1
|
Daugelaite K, Lacour P, Winkler I, Koch ML, Schneider A, Schneider N, Coraggio F, Tolkachov A, Nguyen XP, Vilkaite A, Rehnitz J, Odom DT, Goncalves A. Granulosa cell transcription is similarly impacted by superovulation and aging and predicts early embryonic trajectories. Nat Commun 2025; 16:3658. [PMID: 40246835 PMCID: PMC12006393 DOI: 10.1038/s41467-025-58451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
In vitro fertilization efficiency is limited in part because a fraction of retrieved oocytes fails to fertilize. Accurately evaluating their quality could significantly improve in vitro fertilization efficiency, which would require better understanding how their maturation may be disrupted. Here, we quantitatively investigate the interplay between superovulation and aging in mouse oocytes and their paired granulosa cells using a newly adapted experimental methodology. We test the hypothesis that superovulation disrupts oocyte maturation, revealing the key intercellular communication pathways dysregulated at the transcriptional level by forced hormonal stimulation. We further demonstrate that granulosa cell transcriptional markers can prospectively predict an associated oocyte's early developmental potential. By using naturally ovulated old mice as a non-stimulated reference, we show that aging and superovulation dysregulate similar genes and interact with each other. By comparing mice and human transcriptional responses of granulosa cells, we find that age-related dysregulation of hormonal responses and cell cycle pathways are shared, though substantial divergence exists in other pathways.
Collapse
Affiliation(s)
- Klaudija Daugelaite
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karl-University Heidelberg, Heidelberg, Germany
| | - Perrine Lacour
- Faculty of Biosciences, Ruprecht-Karl-University Heidelberg, Heidelberg, Germany
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivana Winkler
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marie-Luise Koch
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Schneider
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Schneider
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesca Coraggio
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Tolkachov
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Xuan Phuoc Nguyen
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Adriana Vilkaite
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Julia Rehnitz
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Angela Goncalves
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Dević Pavlić S, Saftić Martinović L, Sušanj Šepić T, Radojčić Badovinac A. Comparative Analysis of Controlled Ovarian Hyperstimulation and Modified Natural Cycle Protocols on Gene Expression and Quality of Oocytes, Zygotes, and Embryos in Assisted Reproductive Technology (ART). Int J Mol Sci 2024; 25:13287. [PMID: 39769052 PMCID: PMC11676253 DOI: 10.3390/ijms252413287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the influence of two in vitro fertilization (IVF) protocols-controlled ovarian hyperstimulation (COH) and a modified natural cycle protocol-on gene expression levels (Anti-Müllerian Hormone (AMH), Anti-Müllerian Hormone Receptor Type 2 (AMHAMHR2), Follicle-Stimulating Hormone Receptor (FSHR), and Androgen Receptor (AR)) and the subsequent reproductive outcomes of assisted reproductive technology (ART). Gene expression, as well as oocyte, zygote, and embryo morphological parameters, were analyzed to evaluate the differences between the protocols. Our findings show that AMH expression was significantly associated with successful fertilization, while AMHAMHR2 expression correlated with improved embryo transfer outcomes. The modified natural cycle protocol demonstrated a higher association with the favorable gene expression profiles, particularly for AMH and AMHAMHR2, linked to successful fertilization and embryo transfer, suggesting potential advantages of minimal intervention. However, the overall quality scores for the oocytes, zygotes, and embryos were comparable between the protocols. The trend of a higher transfer success for the natural cycle, though not statistically significant, indicated potential protocol effects on the uterine environment. This study highlights the complexity of ART outcomes and suggests that incorporating gene expression markers with protocol adjustments may optimize individual ART strategies.
Collapse
Affiliation(s)
- Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia;
| | - Lara Saftić Martinović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia;
| | - Tina Sušanj Šepić
- Clinic for Gynecology and Obstetrics, Clinical Hospital Center Rijeka, HR-51000 Rijeka, Croatia;
| | | |
Collapse
|
3
|
Baldini GM, Ferri D, Malvasi A, Laganà AS, Vimercati A, Dellino M, Baldini D, Trojano G. Genetic Abnormalities of Oocyte Maturation: Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:13002. [PMID: 39684710 DOI: 10.3390/ijms252313002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic anomalies in oocyte maturation present significant fertility and embryonic development challenges. This review explores the intricate mechanisms of nuclear and cytoplasmic maturation, emphasizing the genetic and molecular factors contributing to oocyte quality and competence. Chromosomal mutations, errors in segregation, genetic mutations in signaling pathways and meiosis-related genes, and epigenetic alterations are discussed as critical contributors to oocyte maturation defects. The role of mitochondrial defects, maternal mRNA dysregulation, and critical proteins such as NLRP14 and BMP6 are highlighted. Understanding these genetic factors is crucial for improving diagnostic approaches and therapeutic interventions in reproductive medicine, particularly for couples encountering recurrent in vitro fertilization failures. This review will explore how specific genetic mutations impact fertility treatments and reproductive success by examining the intricate oocyte maturation process. We will focus on genetic abnormalities that may disrupt the oocyte maturation pathway, discussing the underlying mechanisms involved and considering their potential clinical implications for enhancing fertility outcomes.
