1
|
Li Z, Su T, Yang Y, Zhao H. Construction of Multicellular Neural Tissue Using Three-Dimensional Printing Technology: Cell Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40256794 DOI: 10.1089/ten.teb.2024.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The study of the human nervous system remains challenging due to its inherent complexity and difficulty in obtaining original samples. Three-dimensional (3D) bioprinting is a rapidly evolving technology in the field of tissue engineering that has made significant contributions to several disciplines, including neuroscience. In order to more accurately reflect the intricate multicellular milieu of the in vivo environment, an increasing number of studies have commenced experimentation with the coprinting of diverse cell types. This article provides an overview of technical details and the application of 3D bioprinting with multiple cell types in the field of neuroscience, focusing on the challenges of coprinting and the research conducted based on multicellular printing. This review discusses cell interactions in coprinting systems, stem cell applications, the construction of brain-like organoids, the establishment of disease models, and the potential for integrating 3D bioprinting with other 3D culture techniques.
Collapse
Affiliation(s)
- Zhixiang Li
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Tong Su
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Yujie Yang
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| | - Huan Zhao
- Tissue Engineering Laboratory, School of Biology, Food, and Environment, Hefei University, Hefei, PR China
| |
Collapse
|
2
|
Pafitanis S, Zacharia LC, Stylianou A, Gkretsi V. In vitro models: Can they unravel the complexities of cancer cell metastasis? Biochim Biophys Acta Rev Cancer 2025; 1880:189293. [PMID: 40054754 DOI: 10.1016/j.bbcan.2025.189293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Metastasis still accounts for the majority of cancer-related deaths despite intense research efforts made worldwide to better understand the determinants involved and discover novel ways to halt it. However, studying the pathogenesis of metastasis in actual patients is indeed challenging which renders the need for the development of relevant experimental models urgent. Traditionally, several in vitro and in vivo models have been developed to study metastasis each of which having its own advantages and limitations. In the present review, we analyzed the current approaches used in cancer biology research to study cancer cell metastasis giving emphasis on the newly developed in vitro systems that take into account factors like the three-dimensional (3D) nature of the tumor, the interaction between cancer cells and the extracellular matrix or other cells present in the tumor microenvironment, and thus, better recapitulate the metastatic process. These approaches, namely 3D bioprinting, 3D tissue models, microfluidics systems, and spheroid generation are currently used separately or in combination depending on the research question and the cancer type in order to better represent the actual in vivo setting.
Collapse
Affiliation(s)
- Stefanos Pafitanis
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus
| | - Lefteris C Zacharia
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Andreas Stylianou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Mechanobiology and Applied Biophysics laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
3
|
Fleischmann E, Middelkamp V, van den Broek T. Deciphering the Human Germinal Center: A Review of Models to Study T-B Cell Interactions. Eur J Immunol 2025; 55:e202451460. [PMID: 39931794 PMCID: PMC11811811 DOI: 10.1002/eji.202451460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Interactions between T- and B cells in the germinal center reaction are instrumental for the initiation, maintenance, and downregulation of the human adaptive immune response, leading to the production of antigen-specific antibodies and long-lasting immunological memory. Replicating the human immune system remains challenging, with an over-reliance on animal models with limited translational accuracy. There is an increasing need for new tools that accurately model human immune function. This review evaluates existing 2D and 3D in vitro and ex vivo human models for their ability to reproduce the germinal center reaction, with a particular focus on T- and B-cell interaction. We conclude that although current models are able to replicate certain features of the germinal center reaction, no current model is able to completely replicate the complex human GC process. We outline the challenges in recreating a fully functional germinal center and suggest future directions of research to improve existing models, ultimately bringing us closer to completely reproducing the human lymph node.
Collapse
Affiliation(s)
- Elisa Fleischmann
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Vera Middelkamp
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Theo van den Broek
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Klementová J, Jarošová Š, Danilová I, Farníková M, Novotný J, Davídková M, Zíková M. Comparative analysis of pediatric SHH medulloblastoma DAOY spheres and adherent monolayers: implications for medulloblastoma research. Cancer Cell Int 2025; 25:22. [PMID: 39844249 PMCID: PMC11756056 DOI: 10.1186/s12935-025-03646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Medulloblastoma, the most prevalent brain tumor among children, requires a comprehensive understanding of its cellular characteristics for effective research and treatment. In this study, we focused on DAOY, a permanent cell line of medulloblastoma, and investigated the unique properties of DAOY cells when cultured as floating multicellular aggregates called spheres, as opposed to adherent monolayers. Through our comprehensive analysis, we identified distinct characteristics associated with DAOY spheres. Our findings demonstrate that DAOY spheres express markers for both neural stem cells, such as CD133 (PROM1), and differentiated neurons, exemplified by MAP2. Additionally, our investigation revealed that spheres-derived cells exhibit heightened resistance to ionizing radiation compared to adherent cells. Consequently, our results indicate that caution is advised when interpreting experimental results obtained from adherent cell cultures and extrapolating them to in vivo situations.
