1
|
Alfaez A, Christopher MW, Garrett TJ, Papp B. Analysis of Metabolomic Reprogramming Induced by Infection with Kaposi's Sarcoma-Associated Herpesvirus Using Untargeted Metabolomic Profiling. Int J Mol Sci 2025; 26:3109. [PMID: 40243754 PMCID: PMC11988554 DOI: 10.3390/ijms26073109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus. There are no vaccines or antiviral therapies for KSHV. Identifying the cellular metabolic pathways that KSHV manipulates can broaden the knowledge of how these pathways contribute to sustaining lytic infection, which can be targeted in future therapies to prevent viral spread. In this study, we performed an untargeted metabolomic analysis of KSHV infected telomerase-immortalized gingival keratinocytes (TIGK) cells at 4 h post-infection compared to mock-infected cells. We found that the metabolomic landscape of KSHV-infected TIGK differed from that of the mock. Specifically, a total of 804 differential metabolic features were detected in the two groups, with 741 metabolites that were significantly upregulated, and 63 that were significantly downregulated in KSHV-infected TIGK cells. The differential metabolites included ornithine, arginine, putrescine, dimethylarginine, orotate, glutamate, and glutamine, and were associated with pathways, such as the urea cycle, polyamine synthesis, dimethylarginine synthesis, and de novo pyrimidine synthesis. Overall, our untargeted metabolomics analysis revealed that KSHV infection results in marked rapid alterations in the metabolic profile of the oral epithelial cells. We envision that a subset of these rapid metabolic changes might result in altered cellular functions that can promote viral lytic replication and transmission in the oral cavity.
Collapse
Affiliation(s)
- Abdulkarim Alfaez
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA;
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | | | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA;
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA;
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Informatics Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Reiss JD, Mataraso SJ, Holzapfel LF, Marić I, Kasowski MM, Martin CR, Long JZ, Stevenson DK, Shaw GM. Applications of Metabolomics and Lipidomics in the Neonatal Intensive Care Unit. Neoreviews 2025; 26:e100-e114. [PMID: 39889768 DOI: 10.1542/neo.26-2-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/30/2024] [Indexed: 02/03/2025]
Abstract
The metabolome and lipidome comprise the thousands of molecular compounds in an organism. Molecular compounds consist of the upstream metabolic components of intracellular reactions or the byproducts of cellular pathways. Molecular and biochemical perturbations are associated with disorders in newborns and infants. The diagnosis of inborn errors of metabolism has relied on targeted metabolomics for several decades. Newer approaches offer the potential to identify novel biomarkers for common diseases of the newborn and infant. They may also elucidate novel predictive or diagnostic measures for a variety of health trajectories. Here, we review the relevance of the metabolome and lipidome for common disorders and highlight challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Jonathan D Reiss
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| | - Samson J Mataraso
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
- Metabolic Health Center, Stanford University, Palo Alto, California
| | - Lindsay F Holzapfel
- Department of Pediatrics, Division of Neonatology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ivana Marić
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| | - Maya M Kasowski
- Metabolic Health Center, Stanford University, Palo Alto, California
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Camilia R Martin
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - Jonathan Z Long
- Department of Pathology, Chemistry, Engineering and Medicine for Human Health, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
- Metabolic Health Center, Stanford University, Palo Alto, California
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
3
|
Huang H, Chen Y, Xu W, Cao L, Qian K, Bischof E, Kennedy BK, Pu J. Decoding aging clocks: New insights from metabolomics. Cell Metab 2025; 37:34-58. [PMID: 39657675 DOI: 10.1016/j.cmet.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/23/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Chronological age is a crucial risk factor for diseases and disabilities among older adults. However, individuals of the same chronological age often exhibit divergent biological aging states, resulting in distinct individual risk profiles. Chronological age estimators based on omics data and machine learning techniques, known as aging clocks, provide a valuable framework for interpreting molecular-level biological aging. Metabolomics is an intriguing and rapidly growing field of study, involving the comprehensive profiling of small molecules within the body and providing the ultimate genome-environment interaction readout. Consequently, leveraging metabolomics to characterize biological aging holds immense potential. The aim of this review was to provide an overview of metabolomics approaches, highlighting the establishment and interpretation of metabolomic aging clocks while emphasizing their strengths, limitations, and applications, and to discuss their underlying biological significance, which has the potential to drive innovation in longevity research and development.
Collapse
Affiliation(s)
- Honghao Huang
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Chen
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xu
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Cao
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Qian
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Evelyne Bischof
- University Hospital of Basel, Division of Internal Medicine, University of Basel, Basel, Switzerland; Shanghai University of Medicine and Health Sciences, College of Clinical Medicine, Shanghai, China
| | - Brian K Kennedy
- Health Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Aging Biomarker Consortium, China.
| |
Collapse
|
4
|
Kolvatzis C, Tsiantas K, Tsakiridis I, Christodoulou P, Cheilari A, Kalogiannidis I, Zoumpoulakis P, Athanasiadis A. Metabolomic biomarkers in amniotic fluid for early diagnosis of preterm birth and fetal growth restriction. Folia Med (Plovdiv) 2024; 66:717-720. [PMID: 39512027 DOI: 10.3897/folmed.66.e137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Preterm birth, affecting about 10% of pregnancies, significantly contributes to perinatal morbidity and mortality. Recent research indicates that metabolomics could enhance pregnancy outcomes and reduce costs by identifying biomarkers related to common pregnancy complications. Our team focused on analyzing amniotic fluid collected during the second trimester to identify potential biomarkers for preterm birth using 1H-NMR metabolomic analysis. We compared amniotic fluid samples from women who delivered prematurely with those who delivered at term. Multivariate principal component analysis revealed dimethylglycine, glucose, myo-inositol, and succinic acid as potential biomarkers for preterm birth prognosis and early diagnosis. Further analysis demonstrated distinct regulation patterns of these metabolites in relation to fetal growth centiles. For instance, dimethylglycine and glucose were upregulated in fetuses above the 20th centile, while citrate and succinate were upregulated in those below it. With Area Under the Curve (AUROC) values over 0.75 and p-values less than 0.05, these metabolites show promise as reliable biomarkers for predicting fetal growth restriction. This approach could significantly impact maternal-fetal medicine by facilitating early diagnosis and personalized interventions. Future research should focus on validating these findings in larger populations and exploring the underlying mechanisms of metabolite regulation.