Collapse
Affiliation(s)
- Giorgio Maria Baldini
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Antonio Malvasi
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology "Paolo Giacone" Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities (PROMISE), University of Palermo, 90135 Palermo, Italy
| | - Antonella Vimercati
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Miriam Dellino
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, Madonna delle Grazie Hospital, 75100 Matera, Italy
| |
Collapse
|
4
|
Wyse BA, Weizman NF, Kadish S, Balakier H, Sangaralingam M, Librach CL. Correction: Transcriptomics of cumulus cells - a window into oocyte maturation in humans. J Ovarian Res 2024; 17:227. [PMID: 39548572 PMCID: PMC11566864 DOI: 10.1186/s13048-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024] Open
Affiliation(s)
- Brandon A Wyse
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada.
| | - Noga Fuchs Weizman
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | - Seth Kadish
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | - Hanna Balakier
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Canada
| |
Collapse
|
5
|
Wang M, Qu G. Transcriptomic Analysis and Finding of Potential Key mRNA Expression Profile in Human Cumulus Cells During in Vitro Culture and Different Passages Based on Integrated Bioinformatics Analysis. Reprod Sci 2024:10.1007/s43032-024-01681-x. [PMID: 39271607 DOI: 10.1007/s43032-024-01681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
This study leveraged microarray datasets to investigate differentially expressed genes (DEGs) in cumulus cells and their relevance in predicting the successful implantation of embryos in human in-vitro fertilization procedures. The microarray data were obtained from the GEO database, encompassing samples of cumulus cells during in vitro culture and different passages. To ensure data consistency, inter-batch normalization was performed, and Principal Component Analysis (PCA) was applied to assess the impact of normalization on sample group clustering. The integrated dataset included samples from cumulus cells during in vitro culture, comprising 17,662 genes. Utilizing the "limma" software package, 1906 DEGs were identified, with 437 genes downregulated and 589 genes upregulated in the cumulus cells of infertility cases, while 748 genes were upregulated, and 1317 genes were downregulated in cumulus cells of successful implantation cases. Functional enrichment analysis utilized Gene Ontology, Metascape, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment tools. Biological processes and molecular functions were enriched, including protein targeting, mRNA processing, and molecular binding among the identified DEGs. Furthermore, target prediction and functional enrichment analysis of microRNAs (miRNAs) revealed 25 key genes and 13 relevant miRNAs were identified. Notably, hsa-miR-149, hsa-miR23b, hsa-miR-877, hsa-miR593, hsa-miR-18a, hsa-miR25, hsa-miR185, mmu-miR-207, hsa-miR425, hsa-miR214, hsa-miR-129, hsa-miR-629, and hsa-miR-194 emerged as the most prominent miRNAs with potential regulatory roles in successful embryo implantation. This comprehensive analysis provides valuable insights into the molecular mechanisms underlying embryo implantation, offering potential targets for further research and therapeutic interventions in assisted reproductive technologies.
Collapse
Affiliation(s)
- Min Wang
- Obstetrics and Gynecology Department of People's Hospital of Yuechi County, Sichuan Province, 638300, China.
| | - Guanglei Qu
- Respiratory and Critical Care Medicine Department of People's Hospital of Yuechi County, Sichuan Province, 638300, China.
| |
Collapse
|
6
|
Walter J, Colleoni S, Lazzari G, Fortes C, Grossmann J, Roschitzki B, Laczko E, Naegeli H, Bleul U, Galli C. Maturational competence of equine oocytes is associated with alterations in their 'cumulome'. Mol Hum Reprod 2024; 30:gaae033. [PMID: 39288330 PMCID: PMC11444741 DOI: 10.1093/molehr/gaae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
Assisted reproductive technologies are an emerging field in equine reproduction, with species-dependent peculiarities, such as the low success rate of conventional IVF. Here, the 'cumulome' was related to the developmental capacity of its corresponding oocyte. Cumulus-oocyte complexes collected from slaughterhouse ovaries were individually matured, fertilized by ICSI, and cultured. After maturation, the cumulus was collected for proteomics analysis using label-free mass spectrometry (MS)-based protein profiling by nano-HPLC MS/MS and metabolomics analysis by UPLC-nanoESI MS. Overall, a total of 1671 proteins and 612 metabolites were included in the quantifiable 'cumulome'. According to the development of the corresponding oocytes, three groups were compared with each other: not matured (NM; n = 18), cleaved (CV; n = 15), and blastocyst (BL; n = 19). CV and BL were also analyzed together as the matured group (M; n = 34). The dataset revealed a closer connection within the two M groups and a more distinct separation from the NM group. Overrepresentation analysis detected enrichments related to energy metabolism as well as vesicular transport in the M group. Functional enrichment analysis found only the KEGG pathway 'oxidative phosphorylation' as significantly enriched in the NM group. A compound attributed to ATP was observed with significantly higher concentrations in the BL group compared with the NM group. Finally, in the NM group, proteins related to degradation of glycosaminoglycans were lower and components of cumulus extracellular matrix were higher compared to the other groups. In summary, the study revealed novel pathways associated with the maturational and developmental competence of oocytes.