Collapse
Affiliation(s)
- Jana Klementová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, Praha 8, 180 00, Czech Republic
| | - Šárka Jarošová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic
- Faculty of Science, Charles University, Albertov 6, Prague 2, 128 00, Czech Republic
| | - Irina Danilová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, Praha 8, 180 00, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, Praha 1, 11000, Czech Republic
| | - Markéta Farníková
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, Praha 1, 11000, Czech Republic
- Department of Medical Physics, Na Homolce Hospital, Roentgenova 2, Prague 5, 150 30, Czech Republic
| | - Josef Novotný
- Department of Medical Physics, Na Homolce Hospital, Roentgenova 2, Prague 5, 150 30, Czech Republic
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, Praha 8, 180 00, Czech Republic.
| | - Martina Zíková
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic.
| |
Collapse
|
5
|
Yuzhakova DV, Sachkova DA, Izosimova AV, Yashin KS, Yusubalieva GM, Baklaushev VP, Mozherov AM, Shcheslavskiy VI, Shirmanova MV. Fluorescence Lifetime Imaging of NAD(P)H in Patients' Lymphocytes: Evaluation of Efficacy of Immunotherapy. Cells 2025; 14:97. [PMID: 39851525 PMCID: PMC11764258 DOI: 10.3390/cells14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions. Fluorescence lifetime imaging microscopy (FLIM) is a powerful, non-destructive tool that enables direct monitoring of cellular metabolism on a label-free basis with a potential to resolve metabolic rearrangements in immune cells associated with their reactivity. OBJECTIVE The aim of the study was to develop a patient-derived glioma explant model enriched by autologous peripheral lymphocytes and explore FLIM of the redox-cofactor NAD(P)H in living lymphocytes to measure the responses of the model to immune checkpoint inhibitors. METHODS The light microscopy, FLIM of NAD(P)H and flow cytometry were used. RESULTS The results demonstrate that the responsive models displayed a significant increase in the free NAD(P)H fraction α1 after treatment, associated with a shift towards glycolysis due to lymphocyte activation. The non-responsive models exhibited no alterations or a decrease in the NAD(P)H α1 after treatment. The FLIM data correlated well with the standard assays of immunotherapy drug response in vitro, including morphological changes, the T-cells activation marker CD69, and the tumor cell proliferation index Ki67. CONCLUSIONS The proposed platform that includes tumor explants co-cultured with lymphocytes and the NAD(P)H FLIM assay represents a promising solution for the patient-specific immunotherapeutic drug screening.
Collapse
Affiliation(s)
- Diana V. Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Daria A. Sachkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Anna V. Izosimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Konstantin S. Yashin
- Department of Neurosurgery, Privolzsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia;
| | - Gaukhar M. Yusubalieva
- Federal Research and Clinical Center, Federal Medical and Biological Agency, 28 Orekhovy Blvd., 115682 Moscow, Russia; (G.M.Y.); (V.P.B.)
- Laboratory of Molecular Mechanisms of Regeneration and Aging, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center, Federal Medical and Biological Agency, 28 Orekhovy Blvd., 115682 Moscow, Russia; (G.M.Y.); (V.P.B.)
- Laboratory of Molecular Mechanisms of Regeneration and Aging, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991 Moscow, Russia
| | - Artem M. Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| | - Vladislav I. Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
- R&D Department, Becker&Hickl GmbH, 7-9 Nunsdorfer Ring, 12277 Berlin, Germany
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (D.A.S.); (A.V.I.); (A.M.M.); (M.V.S.)
| |
Collapse
|
6
|
Dittmer J, Pinto C, Reichel-Voda C, Souabni A, Tirapu I, Bachmayr-Heyda A. 3D Tumor Model to Study Immune Cell Infiltration. Methods Mol Biol 2025; 2905:255-268. [PMID: 40163311 DOI: 10.1007/978-1-0716-4418-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug discovery in oncology is characterized by high attrition rates in clinical trials. The main reasons are lack of efficacy or unacceptable toxicity. Thus, more predictive preclinical models for drug discovery and development are urgently needed. In the field of immune-oncology, preclinical models are particularly demanding since they have to reflect the complex interplay between tumor cells and immune cells in the human body.The recent years were characterized by vast advancement in 3D in vitro models and organoid techniques. These models mimic the tumor microenvironment more realistically than traditional 2D cell cultures. They can include the main components of the tumor microenvironment, like (primary) tumor cells, immune cells and other stromal cells and allow growth and interaction of the diverse cell types in 3D. Thus, these 3D models provide a physiologically relevant platform for studying the mode of action of (immuno-) oncologic therapeutic drugs. SMAC (second mitochondrial-derived activator of caspases) mimetics, like many other anticancer drugs, can exert their effects on different cell populations within the tumor microenvironment, which can be analyzed by using 3D co-cultures as preclinical models.Fluorescence microscopy is a powerful tool to study biological processes. In live cell imaging, entire cells or subcellular structures can be monitored over time with the help of fluorescent labels.In this chapter, we describe a human 3D co-culture infiltration assay combining tumor cells embedded in a hydrogel and immune cells added on top of the hydrogel. This 3D co-culture is stable for more than 1 week and gives insights into cellular drug responses over time. We used live cell imaging/fluorescence microscopy as the main readout to quantify immune cell infiltration in 3D in response to SMAC mimetic treatment.