Collapse
|
5
|
Bosco A, Altea V, Beretta P, Cacace R, Fanos V, Dessì A. Metabolomics in Children Cow's Milk Protein Allergy: Possible Contribution from a System Biology Approach? CHILDREN (BASEL, SWITZERLAND) 2024; 11:562. [PMID: 38790557 PMCID: PMC11120097 DOI: 10.3390/children11050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
One of the most frequent triggers of food anaphylaxis in pediatric age but also among the most common, early, and complex causes of childhood food allergy is cow's milk protein allergy (CMPA). The diagnostic course and management of this allergy is defined in a complex clinical picture due to several factors. First of all, the epidemiological data are not uniform, mainly as a consequence of the diagnostic methodology used in the various studies and the different age ranges covered. In addition, there is the complexity of terminology, since although CMPA traditionally refers to immune-mediated reactions to cow's milk, it is a term encompassing numerous clinical features with different symptoms and the requirement for specific treatments. Moreover, the differential diagnosis with other very frequent diseases, especially in the first year of life, such as gastro-esophageal reflux disease or colic, is still complex. This can result in misdiagnosis and incorrect treatment, with harmful health consequences and significant economic repercussions. In this context, the combination of several omics sciences together, which have already proved useful in clarifying the allergenicity of cow's milk proteins with greater precision, could improve the diagnostic tests currently in use through the identification of new, more specific, and precise biomarkers that make it possible to improve diagnostic accuracy and predict the patient's response to the various available treatments for the recovery of tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, 09124 Cagliari, Italy; (A.B.); (V.A.); (P.B.); (R.C.); (A.D.)
| | | |
Collapse
|
6
|
Bosco A, Piu C, Picciau ME, Pintus R, Fanos V, Dessì A. Metabolomics in NEC: An Updated Review. Metabolites 2023; 14:14. [PMID: 38248817 PMCID: PMC10821135 DOI: 10.3390/metabo14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Necrotizing enterocolitis (NEC) represents the most common and lethal acute gastrointestinal emergency of newborns, mainly affecting those born prematurely. It can lead to severe long-term sequelae and the mortality rate is approximately 25%. Furthermore, the diagnosis is difficult, especially in the early stages, due to multifactorial pathogenesis and complex clinical pictures with mild and non-specific symptoms. In addition, the existing tests have poor diagnostic value. Thus, the scientific community has been focusing its attention on the identification of non-invasive biomarkers capable of prediction, early diagnosis and discriminating NEC from other intestinal diseases in order to intervene early and block the progression of the pathology. In this regard, the use of "omics" technologies, especially metabolomics and microbiomics, could be a fundamental synergistic strategy to study the pathophysiology of NEC. In addition, a deeper knowledge of the microbiota-host cross-talk can clarify the metabolic pathways potentially involved in the pathology, allowing for the identification of specific biomarkers. In this article, the authors analyze the state-of-the-art concerning the application of metabolomics and microbiota analysis to investigate this pathology and discuss the future possibility of the metabolomic fingerprint of patients for diagnostic purposes.
Collapse
Affiliation(s)
| | | | | | | | | | - Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, 09124 Cagliari, Italy; (A.B.); (C.P.); (M.E.P.); (R.P.); (V.F.)
| |
Collapse
|
7
|
Siracusano M, Arturi L, Riccioni A, Noto A, Mussap M, Mazzone L. Metabolomics: Perspectives on Clinical Employment in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:13404. [PMID: 37686207 PMCID: PMC10487559 DOI: 10.3390/ijms241713404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Precision medicine is imminent, and metabolomics is one of the main actors on stage. We summarize and discuss the current literature on the clinical application of metabolomic techniques as a possible tool to improve early diagnosis of autism spectrum disorder (ASD), to define clinical phenotypes and to identify co-occurring medical conditions. A review of the current literature was carried out after PubMed, Medline and Google Scholar were consulted. A total of 37 articles published in the period 2010-2022 was included. Selected studies involve as a whole 2079 individuals diagnosed with ASD (1625 males, 394 females; mean age of 10, 9 years), 51 with other psychiatric comorbidities (developmental delays), 182 at-risk individuals (siblings, those with genetic conditions) and 1530 healthy controls (TD). Metabolomics, reflecting the interplay between genetics and environment, represents an innovative and promising technique to approach ASD. The metabotype may mirror the clinical heterogeneity of an autistic condition; several metabolites can be expressions of dysregulated metabolic pathways thus liable of leading to clinical profiles. However, the employment of metabolomic analyses in clinical practice is far from being introduced, which means there is a need for further studies for the full transition of metabolomics from clinical research to clinical diagnostic routine.
Collapse
Affiliation(s)
- Martina Siracusano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (A.R.); (L.M.)
| | - Lucrezia Arturi
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (A.R.); (L.M.)
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (A.R.); (L.M.)
| | - Antonio Noto
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy
| | - Michele Mussap
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy
| | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (A.R.); (L.M.)
- Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| |
Collapse
|
8
|
Zhang X, Zhao G, Ma J, Tao F, Pan CW, Zhang F, Wang Y, Yang W, Xiang Y, Wang X, Tian Y, Yang J, Du W, Zhou Y. Design, methodology, and baseline of eastern China student health and wellbeing cohort study. Front Public Health 2023; 11:1100227. [PMID: 37181702 PMCID: PMC10173362 DOI: 10.3389/fpubh.2023.1100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/28/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose To describe the study design, methodology, and cohort profile of the Eastern China Student Health and Wellbeing Cohort Study. The cohort baseline includes (1) targeted disease (myopia, obesity, elevated blood pressure, and mental health) and (2) exposures (individual behaviors, environment, metabolomics, and gene and epigenetics). Participants Annual physical examination, questionnaire-based survey, and bio-sampling have been carried out in the study population. In the first stage (2019-2021), a total of 6,506 students in primary schools are enrolled in the cohort study. Findings to date Of all the cohort participants, the ratio of male to female is 1.16 among a total of 6,506 student participants, of which 2,728 (41.9%) students are from developed regions and 3,778 (58.1%) students are from developing regions. The initial age of observation is 6-10 years, and they will be observed until they graduate from high school (>18 years of age). (1) Targeted diseases: The growth rates of myopia, obesity, and high blood pressure vary by regions, and for developed regions, the prevalence of myopia, obesity, and elevated blood pressure is 29.2%, 17.4%, and 12.6% in the first year, respectively. For developing regions, the prevalence of myopia, obesity, and elevated blood pressure is 22.3%, 20.7%, and 17.1% in the first year, respectively. The average score of CES-D is 12.9 ± 9.8 in developing regions/11.6 ± 9.0 in developed regions. (2) Exposures: ① The first aspect of individual behaviors: the questionnaire topics include diet, physical exercise, bullying, and family. ② The second aspect of environment and metabolomics: the average desk illumination is 430.78 (355.84-611.56) LX, and the average blackboard illumination is 365.33 (286.83-516.84) LX. Metabolomics like bisphenol A in the urine is 0.734 ng/ml. ③ The third aspect of gene and epigenetics: SNPs (rs524952, rs524952, rs2969180, rs2908972, rs10880855, rs1939008, rs9928731, rs72621438, rs9939609, rs8050136 and so on) are detected. Future plans Eastern China Student Health and Wellbeing Cohort Study is aiming to focus on the development of student-targeted diseases. For children with student common diseases, this study will focus on targeted disease-related indicators. For children without targeted disease, this study aims to explore the longitudinal relationship between exposure factors and outcomes, excluding baseline confounding factors. Exposure factors include three aspects: (1) individual behaviors, (2) environment and metabolomics, and (3) gene and epigenetics. The cohort study will continue until 2035.
Collapse
Affiliation(s)
- Xiyan Zhang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fengyun Zhang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yan Wang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wenyi Yang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yao Xiang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xin Wang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yunfan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Du
- School of Public Health, Southeast University, Nanjing, China
| | - Yonglin Zhou
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | | |
Collapse
|
9
|
Kolvatzis C, Tsakiridis I, Kalogiannidis IA, Tsakoumaki F, Kyrkou C, Dagklis T, Daniilidis A, Michaelidou AM, Athanasiadis A. Utilizing Amniotic Fluid Metabolomics to Monitor Fetal Well-Being: A Narrative Review of the Literature. Cureus 2023; 15:e36986. [PMID: 37139280 PMCID: PMC10150141 DOI: 10.7759/cureus.36986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Fetal and perinatal periods are critical phases for long-term development. Early diagnosis of maternal complications is challenging due to the great complexity of these conditions. In recent years, amniotic fluid has risen in a prominent position in the latest efforts to describe and characterize prenatal development. Amniotic fluid may provide real-time information on fetal development and metabolism throughout pregnancy as substances from the placenta, fetal skin, lungs, gastric fluid, and urine are transferred between the mother and the fetus. Applying metabolomics to monitor fetal well-being, in such a context, could help in the understanding, diagnosis, and treatment of these conditions and is a promising area of research. This review shines a spotlight on recent amniotic fluid metabolomics studies and their methods as an interesting tool for the assessment of many conditions and the identification of biomarkers. Platforms in use, such as proton nuclear magnetic resonance (1H NMR) and ultra-high-performance liquid chromatography (UHPLC), have different merits, and a combinatorial approach could be valuable. Metabolomics may also be used in the quest for habitual diet-induced metabolic signals in amniotic fluid. Finally, analysis of amniotic fluid can provide information on exposure to exogenous substances by detecting the exact levels of metabolites carried to the fetus and associated metabolic effects.
Collapse
|
10
|
Cossu M, Pintus R, Zaffanello M, Mussap M, Serra F, Marcialis MA, Fanos V. Metabolomic Studies in Inborn Errors of Metabolism: Last Years and Future Perspectives. Metabolites 2023; 13:metabo13030447. [PMID: 36984887 PMCID: PMC10058105 DOI: 10.3390/metabo13030447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The inborn errors of metabolism (IEMs or Inherited Metabolic Disorders) are a heterogeneous group of diseases caused by a deficit of some specific metabolic pathways. IEMs may present with multiple overlapping symptoms, sometimes difficult delayed diagnosis and postponed therapies. Additionally, many IEMs are not covered in newborn screening and the diagnostic profiling in the metabolic laboratory is indispensable to reach a correct diagnosis. In recent years, Metabolomics helped to obtain a better understanding of pathogenesis and pathophysiology of IEMs, by validating diagnostic biomarkers, discovering new specific metabolic patterns and new IEMs itself. The expansion of Metabolomics in clinical biochemistry and laboratory medicine has brought these approaches in clinical practice as part of newborn screenings, as an exam for differential diagnosis between IEMs, and evaluation of metabolites in follow up as markers of severity or therapies efficacy. Lastly, several research groups are trying to profile metabolomics data in platforms to have a holistic vision of the metabolic, proteomic and genomic pathways of every single patient. In 2018 this team has made a review of literature to understand the value of Metabolomics in IEMs. Our review offers an update on use and perspectives of metabolomics in IEMs, with an overview of the studies available from 2018 to 2022.