Collapse
Affiliation(s)
- Jasmin Walter
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvia Colleoni
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Giovanna Lazzari
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Claudia Fortes
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| |
Collapse
|
7
|
Gokyer D, Akinboro S, Zhou LT, Kleinhans A, Laronda MM, Duncan FE, Riley JK, Goldman KN, Babayev E. The oocyte microenvironment is altered in adolescents compared to oocyte donors. Hum Reprod Open 2024; 2024:hoae047. [PMID: 39211054 PMCID: PMC11361810 DOI: 10.1093/hropen/hoae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY QUESTION Do the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of oocyte donors? SUMMARY ANSWER The microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors. WHAT IS KNOWN ALREADY Adolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality. STUDY DESIGN SIZE DURATION This was a prospective cohort study. Adolescents (10-19 years old, n = 23) and oocyte donors (22-30 years old, n = 31) undergoing ovarian stimulation and oocyte retrieval at a single center between 1 November 2020 and 1 May 2023 were enrolled in this study. PARTICIPANTS/MATERIALS SETTING METHODS Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n = 19) and oocyte donors (22-30 years old, n = 19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n = 18 vs 25-30 years old, n = 16) were compared using cytokine arrays. MAIN RESULTS AND THE ROLE OF CHANCE RNA-seq analysis revealed 581 differentially expressed genes in CCs of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g. GO: 1903047, P = 3.5 × 10-43; GO: 0051983, P = 4.1 × 10-30; GO: 0000281, P = 7.7 × 10-15; GO: 0044839, P = 5.3 × 10-13) were significantly downregulated, while genes enriched in several pathways involved in cellular and vesicle organization (e.g. GO: 0010256, P = 1.2 × 10-8; GO: 0051129, P = 6.8 × 10-7; GO: 0016050, P = 7.4 × 10-7; GO: 0051640, P = 8.1 × 10-7) were upregulated in CCs of adolescents compared to oocyte donors. The levels of nine cytokines were significantly increased in FF of adolescents compared to oocyte donors: IL-1 alpha (2-fold), IL-1 beta (1.7-fold), I-309 (2-fold), IL-15 (1.6-fold), TARC (1.9-fold), TPO (2.1-fold), IGFBP-4 (2-fold), IL-12-p40 (1.7-fold), and ENA-78 (1.4-fold). Interestingly, seven of these cytokines have known pro-inflammatory roles. Importantly, neither the CC transcriptomes nor FF cytokine profiles were different in adolescents with or without cancer. LARGE SCALE DATA Original high-throughput sequencing data have been deposited in Gene Expression Omnibus (GEO) database with the accession number GSE265995. LIMITATIONS REASONS FOR CAUTION This study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but would provide a more accurate assessment of oocyte reproductive potential. WIDER IMPLICATIONS OF THE FINDINGS Our findings have implications for the adolescent fertility preservation cycles. Understanding the expected quality of cryopreserved eggs in this age group will lead to better counseling of these patients about their reproductive potential and may help to determine the number of eggs that is recommended to be banked to achieve a reasonable chance of future live birth(s). STUDY FUNDING/COMPETING INTERESTS This project was supported by Friends of Prentice organization SP0061324 (M.M.L. and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sophia Akinboro
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Monica M Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Basic and Preclinical Science, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joan K Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Kara N Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| |
Collapse
|
8
|
Wang L, Li B, Cheng D. Influence of Long Non-Coding RNAs on Human Oocyte Development. Pharmgenomics Pers Med 2024; 17:337-345. [PMID: 38979513 PMCID: PMC11229482 DOI: 10.2147/pgpm.s449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Recent research findings have highlighted the pivotal roles played by lncRNAs in both normal human development and disease pathogenesis. LncRNAs are expressed in oocytes and early embryos, and their expression levels change dynamically once the embryonic genome is activated during early human embryonic development. Abnormal expression of lncRNAs was found in follicular fluid, granulosa cells and oocytes of patients, and these lncRNAs were related to cell proliferation and apoptosis, nuclear maturation and follicle development. The expression levels of some lncRNAs in cumulus cells demonstrate correlations with the quality of oocytes and early embryos. This paper aims to present a comprehensive overview of the influence of LncRNAs on the developmental process of human oocytes as well as their involvement in certain infertility-related diseases.
