1
|
Diaz-Ruano AB, Gomez-Jimenez E, Llamas-Jimenez G, Ramirez-Muñoz A, Espejo-Hijano P, Rubio-Navarro A, Picon-Ruiz M. Advances in the use of nanoparticles for specific cell-target delivery of anti-cancer agents. Life Sci 2025; 371:123604. [PMID: 40189193 DOI: 10.1016/j.lfs.2025.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
In recent decades, cancer has emerged as one of the leading causes of death in developed countries. To revert this progression, scientists have focused on the design of new strategies for early detection of this disease and the development of more effective treatments for its eradication. Regarding the latter, one of the main research efforts has been directed toward designing more specific delivery systems for the administration of anti-tumoral agents. In this sense, the efficacy of conventional therapies used for cancer treatment, such as chemotherapy, immune checkpoint inhibitors and radiation therapy, are often limited by their lack of specificity and their potential to cause adverse secondary effects on healthy tissues. Therefore, designing specific cell-targeted delivery systems for anti-tumoral agents presents a promising approach to overcoming the limitations of conventional cancer therapies. In this review we summarize the advances in the use of nanoparticles for Specific Cell-Target Delivery of anti-tumoral agents from in vitro to clinical studies.
Collapse
Affiliation(s)
- Ana Belen Diaz-Ruano
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Eliana Gomez-Jimenez
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Gloria Llamas-Jimenez
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Arena Ramirez-Muñoz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Pablo Espejo-Hijano
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Alfonso Rubio-Navarro
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Excellence Research Unit ″Modeling Nature″ (MNat), University of Granada, 18100 Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Manuel Picon-Ruiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit ″Modeling Nature″ (MNat), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
2
|
Yong C, Liang Y, Wang M, Jin W, Fan X, Wang Z, Cao K, Wu T, Li Q, Chang C. Alternative splicing: A key regulator in T cell response and cancer immunotherapy. Pharmacol Res 2025; 215:107713. [PMID: 40147681 DOI: 10.1016/j.phrs.2025.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Alternative splicing (AS), a key post-transcriptional regulatory mechanism, is frequently dysregulated in cancer, driving both tumor progression and immune modulation. Aberrant AS influences antigen presentation, T cell activation, immune checkpoint regulation, and cytokine signaling, contributing to immune evasion but also presenting unique therapeutic vulnerabilities. Targeting AS has emerged as a promising strategy in cancer immunotherapy. Splicing-derived neoantigens have been identified as potent inducers of CD8⁺ T cell responses, offering potential for personalized treatment. AS modulators such as PRMT5 inhibitor GSK3326595 enhance immunotherapy efficacy by upregulating MHC class II expression and promoting T cell infiltration, while RBM39 inhibitor indisulam induces tumor-specific neoantigens. Furthermore, combining AS-targeting drugs with immune checkpoint inhibitors (ICIs) has demonstrated synergistic effects, improved response rates and overcoming resistance in preclinical models. Despite these advances, challenges remain in optimizing drug specificity and minimizing toxicity. Future efforts should focus on refining AS-targeting therapies, identifying predictive biomarkers, and integrating these approaches into clinical applications. This review highlights the therapeutic potential of AS modulation in cancer immunotherapy and its implications for advancing precision oncology.
