1
|
Hamza AM, Alshamsi HA. Design of novel Z-scheme g-C 3N 4/TiO 2/CuCo 2O 4 heterojunctions for efficient visible light-driven photocatalyic degradation of rhodamine B. Sci Rep 2024; 14:23596. [PMID: 39384876 PMCID: PMC11464525 DOI: 10.1038/s41598-024-73915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
One of the most important environmental challenges that needs to be resolved is the industrial discharge of synthetic dyes. Graphitic carbon nitride (g-C3N4), Titanium dioxide (TiO2) and flower-like copper oxide (CuO)/copper cobaltite (CuCo2O4) nanocomposites were synthesized in order to synthesis an effective visible light driven photocatalyst that could degrade Rhodamin B (Rh.B) dye under simulated solar light irradiation. The SEM and TEM results verifies that the flower-like CuO/CuCo2O4 (CCO) structure and g-C3N4/TiO2 (g-CN/TO) generated a smart hybrid structure with superior g-CN distribution. According to the photocatalytic studies, g- C3N4/TiO2/CuO/CuCo2O4 (g-CN/TO/CCO) shows good photodegradation of Rh.B dye (99.9%) in minmal times (1 h) in CCO: g-CN/TO (2:1) ratio by Z-Scheme mechanism. The enhanced visible light absorption and effective electron-hole pair separation provided by the synergistic dispersion of CuO/CuCo2O4 and g-C3N4 can be attributed to the improved photocatalytic performances. These novel insights into g-CN/TO/CCO based photocatalysts are useful for treating industrial effluent.
Collapse
Affiliation(s)
- Aws M Hamza
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq
- Ministry of Education, General Directorate for Education in Babylon, Babylon, Iraq
| | - Hassan A Alshamsi
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| |
Collapse
|
2
|
Xie S, Su Y, Zhang J, Yin F, Liu X. Upregulation of miRNA-450b-5p targets ACTB to affect drug resistance and prognosis of ovarian cancer via the PI3K/Akt signaling pathway. Transl Cancer Res 2024; 13:4800-4812. [PMID: 39430863 PMCID: PMC11483453 DOI: 10.21037/tcr-24-292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background Ovarian cancer (OC) is the most malignant gynecologic cancer, and chemoresistance is a major cause of treatment failure in patients with OC. The understanding of microRNA (miRNA) in cancer is limited, and the role of miRNA (miR)-450b-5p in cancer drug resistance is unknown. In this study, we aim to evaluate the role of miR-450b-5p in drug-resistant OC and its underlying mechanisms. Methods MiR-450b-5p expression was assessed in drug-sensitive and resistant OC cells via quantitative real-time polymerase chain reaction. Cell viability was evaluated using the Cell Counting Kit-8 assay. Progression-free survival (PFS) and overall survival (OS) curves were generated using the Kaplan-Meier method and the log-rank test. Target genes of miR-450b-5p were identified from the Cancer MIRNome database. Co-expressed genes were obtained from The Cancer Genome Atlas and Cancer Genome cBioportal for pathway enrichment and functional clustering analysis. Results The miRNA-450b-5p expression was significantly increased in A2780 and SKOV3 OC-resistant cells and significantly increased by 17-fold in the A2780-CBP-Lv-miR-450b-5p cells compared to A2780-CBP and A2780-CBP-Lv-NC cells. The up-regulated expression of miR-450b-5p increased the cell viability and half maximal inhibitory concentration (IC50) of A2780 platinum-resistant cells and was associated with poor OS. We obtained 33 potential target genes of miR-450b-5p and beta-actin (ACTB) might be a potential target of miR-450b-5p. Low expression of ACTB predicted poor OS and PFS. We obtained 362 common genes co-expressed with ACTB, which involved 4 critical pathways. PI3K acted as an upstream pathway of the other three pathways, which ultimately responded to drug resistance regulation in OC. The genes enriched in four pathways were cross-analyzed and 13 overlapping genes were obtained. These 13 genes were also significantly and positively co-expressed with ACTB at both protein and mRNA levels. Conclusions High expression of miRNA-450b-5p might affect drug resistance and prognosis in OC by targeting 13 co-expressed genes of ACTB directly through the PI3K/Akt signaling pathway. Thus, miR-450b-5p might provide a new therapeutic target for drug resistance in OC.