Collapse
Affiliation(s)
- Leitong Wang
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Baoshan Li
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Dongkai Cheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| |
Collapse
|
9
|
Hu Y, Zhang R, Zhang S, Ji Y, Zhou Q, Leng L, Meng F, Gong F, Lu G, Lin G, Hu L. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res 2023; 16:225. [PMID: 37993893 PMCID: PMC10664256 DOI: 10.1186/s13048-023-01291-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/01/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The oocyte and its surrounding cumulus cells (CCs) exist as an inseparable entity. The maturation of the oocyte relies on communication between the oocyte and the surrounding CCs. However, oocyte evaluation is primarily based on morphological parameters currently, which offer limited insight into the quality and competence of the oocyte. Here, we conducted transcriptomic profiling of oocytes and their CCs from 47 patients undergoing preimplantation genetic testing for aneuploidy (PGT-A). We aimed to investigate the molecular events occurring between oocytes and CCs at different stages of oocyte maturation (germinal vesicle [GV], metaphase I [MI], and metaphase II [MII]). Our goal is to provide new insights into in vitro oocyte maturation (IVM). RESULTS Our findings indicate that oocyte maturation is a complex and dynamic process and that MI oocytes can be further classified into two distinct subtypes: GV-like-MI oocytes and MII-like-MI oocytes. Human oocytes and cumulus cells at three different stages of maturation were analyzed using RNA-seq, which revealed unique transcriptional machinery, stage-specific genes and pathways, and transcription factor networks that displayed developmental stage-specific expression patterns. We have also identified that both lipid and cholesterol metabolism in cumulus cells is active during the late stage of oocyte maturation. Lipids may serve as a more efficient energy source for oocytes and even embryogenesis. CONCLUSIONS Overall, our study provides a relatively comprehensive overview of the transcriptional characteristics and potential interactions between human oocytes and cumulus cells at various stages of maturation before ovulation. This study may offer novel perspectives on IVM and provide a reliable reference data set for understanding the transcriptional regulation of follicular maturation.
Collapse
Affiliation(s)
- Yena Hu
- Institute of Reproductive and Stems Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Xiangya Road 88#, Changsha, 410008, Hunan, China
| | - Ran Zhang
- Institute of Reproductive and Stems Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Xiangya Road 88#, Changsha, 410008, Hunan, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410013, Hunan, China
| | - Yaxing Ji
- Institute of Reproductive and Stems Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Xiangya Road 88#, Changsha, 410008, Hunan, China
| | - Qinwei Zhou
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410013, Hunan, China
| | - Lizhi Leng
- Institute of Reproductive and Stems Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Xiangya Road 88#, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410013, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410013, Hunan, China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410013, Hunan, China
| | - Fei Gong
- Institute of Reproductive and Stems Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Xiangya Road 88#, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410013, Hunan, China
| | - Guangxiu Lu
- Institute of Reproductive and Stems Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Xiangya Road 88#, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410013, Hunan, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410013, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stems Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Xiangya Road 88#, Changsha, 410008, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410013, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410013, Hunan, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410013, Hunan, China.
| | - Liang Hu
- Institute of Reproductive and Stems Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Xiangya Road 88#, Changsha, 410008, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410013, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410013, Hunan, China.
- Hunan Normal University School of Medicine, ChangshaHunan, 410013, China.