Collapse
Affiliation(s)
- Jakob Dittmer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Iñigo Tirapu
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | |
Collapse
|
7
|
Lee E, Lee SY, Seong YJ, Ku B, Cho HJ, Kim K, Hwang Y, Park CK, Choi JY, Kim SW, Kim SJ, Lim JU, Yeo CD, Lee DW. Lung cancer organoid-based drug evaluation models and new drug development application trends. Transl Lung Cancer Res 2024; 13:3741-3763. [PMID: 39830742 PMCID: PMC11736608 DOI: 10.21037/tlcr-24-603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025]
Abstract
Lung cancer is a malignant tumor with high incidence and mortality rates in both men and women worldwide. Although anticancer drugs are prescribed to treat lung cancer patients, individual responses to these drugs vary, making it crucial to identify the most suitable treatment for each patient. Therefore, it is necessary to develop an anticancer drug efficacy prediction model that can analyze drug efficacy before patient treatment and establish personalized treatment strategies. Unlike two-dimensional (2D) cultured lung cancer cells, lung cancer organoid (LCO) models have a three-dimensional (3D) structure that effectively mimics the characteristics and heterogeneity of lung cancer cells. Lung cancer patient-derived organoids (PDOs) also have the advantage of recapitulating histological and genetic characteristics similar to those of patient tissues under in vitro conditions. Due to these advantages, LCO models are utilized in various fields, including cancer research, and precision medicine, and are especially employed in various new drug development processes, such as targeted therapies and immunotherapy. LCO models demonstrate potential applications in precision medicine and new drug development research. This review discusses the various methods for implementing LCO models, LCO-based anticancer drug efficacy analysis models, and new trends in lung cancer-targeted drug development.
Collapse
Affiliation(s)
- Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
- Central Research and Development Center, Medical & Bio Decision (MBD) Co., Ltd., Suwon, Republic of Korea
| | - Yu-Jeong Seong
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Bosung Ku
- Central Research and Development Center, Medical & Bio Decision (MBD) Co., Ltd., Suwon, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyuhwan Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
8
|
Wang X, Fan R, Mu M, Zhou L, Zou B, Tong A, Guo G. Harnessing nanoengineered CAR-T cell strategies to advance solid tumor immunotherapy. Trends Cell Biol 2024:S0962-8924(24)00252-6. [PMID: 39721923 DOI: 10.1016/j.tcb.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The efficacy and safety of chimeric antigen receptor (CAR) T cell therapy is still inconclusive in solid tumor treatment. Recently, nanotechnology has emerged as a potent strategy to reshape CAR-T cell therapy with promising outcomes. This review aims to discuss the significant potential of nano-engineered CAR-T cell therapy in addressing existing challenges, including CAR-T cell engineering evolution, tumor microenvironment (TME) modulation, and precise CAR-T cell therapy (precise targeting, monitoring, and activation), under the main consideration of clinical translation. It also focuses on the growing trend of technological convergence within this domain, such as mRNA therapeutics, organoids, neoantigen, and artificial intelligence. Moreover, safety management of nanomedicine is seriously emphasized to facilitate clinical translation.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Rudzinska-Radecka M, Turos-Korgul L, Mukherjee D, Podszywalow-Bartnicka P, Piwocka K, Guzowski J. High-throughput formulation of reproducible 3D cancer microenvironments for drug testing in myeloid leukemia. Biofabrication 2024; 17:015035. [PMID: 39622161 DOI: 10.1088/1758-5090/ad998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Leukemic microenvironment has been recognized as a factor that strongly supports the mechanisms of resistance. Therefore, targeting the microenvironment is currently one of the major directions in drug development and preclinical studies in leukemia. Despite the variety of available leukemia 3D culture models, the reproducible generation of miniaturized leukemic microenvironments, suitable for high-throughput drug testing, has remained a challenge. Here, we use droplet microfluidics to generate tens of thousands of highly monodisperse leukemic-bone marrow microenvironments within minutes. We employ gelatin methacryloyl (GelMA) as a model extracellular matrix (ECM) and tune the concentration of the biopolymer, check the impact of other components of the ECM (hyaluronic acid), cell concentration and the ratio of leukemic cells to bone marrow cells within the microbeads to establish the optimal conditions for microtissue formation. We administer model kinase inhibitor, imatinib, at various concentrations to the encapsulated leukemic microtissues, and, via comparing mono- and co-culture conditions (cancer alone vs cancer-stroma), we find that the stroma-leukemia crosstalk systematically protects the encapsulated cells against the drug-induced cytotoxicity. With that we demonstrate that our system mimics the physiological stroma-dependent protection. We discuss applicability of our model to (i) studying the role of direct- or close-contact interactions between the leukemia and bone marrow cells embedded in microscale 3D ECM on the stroma-mediated protection, and (ii) high-throughput screening of anti-cancer therapeutics in personalized leukemia therapies.
