliation(s)
- Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China.
| | - Zihan Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Zhao R, He B, Bie Q, Cao J, Lu H, Zhang Z, Liang J, Wei L, Xiong H, Zhang B. Correction: AQP5 complements LGR5 to determine the fates of gastric cancer stem cells through regulating ULK1 ubiquitination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:342. [PMID: 36510256 PMCID: PMC9745991 DOI: 10.1186/s13046-022-02557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rou Zhao
- grid.449428.70000 0004 1797 7280Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Baoyu He
- grid.449428.70000 0004 1797 7280Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Qingli Bie
- grid.449428.70000 0004 1797 7280Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Jinghe Cao
- grid.449428.70000 0004 1797 7280Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Haoran Lu
- grid.449428.70000 0004 1797 7280Department of Hepatobiliary Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Zhixin Zhang
- grid.449428.70000 0004 1797 7280Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Jing Liang
- grid.449428.70000 0004 1797 7280Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Li Wei
- grid.449428.70000 0004 1797 7280Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Huabao Xiong
- grid.449428.70000 0004 1797 7280Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong People’s Republic of China
| | - Bin Zhang
- grid.449428.70000 0004 1797 7280Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong People’s Republic of China ,grid.449428.70000 0004 1797 7280Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong People’s Republic of China
| |
Collapse
|