Collapse
Affiliation(s)
- Marcello Cossu
- School of Pediatrics, University of Cagliari, 09042 Monserrato, Italy
| | - Roberta Pintus
- Department of Surgical Science, University of Cagliari, 09042 Monserrato, Italy
| | - Marco Zaffanello
- Department of Surgical Science, Dentistry, Gynecology and Pediatrics, University of Verona, 37100 Verona, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Fabiola Serra
- School of Pediatrics, University of Cagliari, 09042 Monserrato, Italy
| | | | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgery, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
11
|
Childhood Obesity and the Cryptic Language of the Microbiota: Metabolomics’ Upgrading. Metabolites 2023; 13:metabo13030414. [PMID: 36984854 PMCID: PMC10052538 DOI: 10.3390/metabo13030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The growing obesity epidemic in childhood is increasingly concerning for the related physical and psychological consequences, with a significant impact on health care costs in both the short and the long term. Nonetheless, the scientific community has not yet completely clarified the complex metabolic mechanisms underlying body weight alterations. In only a small percentage of cases, obesity is the result of endocrine, monogenic, or syndromic causes, while in much more cases, lifestyle plays a crucial role in obesity development. In this context, the pediatric age appears to be of considerable importance as prevention strategies together with early intervention can represent important therapeutic tools not only to counteract the comorbidities that increasingly affect children but also to hinder the persistence of obesity in adulthood. Although evidence in the literature supporting the alteration of the microbiota as a critical factor in the etiology of obesity is abundant, it is not yet fully defined and understood. However, increasingly clear evidence is emerging regarding the existence of differentiated metabolic profiles in obese children, with characteristic metabolites. The identification of specific pathology-related biomarkers and the elucidation of the altered metabolic pathways would therefore be desirable in order to clarify aspects that are still poorly understood, such as the consequences of the interaction between the host, the diet, and the microbiota. In fact, metabolomics can characterize the biological behavior of a specific individual in response to external stimuli, offering not only an eventual effective screening and prevention strategy but also the possibility of evaluating adherence and response to dietary intervention.
Collapse
|
12
|
Data harnessing to nurture the human mind for a tailored approach to the child. Pediatr Res 2023; 93:357-365. [PMID: 36180585 DOI: 10.1038/s41390-022-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
Big data in pediatrics is an ocean of structured and unstructured data. Big data analysis helps to dive into the ocean of data to filter out information that can guide pediatricians in their decision making, precision diagnosis, and targeted therapy. In addition, big data and its analysis have helped in the surveillance, prevention, and performance of the health system. There has been a considerable amount of work in pediatrics that we have tried to highlight in this review and some of it has been already incorporated into the health system. Work in specialties of pediatrics is still forthcoming with the creation of a common data model and amalgamation of the huge "omics" database. The physicians entrusted with the care of children must be aware of the outcome so that they can play a role to ensure that big data algorithms have a clinically relevant effect in improving the health of their patients. They will apply the outcome of big data and its analysis in patient care through clinical algorithms or with the help of embedded clinical support alerts from the electronic medical records. IMPACT: Big data in pediatrics include structured, unstructured data, waveform data, biological, and social data. Big data analytics has unraveled significant information from these databases. This is changing how pediatricians will look at the body of available evidence and translate it into their clinical practice. Data harnessed so far is implemented in certain fields while in others it is in the process of development to become a clinical adjunct to the physician. Common databases are being prepared for future work. Diagnostic and prediction models when incorporated into the health system will guide the pediatrician to a targeted approach to diagnosis and therapy.
Collapse
|
13
|
Metabolomic profiling of intrauterine growth-restricted preterm infants: a matched case-control study. Pediatr Res 2022; 93:1599-1608. [PMID: 36085367 DOI: 10.1038/s41390-022-02292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The biochemical variations occurring in intrauterine growth restriction (IUGR), when a fetus is unable to achieve its genetically determined potential, are not fully understood. The aim of this study is to compare the urinary metabolomic profile between IUGR and non-IUGR very preterm infants to investigate the biochemical adaptations of neonates affected by early-onset-restricted intrauterine growth. METHODS Neonates born <32 weeks of gestation admitted to neonatal intensive care unit (NICU) were enrolled in this prospective matched case-control study. IUGR was diagnosed by an obstetric ultra-sonographer and all relevant clinical data during NICU stay were captured. For each subject, a urine sample was collected within 48 h of life and underwent untargeted metabolomic analysis using mass spectrometry ultra-performance liquid chromatography. Data were analyzed using multivariate and univariate statistical analyses. RESULTS Among 83 enrolled infants, 15 IUGR neonates were matched with 19 non-IUGR controls. Untargeted metabolomic revealed evident clustering of IUGR neonates versus controls showing derangements of pathways related to tryptophan and histidine metabolism and aminoacyl-tRNA and steroid hormones biosynthesis. CONCLUSIONS Neonates with IUGR showed a distinctive urinary metabolic profile at birth. Although results are preliminary, metabolomics is proving to be a promising tool to explore biochemical pathways involved in this disease. IMPACT Very preterm infants with intrauterine growth restriction (IUGR) have a distinctive urinary metabolic profile at birth. Metabolism of glucocorticoids, sexual hormones biosynthesis, tryptophan-kynurenine, and methionine-cysteine pathways seem to operate differently in this sub-group of neonates. This is the first metabolomic study investigating adaptations exclusively in extremely and very preterm infants affected by early-onset IUGR. New knowledge on metabolic derangements in IUGR may pave the ways to further, more tailored research from a perspective of personalized medicine.
Collapse
|
14
|
Zhu Y, Chew KY, Wu M, Karawita AC, McCallum G, Steele LE, Yamamoto A, Labzin LI, Yarlagadda T, Khromykh AA, Wang X, Sng JDJ, Stocks CJ, Xia Y, Kollmann TR, Martino D, Joensuu M, Meunier FA, Balistreri G, Bielefeldt-Ohmann H, Bowen AC, Kicic A, Sly PD, Spann KM, Short KR. Ancestral SARS-CoV-2, but not Omicron, replicates less efficiently in primary pediatric nasal epithelial cells. PLoS Biol 2022; 20:e3001728. [PMID: 35913989 PMCID: PMC9371332 DOI: 10.1371/journal.pbio.3001728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/11/2022] [Accepted: 06/24/2022] [Indexed: 01/02/2023] Open
Abstract
Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections. Whether this is the result of widespread adult vaccination or fundamental changes in the biology of SARS-CoV-2 remain to be determined. Here, we use primary nasal epithelial cells (NECs) from children and adults, differentiated at an air-liquid interface to show that the ancestral SARS-CoV-2 replicates to significantly lower titers in the NECs of children compared to those of adults. This was associated with a heightened antiviral response to SARS-CoV-2 in the NECs of children. Importantly, the Delta variant also replicated to significantly lower titers in the NECs of children. This trend was markedly less pronounced in the case of Omicron. It is also striking to note that, at least in terms of viral RNA, Omicron replicated better in pediatric NECs compared to both Delta and the ancestral virus. Taken together, these data show that the nasal epithelium of children supports lower infection and replication of ancestral SARS-CoV-2, although this may be changing as the virus evolves.