Collapse
Affiliation(s)
- M Rudzinska-Radecka
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
- Equal contribution.v
| | - L Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
- Equal contribution.v
| | - D Mukherjee
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - P Podszywalow-Bartnicka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
| | - K Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
| | - J Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
10
|
Simiene J, Kunigenas L, Prokarenkaite R, Dabkeviciene D, Strainiene E, Stankevicius V, Cicenas S, Suziedelis K. Prognostic Value of miR-10a-3p in Non-Small Cell Lung Cancer Patients. Onco Targets Ther 2024; 17:1017-1032. [PMID: 39559728 PMCID: PMC11572442 DOI: 10.2147/ott.s475644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/20/2024] [Indexed: 11/20/2024] Open
Abstract
Purpose Poor lung cancer patients' outcomes and survival rates demand the discovery of new biomarkers for the specific, significant, and less invasive detection of non-small cell lung cancer (NSCLC) progression. The present study aimed to investigate the potential of miRNA expression as biomarkers in NSCLC utilizing a preclinical cell culture setup based on screening of miRNAs in NSCLC cells grown in 3D cell culture. Patients and Methods The study was performed using lung cancer cell lines, varying in different levels of aggressiveness: NCI-H1299, A549, Calu-1, and NCI-H23, as well as noncancerous bronchial epithelial cell line HBEC3, which were grown in 3D cell culture. Total RNA from all cell lines was extracted and small RNA libraries were prepared and sequenced using the Illumina NGS platform. The expression of 8 differentially expressed miRNAs was further validated in 89 paired tissue specimens and plasma samples obtained from NSCLC patients. Statistical analysis was performed to determine whether miRNA expression and clinicopathological characteristics of NSCLC patients could be considered as independent factors significantly influencing PFS or OS. Results Differentially expressed miRNAs, including let-7d-3p, miR-10a-3p, miR-28-3p, miR-28-5p, miR-100-3p, miR-182-5p, miR-190a-5p, and miR-340-5p, were identified through next-generation sequencing in NSCLC cell lines with varying levels of aggressiveness. Validation of patient samples, including tumor and plasma specimens, revealed that out of the 8 investigated miRNAs, only plasma miR-10a-3p showed a significant increase, which was associated with significantly extended progression-free survival (PFS) (p=0.009). Furthermore, miR-10a-3p in plasma emerged as a statistically significant prognostic variable for NSCLC patients' PFS (HR: 0.5, 95% CI: 0.3-0.9, p=0.029). Conclusion Our findings of screening miRNA expression patterns in NSCLC cells grown in 3D cell culture indicated that the expression level of circulating miR-10a-3p has the potential as a novel non-invasive biomarker to reflect the short-term prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Julija Simiene
- Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, LT-08406, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, LT-10223, Lithuania
| | - Linas Kunigenas
- Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, LT-08406, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, LT-10223, Lithuania
| | - Rimvile Prokarenkaite
- Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, LT-08406, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, LT-10223, Lithuania
| | - Daiva Dabkeviciene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, LT-10223, Lithuania
- Biobank, National Cancer Institute, Vilnius, LT-08406, Lithuania
| | - Egle Strainiene
- Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, LT-08406, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, LT-10223, Lithuania
| | - Vaidotas Stankevicius
- Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, LT-08406, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10223, Lithuania
| | - Saulius Cicenas
- Department of Thoracic Surgery and Oncology, National Cancer Institute, Vilnius, LT-08406, Lithuania
| | - Kestutis Suziedelis
- Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, LT-08406, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, LT-10223, Lithuania
| |
Collapse
|
11
|
Cruz De Los Santos M, Lundqvist A. Evaluation of lymphocyte infiltration into cancer spheroids by immunofluorescent staining and 3D imaging. Methods Cell Biol 2024; 191:269-287. [PMID: 39824560 DOI: 10.1016/bs.mcb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In recent years, three-dimensional (3D) cultures of tumor cells has emerged as an important tool in cancer research. The significance of 3D cultures, such as tumor spheroids, lies in their ability to mimic the in vivo tumor microenvironment more precisely, offering a nuanced understanding of immune responses within the context of tumor progression. In fact, the infiltration of cytotoxic lymphocytes is key to determining patients' prognosis in several types of cancer and response to immunotherapy. Therefore, harnessing the cytotoxic and infiltration potential of immune cells is a promising avenue for developing effective therapies. This protocol offers a straightforward approach for analyzing infiltrating lymphocytes in tumor spheroids by confocal microscopy imaging. Although it specifically involves utilizing tumor spheroids and culture with autologous tumor-infiltrating T lymphocytes (TILs), the protocol can be adapted for other immune cell types, such as NK cells.