Collapse
Affiliation(s)
- Shanzhou Xie
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumour Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Jinyan Zhang
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumour Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Human Development and Disease Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Williams ME, Howard D, Donnelly C, Izadi F, Parra JG, Pugh M, Edwards K, Lutchman-Sigh K, Jones S, Margarit L, Francis L, Conlan RS, Taraballi F, Gonzalez D. Adipocyte derived exosomes promote cell invasion and challenge paclitaxel efficacy in ovarian cancer. Cell Commun Signal 2024; 22:443. [PMID: 39285292 PMCID: PMC11404028 DOI: 10.1186/s12964-024-01806-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the deadliest gynaecological cancer with high mortality rates driven by the common development of resistance to chemotherapy. EOC frequently invades the omentum, an adipocyte-rich organ of the peritoneum and omental adipocytes have been implicated in promoting disease progression, metastasis and chemoresistance. The signalling mechanisms underpinning EOC omentum tropism have yet to be elucidated. METHODS Three-dimensional co-culture models were used to explore adipocyte-EOC interactions. The impact of adipocytes on EOC proliferation, response to therapy and invasive capacity was assessed. Primary adipocytes and omental tissue were isolated from patients with ovarian malignancies and benign ovarian neoplasms. Exosomes were isolated from omentum tissue conditioned media and the effect of omentum-derived exosomes on EOC evaluated. Exosomal microRNA (miRNA) sequencing was used to identify miRNAs abundant in omental exosomes and EOC cells were transfected with highly abundant miRNAs miR-21, let-7b, miR-16 and miR-92a. RESULTS We demonstrate the capacity of adipocytes to induce an invasive phenotype in EOC populations through driving epithelial-to-mesenchymal transition (EMT). Exosomes secreted by omental tissue of ovarian cancer patients, as well as patients without malignancies, induced proliferation, upregulated EMT markers and reduced response to paclitaxel therapy in EOC cell lines and HGSOC patient samples. Analysis of the omentum-derived exosomes from cancer patients revealed highly abundant miRNAs that included miR-21, let-7b, miR-16 and miR-92a that promoted cancer cell proliferation and protection from chemotherapy when transfected in ovarian cancer cells. CONCLUSIONS These observations highlight the capacity of omental adipocytes to generate a pro-tumorigenic and chemoprotective microenvironment in ovarian cancer and other adipose-related malignancies.
Collapse
Affiliation(s)
- Michael Ellis Williams
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - David Howard
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Claire Donnelly
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Fereshteh Izadi
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Jezabel Garcia Parra
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Megan Pugh
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kerryn Lutchman-Sigh
- Department of Gynaecology Oncology, Singleton Hospital, Swansea Bay University Health Board, Swansea, Wales, SA2 8QA, UK
| | - Sadie Jones
- Department of Obstetrics and Gynaecology, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Lavinia Margarit
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
- Department of Obstetrics and Gynaecology, Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend, Wales, CF31 1RQ, UK
| | - Lewis Francis
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Deyarina Gonzalez
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
4
|
Mirabdali S, Ghafouri K, Farahmand Y, Gholizadeh N, Yazdani O, Esbati R, Hajiagha BS, Rahimi A. The role and function of autophagy through signaling and pathogenetic pathways and lncRNAs in ovarian cancer. Pathol Res Pract 2024; 253:154899. [PMID: 38061269 DOI: 10.1016/j.prp.2023.154899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/24/2024]
Abstract
Lysosomal-driven autophagy is a tightly controlled cellular catabolic process that breaks down and recycles broken or superfluous cell parts. It is involved in several illnesses, including cancer, and is essential in preserving cellular homeostasis. Autophagy prevents DNA mutation and cancer development by actively eliminating pro-oxidative mitochondria and protein aggregates from healthy cells. Oncosuppressor and oncogene gene mutations cause dysregulation of autophagy. Increased autophagy may offer cancer cells a pro-survival advantage when oxygen and nutrients are scarce and resistance to chemotherapy and radiation. This finding justifies the use of autophagy inhibitors in addition to anti-neoplastic treatments. Excessive autophagy levels can potentially kill cells. The diagnosis and treatment of ovarian cancer present many difficulties due to its complexity and heterogeneity. Understanding the role of autophagy, a cellular process involved in the breakdown and recycling of cellular components, in ovarian cancer has garnered increasing attention in recent years. Of particular note is the increasing amount of data indicating a close relationship between autophagy and ovarian cancer. Autophagy either promotes or restricts tumor growth in ovarian cancer. Dysregulation of autophagy signaling pathways in ovarian cancers can affect the development, metastasis, and response to tumor treatment. The precise mechanism underlying autophagy concerning ovarian cancer remains unclear, as does the role autophagy plays in ovarian carcinoma. In this review, we tried to encapsulate and evaluate current findings in investigating autophagy in ovarian cancer.