Collapse
Affiliation(s)
- Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Melanie Wu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Anjana C. Karawita
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Georgina McCallum
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Lauren E. Steele
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ayaho Yamamoto
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Larisa I. Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tejasri Yarlagadda
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Xiaohui Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Claudia J. Stocks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yao Xia
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Tobias R. Kollmann
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - David Martino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Giuseppe Balistreri
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Asha C. Bowen
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children’s Hospital, Nedlands, Perth, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- Occupation and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter D. Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Kirsten M. Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Methods to Improve Molecular Diagnosis in Genomic Cold Cases in Pediatric Neurology. Genes (Basel) 2022; 13:genes13020333. [PMID: 35205378 PMCID: PMC8871714 DOI: 10.3390/genes13020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
During the last decade, genetic testing has emerged as an important etiological diagnostic tool for Mendelian diseases, including pediatric neurological conditions. A genetic diagnosis has a considerable impact on disease management and treatment; however, many cases remain undiagnosed after applying standard diagnostic sequencing techniques. This review discusses various methods to improve the molecular diagnostic rates in these genomic cold cases. We discuss extended analysis methods to consider, non-Mendelian inheritance models, mosaicism, dual/multiple diagnoses, periodic re-analysis, artificial intelligence tools, and deep phenotyping, in addition to integrating various omics methods to improve variant prioritization. Last, novel genomic technologies, including long-read sequencing, artificial long-read sequencing, and optical genome mapping are discussed. In conclusion, a more comprehensive molecular analysis and a timely re-analysis of unsolved cases are imperative to improve diagnostic rates. In addition, our current understanding of the human genome is still limited due to restrictions in technologies. Novel technologies are now available that improve upon some of these limitations and can capture all human genomic variation more accurately. Last, we recommend a more routine implementation of high molecular weight DNA extraction methods that is coherent with the ability to use and/or optimally benefit from these novel genomic methods.
Collapse
|
16
|
Dessì A, Tognazzi C, Bosco A, Pintus R, Fanos V. Metabolomic profiles and microbiota of GDM offspring: The key for future perspective? Front Pediatr 2022; 10:941800. [PMID: 36275053 PMCID: PMC9579340 DOI: 10.3389/fped.2022.941800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Gestational diabetes mellitus (GDM), or any degree of glucose intolerance recognized for the first time during pregnancy, is one of the diseases that most frequently aggravates the course of gestation. Missed or late diagnosis and inadequate treatment are associated with high maternal and fetal morbidity, with possible short- and long-term repercussions. Estimates on the prevalence of GDM are alarming and increasing by about 30% in the last 10-20 years. In addition, there is the negative influence of the SARS-CoV-2 emergency on the glycemic control of pregnant women, making the matter increasingly topical. To date, knowledge on the metabolic maturation of newborns is still incomplete. However, in light of the considerable progress of the theory of "developmental origins of health and disease," the relevant role of the intrauterine environment cannot be overlooked. In fact, due to the high plasticity of the early stages of development, some detrimental metabolic alterations during fetal growth, including maternal hyperglycemia, are associated with a higher incidence of chronic diseases in adult life. In this context, metabolomic analysis which allows to obtain a detailed phenotypic portrait through the dynamic detection of all metabolites in cells, tissues and different biological fluids could be very useful for the early diagnosis and prevention of complications. Indeed, if the diagnostic timing is optimized through the identification of specific metabolites, the detailed understanding of the altered metabolic pathway could also allow better management and more careful monitoring, also from a nutritional profile, of the more fragile children. In this context, a further contribution derives from the analysis of the intestinal microbiota, the main responsible for the fecal metabolome, given its alteration in pregnancies complicated by GDM and the possibility of transmission to offspring. The purpose of this review is to analyze the available data regarding the alterations in the metabolomic profile and microbiota of the offspring of mothers with GDM in order to highlight future prospects for reducing GDM-related complications in children of mothers affected by this disorder.
Collapse
Affiliation(s)
- Angelica Dessì
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliera Universitaria (AOU) Cagliari, University of Cagliari, Cagliari, Italy
| | - Chiara Tognazzi
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliera Universitaria (AOU) Cagliari, University of Cagliari, Cagliari, Italy
| | - Alice Bosco
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliera Universitaria (AOU) Cagliari, University of Cagliari, Cagliari, Italy
| | - Roberta Pintus
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliera Universitaria (AOU) Cagliari, University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliera Universitaria (AOU) Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
17
|
Bardanzellu F, Fanos V. Metabolomics, Microbiomics, Machine learning during the COVID-19 pandemic. Pediatr Allergy Immunol 2022; 33 Suppl 27:86-88. [PMID: 35080309 PMCID: PMC9303466 DOI: 10.1111/pai.13640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 01/22/2023]
Abstract
COVID-19 pandemic has a significant impact worldwide, from the point of view of public health, social, and economic aspects. The correct strategies of diagnosis and global management are still under debate. In the next future, we firmly believe that combining the so-called 3 M's (metabolomics, microbiomics, and machine learning [artificial intelligence]) will be the optimal, accurate tool for the early diagnosis of COVID-19 subjects, risk assessment and stratification, patient management, and decision-making. If the currently available preliminary data obtain further confirms, through future studies on larger samples, simple biomarkers will provide predictive models for data analysis and interpretation, allowing a step toward personalized holistic medicine.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Caffarelli C, Santamaria F, Procaccianti M, Piro E, delle Cave V, Borrelli M, Santoro A, Grassi F, Bernasconi S, Corsello G. Developments in pediatrics in 2020: choices in allergy, autoinflammatory disorders, critical care, endocrinology, genetics, infectious diseases, microbiota, neonatology, neurology, nutrition, ortopedics, respiratory tract illnesses and rheumatology. Ital J Pediatr 2021; 47:232. [PMID: 34876198 PMCID: PMC8650733 DOI: 10.1186/s13052-021-01184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
In this article, we describe the advances in the field of pediatrics that have been published in the Italian Journal of Pediatrics in 2020. We report progresses in understanding allergy, autoinflammatory disorders, critical care, endocrinology, genetics, infectious diseases, microbiota, neonatology, neurology, nutrition, orthopedics, respiratory tract illnesses, rheumatology in childhood.