Collapse
Affiliation(s)
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
12
|
Li Y, Liao W, Sun L. Application of tumor organoids simulating the tumor microenvironment in basic and clinical research of tumor immunotherapy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1316-1326. [PMID: 39788520 PMCID: PMC11628225 DOI: 10.11817/j.issn.1672-7347.2024.240187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 01/12/2025]
Abstract
Immunotherapy has led to groundbreaking advances in anti-tumor treatment, yet significant clinical challenges remain such as the low proportion of beneficiaries and the lack of effective platforms for predicting therapeutic response. Organoid technology provides a novel solution to these issues. Organoids are three-dimensional tissue cultures derived from adult stem cells or pluripotent stem cells that closely replicate the structural and biological characteristics of native organs, demonstrating particularly strong potential in modeling the tumor microenvironment (TME). Tumor organoids can simulate TME effectively by retaining endogenous matrix components, including various immune cells, or by adding immune cells, cancer-associated fibroblasts, and other components. This provides a novel platform for predicting immunotherapy outcomes, evaluating adoptive cell therapies, and selecting personalized treatment options for patients. Summarizing strategies for constructing tumor organoids that simulate the microenvironment and understanding their advancements in immunotherapy research and clinical application can provide new insights for the development of tumor immunotherapy.
Collapse
Affiliation(s)
- Yizheng Li
- Cancer Center, Xiangya Hospital, Central South University, Hunan Key Laboratory of Molecular Radiation Oncology, International Cooperation Base in Science and Technology for Cancer Precision Medicine, National Clinical Research Center for Geriatric Disorders, Changsha 410008.
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lunquan Sun
- Cancer Center, Xiangya Hospital, Central South University, Hunan Key Laboratory of Molecular Radiation Oncology, International Cooperation Base in Science and Technology for Cancer Precision Medicine, National Clinical Research Center for Geriatric Disorders, Changsha 410008.
| |
Collapse
|
13
|
Rahman MM, Wells G, Rantala JK, Helleday T, Muthana M, Danson SJ. In-vitro assays for immuno-oncology drug efficacy assessment and screening for personalized cancer therapy: scopes and challenges. Expert Rev Clin Immunol 2024; 20:821-838. [PMID: 38546609 DOI: 10.1080/1744666x.2024.2336583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Immunotherapies have revolutionized cancer treatment, but often fail to produce desirable therapeutic outcomes in all patients. Due to the inter-patient heterogeneity and complexity of the tumor microenvironment, personalized treatment approaches are gaining demand. Researchers have long been using a range of in-vitro assays including 2D models, organoid co-cultures, and cancer-on-a-chip platforms for cancer drug screening. A comparative analysis of these assays with their suitability, high-throughput capacity, and clinical translatability is required for optimal translational use. AREAS COVERED The review summarized in-vitro platforms with their comparative advantages and limitations including construction strategies, and translational potential for immuno-oncology drug efficacy assessment. We also discussed end-point analysis strategies so that researchers can contextualize their usefulness and optimally design experiments for personalized immunotherapy efficacy prediction. EXPERT OPINION Researchers developed several in-vitro platforms that can provide information on personalized immunotherapy efficacy from different angles. Image-based assays are undoubtedly more suitable to gather a wide range of information including cellular morphology and phenotypical behaviors but need significant improvement to overcome issues including background noise, sample preparation difficulty, and long duration of experiment. More studies and clinical trials are needed to resolve these issues and validate the assays before they can be used in real-life scenarios.
Collapse
Affiliation(s)
- Md Marufur Rahman
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Directorate General of Health Services, Dhaka, Bangladesh
| | - Greg Wells
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Juha K Rantala
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Misvik Biology Ltd, Turku, Finland
| | - Thomas Helleday
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Department of Oncology-Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Munitta Muthana
- Nanobug Oncology Sheffield, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Sarah J Danson
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
17
|
Totonji S, Ramos-Triguero A, Willmann D, Sum M, Urban S, Bauer H, Rieder A, Wang S, Greschik H, Metzger E, Schüle R. Lysine Methyltransferase 9 (KMT9) Is an Actionable Target in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2024; 16:1532. [PMID: 38672614 PMCID: PMC11049522 DOI: 10.3390/cancers16081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Novel treatment modalities are imperative for the challenging management of muscle-invasive and metastatic BC to improve patient survival rates. The recently identified KMT9, an obligate heterodimer composed of KMT9α and KMT9β, regulates the growth of various types of tumors such as prostate, lung, and colon cancer. While the overexpression of KMT9α was previously observed to be associated with aggressive basal-like MIBC in an analysis of patients' tissue samples, a potential functional role of KMT9 in this type of cancer has not been investigated to date. In this study, we show that KMT9 regulates proliferation, migration, and invasion of various MIBC cell lines with different genetic mutations. KMT9α depletion results in the differential expression of genes regulating the cell cycle, cell adhesion, and migration. Differentially expressed genes include oncogenes such as EGFR and AKT1 as well as mediators of cell adhesion or migration such as DAG1 and ITGA6. Reduced cell proliferation upon KMT9α depletion is also observed in Pten/Trp53 knockout bladder tumor organoids, which cannot be rescued with an enzymatically inactive KMT9α mutant. In accordance with the idea that the catalytic activity of KMT9 is required for the control of cellular processes in MIBC, a recently developed small-molecule inhibitor of KMT9 (KMI169) also impairs cancer cell proliferation. Since KMT9α depletion also restricts the growth of xenografts in mice, our data suggest that KMT9 is an actionable novel therapeutic target for the treatment of MIBC.