| |
Collapse
|
10
|
de la Fuente A, Scoggin C, Bradecamp E, Martin-Pelaez S, van Heule M, Troedsson M, Daels P, Meyers S, Dini P. Transcriptome Signature of Immature and In Vitro-Matured Equine Cumulus-Oocytes Complex. Int J Mol Sci 2023; 24:13718. [PMID: 37762020 PMCID: PMC10531358 DOI: 10.3390/ijms241813718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Maturation is a critical step in the development of an oocyte, and it is during this time that the oocyte advances to metaphase II (MII) of the meiotic cycle and acquires developmental competence to be fertilized and become an embryo. However, in vitro maturation (IVM) remains one of the limiting steps in the in vitro production of embryos (IVP), with a variable percentage of oocytes reaching the MII stage and unpredictable levels of developmental competence. Understanding the dynamics of oocyte maturation is essential for the optimization of IVM culture conditions and subsequent IVP outcomes. Thus, the aim of this study was to elucidate the transcriptome dynamics of oocyte maturation by comparing transcriptomic changes during in vitro maturation in both oocytes and their surrounding cumulus cells. Cumulus-oocyte complexes were obtained from antral follicles and divided into two groups: immature and in vitro-matured (MII). RNA was extracted separately from oocytes (OC) and cumulus cells (CC), followed by library preparation and RNA sequencing. A total of 13,918 gene transcripts were identified in OC, with 538 differentially expressed genes (DEG) between immature OC and in vitro-matured OC. In CC, 13,104 genes were expressed with 871 DEG. Gene ontology (GO) analysis showed an association between the DEGs and pathways relating to nuclear maturation in OC and GTPase activity, extracellular matrix organization, and collagen trimers in CC. Additionally, the follicle-stimulating hormone receptor gene (FSHR) and luteinizing hormone/choriogonadotropin receptor gene (LHCGR) showed differential expressions between CC-MII and immature CC samples. Overall, these results serve as a foundation to further investigate the biological pathways relevant to oocyte maturation in horses and pave the road to improve the IVP outcomes and the overall clinical management of equine assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- Alejandro de la Fuente
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Charles Scoggin
- LeBlanc Reproduction Center, Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - Etta Bradecamp
- LeBlanc Reproduction Center, Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - Soledad Martin-Pelaez
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820 Merelbeke, Belgium
| | - Mats Troedsson
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820 Merelbeke, Belgium
| | - Stuart Meyers
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Hu J, Wang H, Jiang R, Yang G, Zhang T, Zhang J, Yao G. Effects of indented zona pellucida on oocyte growth and development explored from changes of gene expression in cumulus cells. Arch Gynecol Obstet 2023; 308:1023-1033. [PMID: 37400728 DOI: 10.1007/s00404-023-07104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE Abnormal Zona Pellucida (ZP) of human oocytes is an extracellular oocyte abnormality leading to subfertility or infertility, among which indented ZP (iZP) is a common clinical case, and there is currently no effective clinical solution. The study aimed to find out the influence of this abnormal ZP on the growth and development of GC and further explore its influence on the growth and development of oocytes, hoping to provide new ideas for the etiology and treatment of such patients. METHODS In this study, we collected granulosa cells GC from oocytes with iZP(four cases) and GC from oocytes with a normal appearance of the ZP(eight cases) during ICSI treatment cycles, and submitted them to transcriptomic analysis using next-generation RNA sequencing (RNAseq). RESULTS 177 Differentially Expressed Genes (DEG) were identified by RNAseq analysis of Granulosa Cells (GC) from oocytes with a normal ZP morphological appearance and those with iZP. Correlation analysis of these DEGs showed that the expression levels of the immune factor CD274 and the inflammatory factors IL4R and IL-7R, which are positively associated with ovulation, were significantly down-regulated in the GC of oocytes with iZP. Hippo, PI3K-AKT, Ras and calcium signaling pathways related to oocyte growth and development, NTRK2 and its ligands (BDNF and NT5E) from the neurotrophin family that are trophic to the oocyte were also significantly down-regulated in the GC of oocytes with iZP. In addition, the expression of cadherin family members CDH6, CDH12 and CDH19 were significantly down-regulated in DEGs, and the down-regulation of these proteins may affect the gap junction between Granulosa cells and oocytes. CONCLUSION IZP might cause obstacles to dialogue and material exchange between GC and oocytes and further affect the growth and development of oocytes.
Collapse
Affiliation(s)
- Jingyi Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwei Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junya Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Fan W, Yuan Z, Li M, Zhang Y, Nan F. Decreased oocyte quality in patients with endometriosis is closely related to abnormal granulosa cells. Front Endocrinol (Lausanne) 2023; 14:1226687. [PMID: 37664845 PMCID: PMC10469306 DOI: 10.3389/fendo.2023.1226687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Infertility and menstrual abnormalities in endometriosis patients are frequently caused by aberrant follicular growth or a reduced ovarian reserve. Endometriosis typically does not directly harm the oocyte, but rather inhibits the function of granulosa cells, resulting in a decrease in oocyte quality. Granulosa cells, as oocyte nanny cells, can regulate meiosis, provide the most basic resources required for oocyte development, and influence ovulation. Endometriosis affects oocyte development and quality by causing granulosa cells apoptosis, inflammation, oxidative stress, steroid synthesis obstacle, and aberrant mitochondrial energy metabolism. These aberrant states frequently interact with one another, however there is currently relatively little research in this field to understand the mechanism of linkage between abnormal states.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zheng Yuan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Muzhen Li
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yingjie Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fengjuan Nan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
13
|