Collapse
Affiliation(s)
- Caiyu Yong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yexin Liang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Minmin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Weiwei Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xuefei Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhengwen Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Kui Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Tong Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qian Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Cunjie Chang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
3
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
4
|
Oprea M, Ionita M. Antisense oligonucleotides-based approaches for the treatment of multiple myeloma. Int J Biol Macromol 2025; 291:139186. [PMID: 39732226 DOI: 10.1016/j.ijbiomac.2024.139186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g. proteasome inhibitors, immunomodulatory drugs, tumor cell-targeting monoclonal antibodies, autologous stem cell transplantation, etc.), multiple myeloma is still regarded as incurable, and the prognosis for most patients is poor, as the disease becomes refractory to treatment throughout time. Antisense oligonucleotides (ASOs), designed to be complementary to selected messenger RNA (mRNA) sequences of specific genes involved in the pathogenesis of multiple myeloma (e.g. Bcl-2, Mcl-1, STAT3, IRF4, IL6, ILF2, HK2, c-MYC, etc.), represent a promising alternative to conventional treatments, and can be tailored according to the individual requirements of each patient. The main goal of antisense therapy for multiple myeloma consists in silencing the specific genes participating in the proliferation and survival of tumor cells via RNA cleavage or RNA blockage, thus preventing mRNA interactions with ribosomes and altering the process of protein translation. So far, pre-clinical and clinical studies showed promising results when Bcl-2 (Genasense), Mcl-1 (ISIS2048), STAT3 (ISIS345794) and IRF4 (ION251) were targeted using ASOs-based formulations. However, FDA approval has not been obtained yet for these products, mainly due to ethical and financial issues posed by customized therapies and insufficient information regarding their long-term toxicity. This review aims to provide a comprehensive insight into antisense oligonucleotides-based therapies, their potential chemical modifications, the mechanisms involved in ASOs-mediated gene silencing, potential systems for ASOs delivery, and the applications of ASOs in the treatment of multiple myeloma. The relevant genetic targets in ASOs-based MM therapies were described, and the research results obtained in the studies conducted so far were analyzed, with a focus on the ASOs formulations that were already included in clinical trials. In the end, current challenges, and future perspectives of antisense therapy for MM were also discussed.
Collapse
Affiliation(s)
- Madalina Oprea
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania.
| |
Collapse
|
5
|
Singh V, Sen A, Saini S, Dwivedi S, Agrawal R, Bansal A, Shekhar S. MicroRNA Significance in Cancer: An Updated Review on Diagnostic, Prognostic, and Therapeutic Perspectives. EJIFCC 2024; 35:265-284. [PMID: 39810890 PMCID: PMC11726331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The article provides a thorough and up-to-date analysis of the role that microRNAs (miRNAs) within the realm of cancer therapy, paying specific attention to their diagnostic, prognostic as well as therapeutic capabilities. The miRNAs (small non-coding RNAs) are the current major genes that regulate gene expression. They are a key factor in the genesis of cancer. They are oncogenes, or tumor suppressors that play key functions in the signaling pathway that contribute to the development of cancer. This article focuses on the double importance of microRNAs for cancer oncogenesis. This includes both their ability to inhibit cancer suppressor genes and the stimulation of cancer-causing oncogenes. MicroRNAs have been identified for a long time as biomarkers to help in diagnosing cancer and have distinct signatures specific to different kinds of cancer. There are many detection strategies including RT-qPCR, Next Generation Sequencing (NGS) as well as Microarray Analysis that have been evaluated to prove their effectiveness in aiding the non-invasive diagnosis of cancer. The paper provides an overview of the importance of miRNAs to prognosis, highlighting their ability to forecast tumor progression as well as outcomes for cancer patients. In addition, their therapeutic value remains a subject of research. Research is being conducted in order to investigate miRNA-targeting therapy including antisense oligonucleotides, or small molecules inhibitors as possible treatment options for cancer. These methods could favor more specific and individualized approaches than the current techniques. The article also focuses on the current challenges and future prospects linked to miRNA research and demonstrates the complex biological functions they play as well as clinical applications that require investigation. The review is the source of information for researchers, clinicians and scientists who are interested in advancing studies into cancer research as well as personalized treatments.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Aniruddha Sen
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Sapna Saini
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Ruchika Agrawal
- Department of ENT, All India Institute of Medical Sciences Gorakhpur, 273008, India