Collapse
Affiliation(s)
- Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Tehran East Branch, Islamic Azad University, Tehran, Iran.
| | - Asiye Rahimi
- Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Gupta J, Suliman M, Ali R, Margiana R, Hjazi A, Alsaab HO, Qasim MT, Hussien BM, Ahmed M. Double-edged sword role of miRNA-633 and miRNA-181 in human cancers. Pathol Res Pract 2023; 248:154701. [PMID: 37542859 DOI: 10.1016/j.prp.2023.154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rida Ali
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
6
|
Insight on Non-Coding RNAs from Biofluids in Ovarian Tumors. Cancers (Basel) 2023; 15:cancers15051539. [PMID: 36900328 PMCID: PMC10001105 DOI: 10.3390/cancers15051539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Ovarian tumors are the most frequent adnexal mass, raising diagnostic and therapeutic issues linked to a large spectrum of tumors, with a continuum from benign to malignant. Thus far, none of the available diagnostic tools have proven efficient in deciding strategy, and no consensus exists on the best strategy between "single test", "dual testing", "sequential testing", "multiple testing options" and "no testing". In addition, there is a need for prognostic tools such as biological markers of recurrence and theragnostic tools to detect women not responding to chemotherapy in order to adapt therapies. Non-coding RNAs are classified as small or long based on their nucleotide count. Non-coding RNAs have multiple biological functions such as a role in tumorigenesis, gene regulation and genome protection. These ncRNAs emerge as new potential tools to differentiate benign from malignant tumors and to evaluate prognostic and theragnostic factors. In the specific setting of ovarian tumors, the goal of the present work is to offer an insight into the contribution of biofluid non-coding RNAs (ncRNA) expression.
Collapse
|
7
|
Lian C, Huang Y, Hu P, Cao Y, Zhang Z, Feng F, Zhang J. Nitidine Chloride Triggers Autophagy and Apoptosis of Ovarian Cancer Cells through Akt/mTOR Signaling Pathway. Curr Pharm Des 2023; 29:1524-1534. [PMID: 37317923 PMCID: PMC10494283 DOI: 10.2174/1381612829666230614154847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Ovarian cancer (OC) is the eighth most common cancer with high mortality in women worldwide. Currently, compounds derived from Chinese herbal medicine have provided a new angle for OC treatment. METHODS In this study, the cell proliferation and migration of ovarian cancer A2780/SKOV3 cells were inhibited after being treated with nitidine chloride (NC) by using MTT and Wound-Healing Assay. Flow cytometry analysis indicated NC-induced apoptosis of ovarian cancer cells, and AO and MDC staining showed that NC treatment induced the appearance of autophagosomes and autophagic lysosomes in ovarian cancer cells. RESULTS Through the autophagy inhibition experiment of chloroquine, it was proved that NC significantly further promoted apoptosis in ovarian cancer cells. Furthermore, NC proved that it could significantly decrease the expression of autophagy-related genes such as Akt, mTOR, P85 S6K, P70 S6K, and 4E-BP1. CONCLUSION Therefore, we suggest that NC could trigger autophagy and apoptosis of ovarian cancer cells through Akt/mTOR signaling pathway, and NC may potentially be a target for chemotherapy against ovarian cancer.
Collapse
Affiliation(s)
- Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Yinlong Huang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Ping Hu
- School of Biology and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Yuncheng Cao
- School of Biology and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Zhiqiang Zhang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Fan Feng
- School of Biology and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| |
Collapse
|
8
|
Ismail A, Abulsoud AI, Fathi D, Elshafei A, El-Mahdy HA, Elsakka EG, Aglan A, Elkhawaga SY, Doghish AS. The role of miRNAs in Ovarian Cancer Pathogenesis and Therapeutic Resistance - A Focus on Signaling Pathways Interplay. Pathol Res Pract 2022; 240:154222. [DOI: 10.1016/j.prp.2022.154222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|