Wyse BA, Salehi R, Russell SJ, Sangaralingam M, Jahangiri S, Tsang BK, Librach CL. Obesity and PCOS radically alters the snRNA composition of follicular fluid extracellular vesicles. Front Endocrinol (Lausanne) 2023; 14:1205385. [PMID: 37404312 PMCID: PMC10315679 DOI: 10.3389/fendo.2023.1205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The ovarian follicle consists of the oocyte, somatic cells, and follicular fluid (FF). Proper signalling between these compartments is required for optimal folliculogenesis. The association between polycystic ovarian syndrome (PCOS) and extracellular vesicular small non-coding RNAs (snRNAs) signatures in follicular fluid (FF) and how this relates to adiposity is unknown. The purpose of this study was to determine whether FF extracellular vesicle (FFEV)-derived snRNAs are differentially expressed (DE) between PCOS and non-PCOS subjects; and if these differences are vesicle-specific and/or adiposity-dependent. Methods FF and granulosa cells (GC) were collected from 35 patients matched by demographic and stimulation parameters. FFEVs were isolated and snRNA libraries were constructed, sequenced, and analyzed. Results miRNAs were the most abundant biotype present, with specific enrichment in exosomes (EX), whereas in GCs long non-coding RNAs were the most abundant biotype. In obese PCOS vs. lean PCOS, pathway analysis revealed target genes involved in cell survival and apoptosis, leukocyte differentiation and migration, JAK/STAT, and MAPK signalling. In obese PCOS FFEVs were selectively enriched (FFEVs vs. GCs) for miRNAs targeting p53 signalling, cell survival and apoptosis, FOXO, Hippo, TNF, and MAPK signalling. Discussion We provide comprehensive profiling of snRNAs in FFEVs and GCs of PCOS and non-PCOS patients, highlighting the effect of adiposity on these findings. We hypothesize that the selective packaging and release of miRNAs specifically targeting anti-apoptotic genes into the FF may be an attempt by the follicle to reduce the apoptotic pressure of the GCs and stave off premature apoptosis of the follicle observed in PCOS.
Collapse
Affiliation(s)
- Brandon A. Wyse
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
| | - Reza Salehi
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Sahar Jahangiri
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
| | - Benjamin K. Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L. Librach
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, DAN Women & Babies Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
14
|
Wiltshire A, Schaal R, Wang F, Tsou T, McKerrow W, Keefe D. Vitrification with Dimethyl Sulfoxide Induces Transcriptomic Alteration of Gene and Transposable Element Expression in Immature Human Oocytes. Genes (Basel) 2023; 14:1232. [PMID: 37372413 DOI: 10.3390/genes14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes. Additionally, few studies investigate the effects of DMSO on transposable elements (TE), the control of which is essential for the maintenance of genomic instability. The objective of this study was to investigate the impact of vitrification with DMSO-containing cryoprotectant on the transcriptome, including on TEs, of human oocytes. Twenty-four oocytes at the GV stage were donated by four healthy women undergoing elective oocyte cryopreservation. Oocytes were paired such that half from each patient were vitrified with DMSO-containing cryoprotectant (Vitrified Cohort), while the other half were snap frozen in phosphate buffer, unexposed to DMSO (Non-Vitrified Cohort). All oocytes underwent RNA sequencing via a method with high fidelity for single cell analysis, and which allows for the analysis of TE expression through Switching Mechanism at the 5'-end of the RNA Transcript sequencing 2 (SMARTseq2), followed by functional enrichment analysis. Of the 27,837 genes identified by SMARTseq2, 7331 (26.3%) were differentially expressed (p < 0.05). There was a significant dysregulation of genes involved in chromatin and histone modification. Mitochondrial function, as well as the Wnt, insulin, mTOR, HIPPO, and MAPK signaling pathways were also altered. The expression of TEs was positively correlated with the expression of PIWIL2, DNMT3A, and DNMT3B, and negatively correlated with age. These findings suggest that the current standard process of oocyte vitrification, involving DMSO-containing cryoprotectant, induces significant transcriptome changes, including those involving TEs.
Collapse
Affiliation(s)
- Ashley Wiltshire
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Renata Schaal
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Fang Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Tiffany Tsou
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - David Keefe
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
15
|
Suebthawinkul C, Babayev E, Lee HC, Duncan FE. Morphokinetic parameters of mouse oocyte meiotic maturation and cumulus expansion are not affected by reproductive age or ploidy status. J Assist Reprod Genet 2023; 40:1197-1213. [PMID: 37012451 PMCID: PMC10239409 DOI: 10.1007/s10815-023-02779-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Morphokinetic analysis using a closed time-lapse monitoring system (EmbryoScope + ™) provides quantitative metrics of meiotic progression and cumulus expansion. The goal of this study was to use a physiologic aging mouse model, in which egg aneuploidy levels increase, to determine whether there are age-dependent differences in morphokinetic parameters of oocyte maturation. METHODS Denuded oocytes and intact cumulus-oocyte complexes (COCs) were isolated from reproductively young and old mice and in vitro matured in the EmbryoScope + ™. Morphokinetic parameters of meiotic progression and cumulus expansion were evaluated, compared between reproductively young and old mice, and correlated with egg ploidy status. RESULTS Oocytes from reproductively old mice were smaller than young counterparts in terms of GV area (446.42 ± 4.15 vs. 416.79 ± 5.24 µm2, p < 0.0001) and oocyte area (4195.71 ± 33.10 vs. 4081.62 ± 41.04 µm2, p < 0.05). In addition, the aneuploidy incidence was higher in eggs with advanced reproductive age (24-27% vs. 8-9%, p < 0.05). There were no differences in the morphokinetic parameters of oocyte maturation between oocytes from reproductively young and old mice with respect to time to germinal vesicle breakdown (GVBD) (1.03 ± 0.03 vs. 1.01 ± 0.04 h), polar body extrusion (PBE) (8.56 ± 0.11 vs. 8.52 ± 0.15 h), duration of meiosis I (7.58 ± 0.10 vs. 7.48 ± 0.11 h), and kinetics of cumulus expansion (0.093 ± 0.002 vs. 0.089 ± 0.003 µm/min). All morphokinetic parameters of oocyte maturation were similar between euploid and aneuploid eggs irrespective of age. CONCLUSION There is no association between age or ploidy and the morphokinetics of mouse oocyte in vitro maturation (IVM). Future studies are needed to evaluate whether there is an association between morphokinetic dynamics of mouse IVM and embryo developmental competence.