| | - Akash Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Shashank Shekhar
- Department of Radiotherapy, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| |
Collapse
|
6
|
Shi Q, Ying H, Weng W. Targeting exercise-related genes and placental growth factor for therapeutic development in head and neck squamous cell carcinoma. Front Pharmacol 2024; 15:1476076. [PMID: 39431157 PMCID: PMC11486741 DOI: 10.3389/fphar.2024.1476076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Background Human cancers, including head and neck squamous cell carcinoma (HNSCC), are complex and heterogeneous diseases driven by uncontrolled cell growth and proliferation. Post-translational modifications (PTMs) of proteins play a crucial role in cancer progression, making them a promising target for pharmacological intervention. This study aims to identify key exercise-related genes with prognostic value in HNSCC through comprehensive bioinformatics analysis, with a particular focus on the therapeutic potential of placental growth factor (PIGF). Methods Transcriptome data for HNSCC were obtained from The Cancer Genome Atlas (TCGA) database. Differently expressed genes (DEGs) were identified and analyzed for their prognostic significance. Exercise-related gene sets were retrieved from the Gene Set Enrichment Analysis (GSEA) database. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA, were conducted. The biological functions and clinical implications of key genes were further explored through single-gene expression analysis, immune infiltration analysis, and in vitro cellular experiments. Results The study identified exercise-related genes associated with survival prognosis in HNSCC. GO and KEGG pathway analyses highlighted the biological functions of these genes, and Kaplan-Meier survival curves confirmed their prognostic value. PIGF expression analysis using TCGA data showed its diagnostic potential, with higher expression linked to advanced tumor stages. Single-cell sequencing revealed PIGF's role in the tumor microenvironment. In vitro experiments demonstrated that PIGF plays a pivotal role in enhancing cell proliferation and colony formation in HNSCC, with PIGF knockdown significantly impairing these functions, highlighting its importance in tumor growth regulation. Additionally, PIGF's predictive performance in drug sensitivity across cancer datasets suggests its potential as a pharmacological target, offering opportunities to modulate the immune microenvironment and improve therapeutic outcomes in cancer treatment. Conclusion This study provides new insights into the molecular mechanisms underlying HNSCC and identifies exercise-related genes, particularly PIGF, as promising biomarkers for clinical treatment and personalized medicine. By focusing on PTMs and their role in cancer progression, our findings suggest that targeting PIGF may offer innovative therapeutic strategies.
Collapse
|
7
|
Zhao Y, Ma Q, Gao W, Li Z, Yu G, Li B, Xu Y, Huang Y. Dextran sulfate inhibits proliferation and metastasis of human gastric cancer cells via miR-34c-5p. Heliyon 2024; 10:e34859. [PMID: 39157392 PMCID: PMC11327518 DOI: 10.1016/j.heliyon.2024.e34859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor with a high global mortality rate that is currently difficult to treat. Dextran sulfate (DS), a safe anti-tumor agent, can effectively inhibit the malignant biological behavior of gastric cancer; however, its mechanism of action is not fully understood. Therefore, this study aimed at elucidate the potential mechanisms of action. Methods In this study we used DS to intervene in lentivirus-transfected gastric cancer cells to observe the effect of DS on miR-34c-5p. RT-qPCR, CCK-8, clone formation assay, wound healing assay, transwell assay and western blot were used to examine whether DS affects the proliferation and metastasis of gastric cancer cells via miR-34c-5p. The results were validated using in vivo experiments. Results Our data confirmed that DS up-regulated miR-34c-5p expression in human gastric cancer cells. Moreover, DS intervention enhanced the inhibitory effect of miR-34c-5p over-expression on the proliferation, invasion, and migration of gastric cancer cells, and partially reversed the promotive effect of miR-34c-5p on the proliferation, invasion, and migration of gastric cancer cells. In addition, DS could affect the activation of the MAP2K1/ERK signaling pathway through the up-regulation of miR-34c-5p, thereby inhibiting the malignant biological behavior of gastric cancer. Finally, it was demonstrated that DS could also inhibit the expression of MAP2K1 in vivo, which in turn inhibits the activation of the ERK signaling pathway to exert anti-cancer effects. Conclusion DS may inhibit the proliferation and metastasis of gastric cancer cells by regulating miR-34c-5p, which may be a new option for clinical treatment.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Heze Third People's Hospital, Heze, China
| | - Qian Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- College of Life Sciences, Ningxia University, Yinchuan, China
| | - Wenwei Gao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Zhaojun Li
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Guangfu Yu
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Bing Li
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuanyi Xu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, China
| |
Collapse
|
8
|