Collapse
Affiliation(s)
- Sainab Totonji
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Anna Ramos-Triguero
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Astrid Rieder
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Solé C, Royo M, Sandoval S, Moliné T, Gabaldón A, Cortés-Hernández J. Precise Targeting of Autoantigen-Specific B Cells in Lupus Nephritis with Chimeric Autoantibody Receptor T Cells. Int J Mol Sci 2024; 25:4226. [PMID: 38673811 PMCID: PMC11050013 DOI: 10.3390/ijms25084226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite conventional therapy, lupus nephritis (LN) remains a significant contributor to short- and long-term morbidity and mortality. B cell abnormalities and the production of autoantibodies against nuclear complexes like anti-dsDNA are recognised as key players in the pathogenesis of LN. To address the challenges of chronic immunosuppression associated with current therapies, we have engineered T cells to express chimeric autoantibody receptors (DNA-CAART) for the precise targeting of B cells expressing anti-dsDNA autoantibodies. T cells from LN patients were transduced using six different CAAR vectors based on their antigen specificity, including alpha-actinin, histone-1, heparan sulphate, or C1q. The cytotoxicity, cytokine production, and cell-cell contact of DNA-CAART were thoroughly investigated in co-culture experiments with B cells isolated from patients, both with and without anti-dsDNA positivity. The therapeutic effects were further evaluated using an in vitro immune kidney LN organoid. Among the six proposed DNA-CAART, DNA4 and DNA6 demonstrated superior selectively cytotoxic activity against anti-dsDNA+ B cells. Notably, DNA4-CAART exhibited improvements in organoid morphology, apoptosis, and the inflammatory process in the presence of IFNα-stimulated anti-dsDNA+ B cells. Based on these findings, DNA4-CAART emerge as promising candidates for modulating autoimmunity and represent a novel approach for the treatment of LN.
Collapse
Affiliation(s)
- Cristina Solé
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Maria Royo
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Sebastian Sandoval
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (A.G.)
| | - Alejandra Gabaldón
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (A.G.)
| | - Josefina Cortés-Hernández
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| |
Collapse
|
19
|
Puertas-Bartolomé M, Venegas-Bustos D, Acosta S, Rodríguez-Cabello JC. Contribution of the ELRs to the development of advanced in vitro models. Front Bioeng Biotechnol 2024; 12:1363865. [PMID: 38650751 PMCID: PMC11033926 DOI: 10.3389/fbioe.2024.1363865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Developing in vitro models that accurately mimic the microenvironment of biological structures or processes holds substantial promise for gaining insights into specific biological functions. In the field of tissue engineering and regenerative medicine, in vitro models able to capture the precise structural, topographical, and functional complexity of living tissues, prove to be valuable tools for comprehending disease mechanisms, assessing drug responses, and serving as alternatives or complements to animal testing. The choice of the right biomaterial and fabrication technique for the development of these in vitro models plays an important role in their functionality. In this sense, elastin-like recombinamers (ELRs) have emerged as an important tool for the fabrication of in vitro models overcoming the challenges encountered in natural and synthetic materials due to their intrinsic properties, such as phase transition behavior, tunable biological properties, viscoelasticity, and easy processability. In this review article, we will delve into the use of ELRs for molecular models of intrinsically disordered proteins (IDPs), as well as for the development of in vitro 3D models for regenerative medicine. The easy processability of the ELRs and their rational design has allowed their use for the development of spheroids and organoids, or bioinks for 3D bioprinting. Thus, incorporating ELRs into the toolkit of biomaterials used for the fabrication of in vitro models, represents a transformative step forward in improving the accuracy, efficiency, and functionality of these models, and opening up a wide range of possibilities in combination with advanced biofabrication techniques that remains to be explored.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Technical Proteins Nanobiotechnology, S.L. (TPNBT), Valladolid, Spain
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Desiré Venegas-Bustos
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
20
|
Gu Z, Wu Q, Shang B, Zhang K, Zhang W. Organoid co-culture models of the tumor microenvironment promote precision medicine. CANCER INNOVATION 2024; 3:e101. [PMID: 38948532 PMCID: PMC11212345 DOI: 10.1002/cai2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 07/02/2024]
Abstract
In recent years, the three-dimensional (3D) culture system has emerged as a promising preclinical model for tumor research owing to its ability to replicate the tissue structure and molecular characteristics of solid tumors in vivo. This system offers several advantages, including high throughput, efficiency, and retention of tumor heterogeneity. Traditional Matrigel-submerged organoid cultures primarily support the long-term proliferation of epithelial cells. One solution for the exploration of the tumor microenvironment is a reconstitution approach involving the introduction of exogenous cell types, either in dual, triple or even multiple combinations. Another solution is a holistic approach including patient-derived tumor fragments, air-liquid interface, suspension 3D culture, and microfluidic tumor-on-chip models. Organoid co-culture models have also gained popularity for studying the tumor microenvironment, evaluating tumor immunotherapy, identifying predictive biomarkers, screening for effective drugs, and modeling infections. By leveraging these 3D culture systems, it is hoped to advance the clinical application of therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Zhaoru Gu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Quanyou Wu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bingqing Shang