Collapse
Affiliation(s)
- Chanakarn Suebthawinkul
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
RNA sequencing-based transcriptome analysis of granulosa cells from follicular fluid: Genes involved in embryo quality during in vitro fertilization and embryo transfer. PLoS One 2023; 18:e0280495. [PMID: 36857405 PMCID: PMC9977003 DOI: 10.1371/journal.pone.0280495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/02/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Granulosa cells play an important role in folliculogenesis, however, the role of RNA transcripts of granulosa cells in assessing embryo quality remains unclear. Therefore, we aims to investigate that RNA transcripts of granulosa cells be used to assess the probability of the embryonic developmental capacity. METHODS This prospective cohort study was attempted to figure out the probability of the embryonic developmental capacity using RNA sequencing of granulosa cells. Granulosa cells were collected from 48 samples in good-quality embryo group and 79 in only poor- quality embryo group from women undergoing in vitro fertilization and embryo transfer treatment. Three samples from each group were used for RNA sequencing. RESULTS 226 differentially expressed genes (DEGs) were related to high developmental competence of embryos. Gene Ontology enrichment analysis indicated that these DEGs were primarily involved in biological processes, molecular functions, and cellular components. Additionally, pathway analysis revealed that these DEGs were enriched in 13 Kyoto Encyclopedia of Genes and Genomes pathways. Reverse transcription quantitative polymerase chain reaction verified the differential expression of the 13 selected DEGs. Among them,10 genes were differently expressed in the poor-quality embryo group compared to good-quality embryo group, including CSF1R, CTSH, SERPINA1, CYP27A1, ITGB2, IL1β, TNF, TAB1, BCL2A1, and CCL4. CONCLUSIONS RNA sequencing data provide the support or confute granulosa expressed genes as non-invasive biomarkers for identifying the embryonic developmental capacity.
Collapse
|
17
|
Martino NA, Picardi E, Ciani E, D’Erchia AM, Bogliolo L, Ariu F, Mastrorocco A, Temerario L, Mansi L, Palumbo V, Pesole G, Dell’Aquila ME. Cumulus Cell Transcriptome after Cumulus-Oocyte Complex Exposure to Nanomolar Cadmium in an In Vitro Animal Model of Prepubertal and Adult Age. BIOLOGY 2023; 12:biology12020249. [PMID: 36829526 PMCID: PMC9953098 DOI: 10.3390/biology12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.
Collapse
Affiliation(s)
- Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-0805443888
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Valeria Palumbo
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| |
Collapse
|
18
|
Using Cumulus Cell Biopsy as a Non-Invasive Tool to Access the Quality of Bovine Oocytes: How Informative Are They? Animals (Basel) 2022; 12:ani12223113. [PMID: 36428341 PMCID: PMC9686866 DOI: 10.3390/ani12223113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to determine whether cumulus cells (CC) biopsy, acquired before or after in vitro maturation (IVM), presents similar gene expression pattern and if would compromises oocyte quality. First, immature cumulus oocyte complexes (COCs) were distributed: (1) maturated in groups (control); (2) individually maturated, but not biopsied; (3) subjected to CC biopsy before maturation and individually matured; (4) individually matured and submitted to CC biopsy after maturation; (5) individually matured and CC biopsied before and after maturation. Secondly, candidate genes, described as potential markers of COCs quality, were quantified by RT-qPCR in CCs before and after IVM. After in vitro fertilization (IVF), zygotes were tracked and sorted regarding their developmental potential: fully developed to embryo, cleaved and arrested, and not-cleaved. The COC’s biopsy negatively affects embryo development (p < 0.05), blastocyst cell number (p < 0.05), and apoptotic cell ratio (p < 0.05), both before and after IVM. The PTGS2, LUM, ALCAM, FSHR, PGR, SERPINE2, HAS2, and PDRX3 genes were differentially expressed (p < 0.05) on matured CCs. Only PGR gene (p = 0.04) was under-expressed on matured CCs on Not-Cleaved group. The SERPINE2 gene was overexpressed (p = 0.01) in the Cleaved group on immature CCs. In summary, none of the selected gene studies can accurately predict COC’s fate after fertilization.