Thangavelu L, Moglad E, Gupta G, Menon SV, Gaur A, Sharma S, Kaur M, Chahar M, Sivaprasad GV, Deorari M. GAS5 lncRNA: A biomarker and therapeutic target in breast cancer. Pathol Res Pract 2024; 260:155424. [PMID: 38909406 DOI: 10.1016/j.prp.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is one of the most common causes of cancer-related mortality globally, and its aggressive phenotype results in poor treatment outcomes. Growth Arrest-Specific 5 long non-coding RNA has attracted considerable attention due to its pivotal function in apoptosis regulation and tumor aggressiveness in breast cancer. Gas5 enhances apoptosis by regulating apoptotic proteins, such as caspases and BCL2 family proteins, and the sensitivity of BCCs to chemotherapeutic agents. At the same time, low levels of GAS5 increased invasion, metastasis, and overall tumor aggressiveness. GAS5 also regulates EMT markers, critical for cancer metastasis, and influences tumor cell proliferation by regulating various signaling components. As a result, GAS5 can be restored to suppress tumor development as a possible therapeutic strategy, which might present promising prospects for a patient's treatment. Its activity levels might also be a crucial indicator and diagnostic parameter for prediction. This review highlights the significant role of GAS5 in modulating apoptosis and tumor aggressiveness in breast cancer, emphasizing its potential as a therapeutic target for breast cancer treatment and management.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
9
|
Zhao RM, Zhang QF, Tian XL, Chen JJ, Yu XQ, Zhang J. ROS-Responsive Bola-Lipid Nanoparticles as a Codelivery System for Gene/Photodynamic Combination Therapy. Mol Pharm 2024; 21:2012-2024. [PMID: 38497779 DOI: 10.1021/acs.molpharmaceut.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The nonviral delivery systems that combine genes with photosensitizers for multimodal tumor gene/photodynamic therapy (PDT) have attracted much attention. In this study, a series of ROS-sensitive cationic bola-lipids were applied for the gene/photosensitizer codelivery. Zn-DPA was introduced as a cationic headgroup to enhance DNA binding, while the hydrophobic linking chains may facilitate the formation of lipid nanoparticles (LNP) and the encapsulation of photosensitizer Ce6. The length of the hydrophobic chain played an important role in the gene transfection process, and 14-TDZn containing the longest chains showed better DNA condensation, gene transfection, and cellular uptake. 14-TDZn LNPs could well load photosensitizer Ce6 to form 14-TDC without a loss of gene delivery efficiency. 14-TDC was used for codelivery of p53 and Ce6 to achieve enhanced therapeutic effects on the tumor cell proliferation inhibition and apoptosis. Results showed that the codelivery system was more effective in the inhibition of tumor cell proliferation than individual p53 or Ce6 monotherapy. Mechanism studies showed that the production of ROS after Ce6 irradiation could increase the accumulation of p53 protein in tumor cells, thereby promoting caspase-3 activation and inducing apoptosis, indicating some synergistic effect. These results demonstrated that 14-TDC may serve as a promising nanocarrier for gene/PDT combination therapy.
Collapse
Affiliation(s)
- Rui-Mo Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Qin-Fang Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Li Tian
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Jia-Jia Chen
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Qi Yu
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Ji Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
10
|
Mohamed SY, Elshoky HA, El-Sayed NM, Fahmy HM, Ali MA. Ameliorative effect of zinc oxide-chitosan conjugates on the anticancer activity of cisplatin: Approach for breast cancer treatment. Int J Biol Macromol 2024; 257:128597. [PMID: 38056740 DOI: 10.1016/j.ijbiomac.2023.128597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Breast cancer is the second most prevalent cancer affecting both males and females, comprising nearly 30 % of all cancer cases. While chemotherapeutic agents, such as cisplatin (Cis), have proven successful in cancer treatment, concerns persist regarding their efficacy and the potentially dangerous side effects. Consequently, there is a crucial and ongoing need to develop approaches that minimize side effects associated with chemotherapy. In the present work, various types of nanoparticles (NPs) were synthesized and loaded with Cis. Cis was conjugated with nanocarriers such as zinc oxide (ZnO), ZnO modified with mandelic acid and graphene oxide (GO), chitosan (CS), and CS modified with ZnO and GO to enhance the selectivity of Cis towards cancer cells. Zeta potentials and particles size were assessed using electrophoretic light scattering and dynamic light scattering. NPs were characterized using transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. The impact of standalone Cis as well as its nanoconjugated form on the behavior of MCF-7 cell line was investigated using WST-1 cell proliferation and apoptosis/necrosis assays. Experimental findings revealed that among the various NPs tested, ZnO, and CS NPs exhibited the highest loading percentage of Cis, surpassing the loading percentages achieved with other NPs. Cytotoxicity assay showed the enhanced effect of Cis when conjugated with ZnO and CS NPs. Flow cytometry-based assays and confocal microscopy confirmed that ZnO/Cis and CS/Cis induced apoptosis. The cisplatin-nanocomplex exhibited a descending order of early apoptosis and late apoptosis in the following order: ZnO, Cis, CS, ZnO-M, CS-GO, ZnO-GO, CS-ZnO, and CS-ZnO, Cis, CS, CS-GO, ZnO-M, ZnO, ZnO-GO, respectively. None of the nanoparticle complexes displayed a significant percentage of necrotic cells, with the highest percentage reaching 4.65 % in the case of CS-GO/Cis.