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wen Zhang
- Department of Immunology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
21
|
Waseem M, Wang BD. Organoids: An Emerging Precision Medicine Model for Prostate Cancer Research. Int J Mol Sci 2024; 25:1093. [PMID: 38256166 PMCID: PMC10816550 DOI: 10.3390/ijms25021093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Arjmand B, Hamidpour SK, Tayanloo-Beik A, Arjmand R, Rezaei-Tavirani M, Namazi N, Ojagh H, Larijani B. Incorporating NK Cells in a Three-Dimensional Organotypic Culture System for Human Skin Stem Cells: Modeling Skin Diseases and Immune Cell Interplay. Methods Mol Biol 2024; 2849:161-171. [PMID: 37801255 DOI: 10.1007/7651_2023_504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Natural killer (NK) cells are a part of a sophisticated immune system that is necessary for the skin because it is a crucial organ that is continually exposed to environmental influences. Recent studies have shown that NK cell incorporation into three-dimensional (3D) organotypic culture systems for human skin stem cells provides a physiologically relevant environment to study the interactions between immune cells and skin cells, making it a powerful tool for simulating skin diseases and researching these interactions. It has been shown that adding NK cells to 3D organotypic culture systems can improve keratinocyte differentiation and control inflammation in a variety of skin conditions, including psoriasis. In order to increase our knowledge of skin diseases and immune cell interactions, this work intends to propose an optimum approach for adding NK cells to a 3D organotypic culturing system for human skin stem cells. By better comprehending these relationships, researchers hope to develop novel treatments for skin diseases that are more effective and cause fewer side effects than current treatments. To completely understand the mechanisms underlying these interactions and to create new treatments for skin diseases, more research is required. In conclusion, NK cell integration into 3D organotypic culture systems offers a potent tool to investigate immune cell interactions with skin cells in a physiologically appropriate setting, which may result in major improvements in the treatment of skin diseases.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrine & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Endocrine & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Endocrine & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Ojagh
- Students Research Committee of Nursing, Faculty of Nursing, Aja University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrine & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zhang Z, Hui L. Progress in patient-derived liver cancer cell models: a step forward for precision medicine. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1707-1717. [PMID: 37766458 PMCID: PMC10679880 DOI: 10.3724/abbs.2023224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of effective precision treatments for liver cancers has been hindered by the scarcity of preclinical models that accurately reflect the heterogeneity of this disease. Recent progress in developing patient-derived liver cancer cell lines and organoids has paved the way for precision medicine research. These expandable resources of liver cancer cell models enable a full spectrum of pharmacogenomic analysis for liver cancers. Moreover, patient-derived and short-term cultured two-dimensional tumor cells or three-dimensional organoids can serve as patient avatars, allowing for the prediction of patients' response to drugs and facilitating personalized treatment for liver cancer patients. Furthermore, the current novel techniques have expanded the scope of cancer research, including innovative organoid culture, gene editing and bioengineering. In this review, we provide an overview of the progress in patient-derived liver cancer cell models, focusing on their applications in precision and personalized medicine research. We also discuss the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Zhengtao Zhang
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Lijian Hui
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
24
|
Gómez-Álvarez M, Agustina-Hernández M, Francés-Herrero E, Rodríguez-Eguren A, Bueno-Fernandez C, Cervelló I. Addressing Key Questions in Organoid Models: Who, Where, How, and Why? Int J Mol Sci 2023; 24:16014. [PMID: 37958996 PMCID: PMC10650475 DOI: 10.3390/ijms242116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids. This literature review aims to clarify the concept of organoids and address the four fundamental questions pertaining to organoid models: (i) What constitutes organoids?-The cellular material. (ii) Where do organoids grow?-The extracellular scaffold. (iii) How are organoids maintained in vitro?-Via the culture media. (iv) Why are organoids suitable in vitro models?-They represent reproducible, stable, and scalable models for biological applications. Finally, this review provides an update on the organoid models employed within the female reproductive tract, underscoring their relevance in both basic biology and clinical applications.