Collapse
Affiliation(s)
- Carlo Caffarelli
- Clinica Pediatrica, Department of Medicine and Surgery, Azienda Ospedaliera-Universitaria, University of Parma, Via Gramsci, 14 Parma, Italy
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Michela Procaccianti
- Clinica Pediatrica, Department of Medicine and Surgery, Azienda Ospedaliera-Universitaria, University of Parma, Via Gramsci, 14 Parma, Italy
| | - Ettore Piro
- Department of Sciences for Health Promotion and Mother and Child Care ‘’G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Valeria delle Cave
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Melissa Borrelli
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Angelica Santoro
- Clinica Pediatrica, Department of Medicine and Surgery, Azienda Ospedaliera-Universitaria, University of Parma, Via Gramsci, 14 Parma, Italy
| | - Federica Grassi
- Clinica Pediatrica, Department of Medicine and Surgery, Azienda Ospedaliera-Universitaria, University of Parma, Via Gramsci, 14 Parma, Italy
| | | | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care ‘’G. D’Alessandro”, University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
Dessì A, Bosco A, Pintus R, Picari G, Mazza S, Fanos V. Epigenetics and Modulations of Early Flavor Experiences: Can Metabolomics Contribute to Prevention during Weaning? Nutrients 2021; 13:nu13103351. [PMID: 34684350 PMCID: PMC8539480 DOI: 10.3390/nu13103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The significant increase in chronic non-communicable diseases has changed the global epidemiological landscape. Among these, obesity is the most relevant in the pediatric field. This has pushed the world of research towards a new paradigm: preventive and predictive medicine. Therefore, the window of extreme plasticity that characterizes the first stage of development cannot be underestimated. In this context, nutrition certainly plays a primary role, being one of the most important epigenetic modulators known to date. Weaning, therefore, has a crucial role that must be analyzed far beyond the simple achievement of nutritional needs. Furthermore, the taste experience and the family context are fundamental for future food choices and can no longer be underestimated. The use of metabolomics allows, through the recognition of early disease markers and food-specific metabolites, the planning of an individualized and precise diet. In addition, the possibility of identifying particular groups of subjects at risk and the careful monitoring of adherence to dietary therapy may represent the basis for this change.
Collapse
|
20
|
Hodge SV, Mickiewicz B, Lau M, Jenne CN, Thompson GC. Novel molecular biomarkers and diagnosis of acute appendicitis in children. Biomark Med 2021; 15:1055-1065. [PMID: 34284638 DOI: 10.2217/bmm-2021-0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Reliable and efficient diagnosis of pediatric appendicitis is essential for the establishment of a clinical management plan and improvement of patient outcomes. Current strategies used to diagnose a child presenting with a suspected appendicitis include laboratory studies, clinical scores and diagnostic imaging. Although these modalities work in conjunction with each other, one optimal diagnostic strategy has yet to be agreed upon. The recent introduction of precision medicine techniques such as genomics, transcriptomics, proteomics and metabolomics has increased both the diagnostic sensitivity and specificity of appendicitis. Using these novel strategies, the integration of precision medicine into clinical practice via point-of-care technologies is a plausible future. These technologies would assist in the screening, diagnosis and prognosis of pediatric appendicitis.
Collapse
Affiliation(s)
- Sarah Vl Hodge
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Beata Mickiewicz
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Matthew Lau
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Graham C Thompson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
21
|
O'Connor KM, Ashoori M, Dias ML, Dempsey EM, O'Halloran KD, McDonald FB. Influence of innate immune activation on endocrine and metabolic pathways in infancy. Am J Physiol Endocrinol Metab 2021; 321:E24-E46. [PMID: 33900849 DOI: 10.1152/ajpendo.00542.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prematurity is the leading cause of neonatal morbidity and mortality worldwide. Premature infants often require extended hospital stays, with increased risk of developing infection compared with term infants. A picture is emerging of wide-ranging deleterious consequences resulting from innate immune system activation in the newborn infant. Those who survive infection have been exposed to a stimulus that can impose long-lasting alterations into later life. In this review, we discuss sepsis-driven alterations in integrated neuroendocrine and metabolic pathways and highlight current knowledge gaps in respect of neonatal sepsis. We review established biomarkers for sepsis and extend the discussion to examine emerging findings from human and animal models of neonatal sepsis that propose novel biomarkers for early identification of sepsis. Future research in this area is required to establish a greater understanding of the distinct neonatal signature of early and late-stage infection, to improve diagnosis, curtail inappropriate antibiotic use, and promote precision medicine through a biomarker-guided empirical and adjunctive treatment approach for neonatal sepsis. There is an unmet clinical need to decrease sepsis-induced morbidity in neonates, to limit and prevent adverse consequences in later life and decrease mortality.
Collapse
Affiliation(s)
- K M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - M Ashoori
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - M L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - E M Dempsey
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, School of Medicine, College of Medicine and Health, Cork University Hospital, Wilton, Cork, Ireland
| | - K D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - F B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Bardanzellu F, Puddu M, Fanos V. Breast Milk and COVID-19: From Conventional Data to "Omics" Technologies to Investigate Changes Occurring in SARS-CoV-2 Positive Mothers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5668. [PMID: 34070662 PMCID: PMC8199242 DOI: 10.3390/ijerph18115668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022]
Abstract
In this context of COVID-19 pandemic, great interest has been aroused by the potential maternal transmission of SARS-CoV-2 by transplacental route, during delivery, and, subsequently, through breastfeeding. Some open questions still remain, especially regarding the possibility of finding viable SARS-CoV-2 in breast milk (BM), although this is not considered a worrying route of transmission. However, in BM, it was pointed out the presence of antibodies against SARS-CoV-2 and other bioactive components that could protect the infant from infection. The aim of our narrative review is to report and discuss the available literature on the detection of anti-SARS-CoV-2 antibodies in BM of COVID-19 positive mothers, and we discussed the unique existing study investigating BM of SARS-CoV-2 positive mothers through metabolomics, and the evidence regarding microbiomics BM variation in COVID-19. Moreover, we tried to correlate metabolomics and microbiomics findings in BM of positive mothers with potential effects on breastfed infants metabolism and health. To our knowledge, this is the first review summarizing the current knowledge on SARS-CoV-2 effects on BM, resuming both "conventional data" (antibodies) and "omics technologies" (metabolomics and microbiomics).