Collapse
Affiliation(s)
- Salma Y Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Hisham A Elshoky
- Tumor Biology Research Program, Department of Research, Children's Cancer Hospital Egypt 57357, Cairo 11441, Egypt; Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt.
| | - Nayera M El-Sayed
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
11
|
Zhang T, Lei H, Chen X, Dou Z, Yu B, Su W, Wang W, Jin X, Katsube T, Wang B, Zhang H, Li Q, Di C. Carrier systems of radiopharmaceuticals and the application in cancer therapy. Cell Death Discov 2024; 10:16. [PMID: 38195680 PMCID: PMC10776600 DOI: 10.1038/s41420-023-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Radiopharmaceuticals play a vital role in cancer therapy. The carrier of radiopharmaceuticals can precisely locate and guide radionuclides to the target, where radionuclides kill surrounding tumor cells. Effective application of radiopharmaceuticals depends on the selection of an appropriate carrier. Herein, different types of carriers of radiopharmaceuticals and the characteristics are briefly described. Subsequently, we review radiolabeled monoclonal antibodies (mAbs) and their derivatives, and novel strategies of radiolabeled mAbs and their derivatives in the treatment of lymphoma and colorectal cancer. Furthermore, this review outlines radiolabeled peptides, and novel strategies of radiolabeled peptides in the treatment of neuroendocrine neoplasms, prostate cancer, and gliomas. The emphasis is given to heterodimers, bicyclic peptides, and peptide-modified nanoparticles. Last, the latest developments and applications of radiolabeled nucleic acids and small molecules in cancer therapy are discussed. Thus, this review will contribute to a better understanding of the carrier of radiopharmaceuticals and the application in cancer therapy.
Collapse
Affiliation(s)
- Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Boyi Yu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730000, China
| | - Xiaodong Jin
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Qiang Li
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|
12
|
Cammarota AL, Falco A, Basile A, Molino C, Chetta M, D’Angelo G, Marzullo L, De Marco M, Turco MC, Rosati A. Pancreatic Cancer-Secreted Proteins: Targeting Their Functions in Tumor Microenvironment. Cancers (Basel) 2023; 15:4825. [PMID: 37835519 PMCID: PMC10571538 DOI: 10.3390/cancers15194825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a ravaging disease with a poor prognosis, requiring a more detailed understanding of its biology to foster the development of effective therapies. The unsatisfactory results of treatments targeting cell proliferation and its related mechanisms suggest a shift in focus towards the inflammatory tumor microenvironment (TME). Here, we discuss the role of cancer-secreted proteins in the complex TME tumor-stroma crosstalk, shedding lights on druggable molecular targets for the development of innovative, safer and more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Carlo Molino
- General Surgery Unit, A.O.R.N. Cardarelli, 80131 Naples, Italy;
| | - Massimiliano Chetta
- Medical and Laboratory Genetics Unit, A.O.R.N., Cardarelli, 80131 Naples, Italy;
| | - Gianni D’Angelo
- Department of Computer Science, University of Salerno, 84084 Fisciano, Italy;
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|