Collapse
Affiliation(s)
- María Gómez-Álvarez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Marcos Agustina-Hernández
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Emilio Francés-Herrero
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Clara Bueno-Fernandez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Irene Cervelló
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| |
Collapse
|
25
|
Tian H, Ren J, Mou R, Jia Y. Application of organoids in precision immunotherapy of lung cancer (Review). Oncol Lett 2023; 26:484. [PMID: 37818130 PMCID: PMC10561155 DOI: 10.3892/ol.2023.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 10/12/2023] Open
Abstract
In immunotherapy, the immune system is modulated in order to treat cancer. Traditional two dimensional in vitro models and in vivo animal models are insufficient to simulate the complex tumor microenvironment (TME) in the original tumor. As tumor immunotherapy involves the immune system, additional tumor mimic models, such as patient-derived organoids, are required for the evaluation of the efficacy of immunotherapy. Furthermore, non-tumor components and host tumor cells in the TME may interact to promote cancer incidence, progression, drug resistance and metastasis. It is possible to produce organoid models for lung cancer by retaining endogenous stromal components (e.g., multiple immune cell types), supplying cancer-associated fibroblasts and exogenous immune cells, constructing tumor vasculature and adding other biological or chemical components that emulate the TME. Therefore, the lung cancer organoid culture platform may facilitate preclinical testing of immunotherapy drugs for lung cancer by mimicking immunotherapy responses. The present review summarizes current lung cancer organoid culture methods for TME modeling and discusses the use of lung cancer-derived organoids for the detection of lung cancer immunotherapy and individualized cancer immunotherapy.
Collapse
Affiliation(s)
- Huichuan Tian
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Jiajun Ren
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Ruiyu Mou
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Yingjie Jia
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| |
Collapse
|
26
|
Jeong SR, Kang M. Exploring Tumor-Immune Interactions in Co-Culture Models of T Cells and Tumor Organoids Derived from Patients. Int J Mol Sci 2023; 24:14609. [PMID: 37834057 PMCID: PMC10572813 DOI: 10.3390/ijms241914609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The use of patient-derived tumor tissues and cells has led to significant advances in personalized cancer therapy and precision medicine. The advent of genomic sequencing technologies has enabled the comprehensive analysis of tumor characteristics. The three-dimensional tumor organoids derived from self-organizing cancer stem cells are valuable ex vivo models that faithfully replicate the structure, unique features, and genetic characteristics of tumors. These tumor organoids have emerged as innovative tools that are extensively employed in drug testing, genome editing, and transplantation to guide personalized therapy in clinical settings. However, a major limitation of this emerging technology is the absence of a tumor microenvironment that includes immune and stromal cells. The therapeutic efficacy of immune checkpoint inhibitors has underscored the importance of immune cells, particularly cytotoxic T cells that infiltrate the vicinity of tumors, in patient prognosis. To address this limitation, co-culture techniques combining tumor organoids and T cells have been developed, offering diverse avenues for studying individualized drug responsiveness. By integrating cellular components of the tumor microenvironment, including T cells, into tumor organoid cultures, immuno-oncology has embraced this technology, which is rapidly advancing. Recent progress in co-culture models of tumor organoids has allowed for a better understanding of the advantages and limitations of this novel model, thereby exploring its full potential. This review focuses on the current applications of organoid-T cell co-culture models in cancer research and highlights the remaining challenges that need to be addressed for its broader implementation in anti-cancer therapy.
Collapse
Affiliation(s)
- So-Ra Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea;
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea;
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06531, Republic of Korea
| |
Collapse
|
27
|
Rzewnicka A, Krysiak J, Pawłowska R, Żurawiński R. Visualization of Cellular Membranes in 2D and 3D Conditions Using a New Fluorescent Dithienothiophene S,S-Dioxide Derivative. Int J Mol Sci 2023; 24:ijms24119620. [PMID: 37298572 DOI: 10.3390/ijms24119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular membranes play a key role in cell communication with the extracellular environment and neighboring cells. Any changes, including their composition, packing, physicochemical properties and formation of membrane protrusions may affect cells feature. Despite its great importance, tracking membrane changes in living cells is still a challenge. For investigation of processes related to tissue regeneration and cancer metastasis, such as the induction of epithelial-mesenchymal transition, increased cell motility, and blebbing, the possibility to conduct prolonged observation of membrane changes is beneficial, albeit difficult. A particular challenge is conducting this type of research under detachment conditions. In the current manuscript, a new dithienothiophene S,S-dioxide (DTTDO) derivative is presented as an effective dye for staining the membranes of living cells. The synthetic procedures, physicochemical properties, and biological activity of the new compound are presented herein. In addition to the labeling of the membranes in a monolayer culture, its usefulness for visualization of membranes under detachment conditions is also demonstrated. Obtained data have proven that a new DTTDO derivative may be used to stain membranes in various types of experimental procedures, from traditional 2D cell cultures to unanchored conditions. Moreover, due to the specific optical properties, the background signal is reduced and, thus, observation may be performed without washing.
Collapse
Affiliation(s)
- Aneta Rzewnicka
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jerzy Krysiak
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Róża Pawłowska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Remigiusz Żurawiński
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|