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4500, 09042 Monserrato, Italy; (M.P.); (V.F.)
| | | | | |
Collapse
|
23
|
Beck LC, Granger CL, Masi AC, Stewart CJ. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev Proteomics 2021; 18:247-259. [PMID: 33896313 DOI: 10.1080/14789450.2021.1922278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: At birth, the gastrointestinal (GI) tract is colonized by a complex community of microorganisms, forming the basis of the gut microbiome. The gut microbiome plays a fundamental role in host health, disorders of which can lead to an array of GI diseases, both short and long term. Pediatric GI diseases are responsible for significant morbidity and mortality, but many remain poorly understood. Recent advancements in high-throughput technologies have enabled deeper profiling of GI morbidities. Technologies, such as metagenomics, transcriptomics, proteomics and metabolomics, have already been used to identify associations with specific pathologies, and highlight an exciting area of research. However, since these diseases are often complex and multifactorial by nature, reliance on a single experimental approach may not capture the true biological complexity. Therefore, multi-omics aims to integrate singular omic data to further enhance our understanding of disease.Areas covered: This review will discuss and provide an overview of the main omic technologies that are used to study complex GI pathologies in early life.Expert opinion: Multi-omic technologies can help to unravel the complexities of several diseases during early life, aiding in biomarker discovery and enabling the development of novel therapeutics and augment predictive models.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Claire L Granger
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Newcastle Neonatal Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
24
|
Debuf MJ, Carkeek K, Piersigilli F. A Metabolomic Approach in Search of Neurobiomarkers of Perinatal Asphyxia: A Review of the Current Literature. Front Pediatr 2021; 9:674585. [PMID: 34249811 PMCID: PMC8267248 DOI: 10.3389/fped.2021.674585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Perinatal asphyxia and the possible sequelae of hypoxic-ischemic encephalopathy (HIE), are associated with high morbidity and mortality rates. The use of therapeutic hypothermia (TH) commencing within the first 6 h of life-currently the only treatment validated for the management of HIE-has been proven to reduce the mortality rate and disability seen at follow up at 18 months. Although there have been attempts to identify neurobiomarkers assessing the severity levels in HIE; none have been validated in clinical use to date, and the lack thereof limits the optimal treatment for these vulnerable infants. Metabolomics is a promising field of the "omics technologies" that may: identify neurobiomarkers, help improve diagnosis, identify patients prone to developing HIE, and potentially improve targeted neuroprotection interventions. This review focuses on the current evidence of metabolomics, a novel tool which may prove to be a useful in the diagnosis, management and treatment options for this multifactorial complex disease. Some of the most promising metabolites analyzed are the group of acylcarnitines: Hydroxybutyrylcarnitine (Malonylcarnitine) [C3-DC (C4-OH)], Tetradecanoylcarnitine [C14], L-Palmitoylcarnitine [C16], Hexadecenoylcarnitine [C16:1], Stearoylcarnitine [C18], and Oleoylcarnitine [C18:1]. A metabolomic "fingerprint" or "index," made up of 4 metabolites (succinate × glycerol/(β-hydroxybutyrate × O-phosphocholine)), seems promising in identifying neonates at risk of developing severe HIE.
Collapse
Affiliation(s)
- Marie Julie Debuf
- Division of Neonatology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Bruxelles, Belgium
| | - Katherine Carkeek
- Division of Neonatology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Bruxelles, Belgium
| | - Fiammetta Piersigilli
- Division of Neonatology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
25
|
Roberto M, Marta L. Hypothesis and preliminary results on the role of MUC1 and MUC2 in relationship to autism etiology. J Pediatr Neurosci 2021. [DOI: 10.4103/jpn.jpn_224_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Keij FM, Achten NB, Tramper-Stranders GA, Allegaert K, van Rossum AMC, Reiss IKM, Kornelisse RF. Stratified Management for Bacterial Infections in Late Preterm and Term Neonates: Current Strategies and Future Opportunities Toward Precision Medicine. Front Pediatr 2021; 9:590969. [PMID: 33869108 PMCID: PMC8049115 DOI: 10.3389/fped.2021.590969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections remain a major cause of morbidity and mortality in the neonatal period. Therefore, many neonates, including late preterm and term neonates, are exposed to antibiotics in the first weeks of life. Data on the importance of inter-individual differences and disease signatures are accumulating. Differences that may potentially influence treatment requirement and success rate. However, currently, many neonates are treated following a "one size fits all" approach, based on general protocols and standard antibiotic treatment regimens. Precision medicine has emerged in the last years and is perceived as a new, holistic, way of stratifying patients based on large-scale data including patient characteristics and disease specific features. Specific to sepsis, differences in disease susceptibility, disease severity, immune response and pharmacokinetics and -dynamics can be used for the development of treatment algorithms helping clinicians decide when and how to treat a specific patient or a specific subpopulation. In this review, we highlight the current and future developments that could allow transition to a more precise manner of antibiotic treatment in late preterm and term neonates, and propose a research agenda toward precision medicine for neonatal bacterial infections.