Collapse
|
19
|
Shi L, Wei X, Wu B, Yuan C, Li C, Dai Y, Chen J, Zhou F, Lin X, Zhang S. Molecular Signatures Correlated With Poor IVF Outcomes: Insights From the mRNA and lncRNA Expression of Endometriotic Granulosa Cells. Front Endocrinol (Lausanne) 2022; 13:825934. [PMID: 35295989 PMCID: PMC8919698 DOI: 10.3389/fendo.2022.825934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The outcomes of in vitro fertilization (IVF) for endometriotic women are significantly worse than for patients without ovarian endometriosis (OEM), as shown by fewer retrieved oocytes. However, the exact pathophysiological mechanism is still unknown. Thus, we conducted a prospective study that analyzed mRNA and lncRNA transcriptome between granulosa cells (GCs) from patients with fewer retrieved oocytes due to OEM and GCs from controls with male factor (MF) infertility using an RNA sequencing approach. We found a group of significantly differentially expressed genes (DEGs), including NR5A2, MAP3K5, PGRMC2, PRKAR2A, DEPTOR, ITGAV, KPNB1, GPC6, EIF3A, and SMC5, which were validated to be upregulated and negatively correlated with retrieved oocyte numbers in GCs of patients with OEM, while DUSP1 demonstrated the opposite. The molecular functions of these DEGs were mainly enriched in pathways involving mitogen-activated protein kinase (MAPK) signaling, Wnt signaling, steroid hormone response, apoptosis, and cell junction. Furthermore, we performed lncRNA analysis and identified a group of differentially expressed known/novel lncRNAs that were co-expressed with the validated DEGs and correlated with retrieved oocyte numbers. Co-expression networks were constructed between the DEGs and known/novel lncRNAs. These distinctive molecular signatures uncovered in this study are involved in the pathological regulation of ovarian reserve dysfunction in OEM patients.
Collapse
Affiliation(s)
- Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xianjiang Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Bingbing Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chunhui Yuan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang,
| |
Collapse
|
20
|
Sirait B, Wiweko B, Jusuf AA, Iftitah D, Muharam R. Oocyte Competence Biomarkers Associated With Oocyte Maturation: A Review. Front Cell Dev Biol 2021; 9:710292. [PMID: 34527670 PMCID: PMC8435600 DOI: 10.3389/fcell.2021.710292] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023] Open
Abstract
Oocyte developmental competence is one of the determining factors that influence the outcomes of an IVF cycle regarding the ability of a female gamete to reach maturation, be fertilized, and uphold an embryonic development up until the blastocyst stage. The current approach of assessing the competency of an oocyte is confined to an ambiguous and subjective oocyte morphological evaluation. Over the years, a myriad of biomarkers in the cumulus-oocyte-complex has been identified that could potentially function as molecular predictors for IVF program prognosis. This review aims to describe the predictive significance of several cumulus-oocyte complex (COC) biomarkers in evaluating oocyte developmental competence. A total of eight acclaimed cumulus biomarkers are examined in the study. RT-PCR and microarray analysis were extensively used to assess the significance of these biomarkers in foreseeing oocyte developmental competence. Notably, these biomarkers regulate vital processes associated with oocyte maturation and were found to be differentially expressed in COC encapsulating oocytes of different maturity. The biomarkers were reviewed according to the respective oocyte maturation events namely: nuclear maturation, apoptosis, and extracellular matrix remodeling, and steroid metabolism. Although substantial in vitro evidence was presented to justify the potential use of cumulus biomarkers in predicting oocyte competency and IVF outcomes, the feasibility of assessing these biomarkers as an add-on prognostic procedure in IVF is still restricted due to study challenges.
Collapse
Affiliation(s)
- Batara Sirait
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia.,Morula IVF Jakarta Clinic, Jakarta, Indonesia
| | - Budi Wiweko
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.,Human Reproductive, Infertility, and Family Planning Research Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dein Iftitah
- Human Reproductive, Infertility, and Family Planning Research Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - R Muharam
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.,Human Reproductive, Infertility, and Family Planning Research Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
21
|
Nasser G, Romysa S, Dalia Abd-El RA, Beshoy SF K, Eman Kh K, Md F, Kong IK. Cumulus-oocyte developmental competence: From morphological selection to molecular markers. JOURNAL OF GYNECOLOGICAL RESEARCH AND OBSTETRICS 2020:084-086. [DOI: 10.17352/jgro.000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|