Collapse
Affiliation(s)
- Fleur M Keij
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Niek B Achten
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gerdien A Tramper-Stranders
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Clinical Pharmacy, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annemarie M C van Rossum
- Division of Infectious Diseases, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - René F Kornelisse
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
27
|
Ferraro VA, Carraro S, Pirillo P, Gucciardi A, Poloniato G, Stocchero M, Giordano G, Zanconato S, Baraldi E. Breathomics in Asthmatic Children Treated with Inhaled Corticosteroids. Metabolites 2020; 10:metabo10100390. [PMID: 33003349 PMCID: PMC7600137 DOI: 10.3390/metabo10100390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND "breathomics" enables indirect analysis of metabolic patterns underlying a respiratory disease. In this study, we analyze exhaled breath condensate (EBC) in asthmatic children before (T0) and after (T1) a three-week course of inhaled beclomethasone dipropionate (BDP). METHODS we recruited steroid-naive asthmatic children for whom inhaled steroids were indicated and healthy children, evaluating asthma control, spirometry and EBC (in asthmatics at T0 and T1). A liquid-chromatography-mass-spectrometry untargeted analysis was applied to EBC and a mass spectrometry-based target analysis to urine samples. RESULTS metabolomic analysis discriminated asthmatic (n = 26) from healthy children (n = 16) at T0 and T1, discovering 108 and 65 features relevant for the discrimination, respectively. Searching metabolomics databases, seven putative biomarkers with a plausible role in asthma biochemical-metabolic processes were found. After BDP treatment, asthmatic children, in the face of an improved asthma control (p < 0.001) and lung function (p = 0.01), showed neither changes in EBC metabolomic profile nor in urinary endogenous steroid profile. CONCLUSIONS "breathomics" can discriminate asthmatic from healthy children, with prostaglandin, fatty acid and glycerophospholipid as putative markers. The three-week course of BDP-in spite of a significant clinical improvement-was not associated with changes in EBC metabolic arrangement and urinary steroid profile.
Collapse
Affiliation(s)
- Valentina Agnese Ferraro
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Correspondence:
| | - Silvia Carraro
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
| | - Paola Pirillo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Antonina Gucciardi
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Gabriele Poloniato
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Matteo Stocchero
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Giuseppe Giordano
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Stefania Zanconato
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
| | - Eugenio Baraldi
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| |
Collapse
|
28
|
Abstract
Neonatal sepsis is a major cause of worldwide morbidity and mortality. Blood cultures are considered the gold standard for diagnosis, but results are often delayed for 24 to 48 hours, and sensitivity, although improved by modern techniques, such as automated blood cultures, is variable and affected by the bacterial load. For these reasons, empiric antibiotics are frequently administered to avoid potential devastating consequences of untreated sepsis. Unnecessary antibiotic treatment has been associated with increased mortality and other adverse outcomes; therefore, antibiotics should be discontinued as soon as sepsis has been ruled out. Negative cultures pose a challenge to clinicians, who must distinguish between real sepsis and sepsis-like conditions (noninfectious or viral) which do not require antibiotics. Focal infections with negative blood cultures do require antibiotic treatment. Ultra-low bacteremia, primary or secondary to recent antibiotic exposure, is often associated with negative cultures, and some consider a short course of empiric antibiotics sufficient for clearing of bacteremia. Biomarkers and molecular methods based on polymerase chain reaction are important add-ons to clinical signs or symptoms for establishing the diagnosis of sepsis. Other promising future potential adjuvants are metabolomics. Antibiotic stewardship should be implemented to avoid or discontinue unnecessary treatment. Prevention of infection still remains the most important step for dealing with neonatal sepsis. KEY POINTS: · Blood cultures are the gold standard diagnosis of neonatal sepsis but sometimes may be negative.. · Other bacterial, viral, and noninfectious conditions may mimic sepsis, prompting initiation of empiric antibiotic treatments.. · Since a definition of neonatal sepsis is lacking, recognizing real septic episodes may be challenging..
Collapse
Affiliation(s)
- Ruben Bromiker
- Department of Neonatology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Elron
- Department of Pediatrics A, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Gil Klinger
- Department of Neonatology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Plasma metabolites in treatment-requiring retinopathy of prematurity: Potential biomarkers identified by metabolomics. Exp Eye Res 2020; 199:108198. [PMID: 32828955 DOI: 10.1016/j.exer.2020.108198] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
Abstract
Retinopathy of prematurity (ROP) is a potentially blinding condition caused by disruption of retinal vascularization and metabolism. This study aims to identify altered metabolites from plasma in patients with treatment-requiring ROP (TR-ROP) compared with controls. An untargeted metabolomics analysis was performed to reveal the metabolomic profiles of the plasma between TR-ROP patients (n = 38) and age-matched infants (n = 23). The Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the potential signaling pathways of the changed metabolites. Under positive ion mode, a total of 29 metabolites were significantly altered in plasma between TR-ROP patients and controls, and 23 altered metabolites were identified under negative ion mode. KEGG analyses indicated that "protein digestion and absorption" and "aminoacyl-tRNA biosynthesis" were the most enriched pathways of the altered metabolites. These results demonstrated that metabolomic profiles changed in plasma of TR-ROP, and the altered metabolites could be served as potential biomarkers for the diagnosis and prognosis of TR-ROP patients. Besides, the metabolomic profiles might provide clues to discover novel therapeutic strategies in ROP treatment.
Collapse
|
30
|
Bardanzellu F, Piras C, Atzei A, Neroni P, Fanos V. Early Urinary Metabolomics in Patent Ductus Arteriosus Anticipates the Fate: Preliminary Data. Front Pediatr 2020; 8:613749. [PMID: 33409262 PMCID: PMC7779766 DOI: 10.3389/fped.2020.613749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: In premature neonates, the persistence of hemodynamically significant ductus arteriosus (hsPDA) can be associated with short- and long-term consequences, impairing their outcome. The correct strategy of management for such condition is under debate, especially regarding contraindications and/or side effects. In recent years, metabolomics was applied to several perinatal, pediatric, and adult conditions to investigate potential biomarkers of disease, which have become useful for early diagnosis and/or therapeutic management. Aim of the Study: The main purpose of our exploratory study was to asses, through 1H-NMR metabolomics analysis of urinary samples at birth, possible metabolic pathways differentiating, with a significant predictive power, those preterm neonates who will subsequently develop hsPDA and neonates of comparable gestational age (GA) who will undergo spontaneous ductal closure or the persistence of an irrelevant PDA (no-hsPDA). Moreover, we investigated potential prenatal or perinatal clinical factors potentially influencing the development of hsPDA. Materials and Methods: We enrolled n = 35 preterm neonates with GA between 24 and 32 weeks; urinary samples were collected within the first 12 h of life. Patients were closely monitored regarding intensive care, respiratory support, fluid balance and administered drugs; an echocardiogram was performed at 48-72 h. Results: Our results reported a significant correlation between lower GA at birth and the development of hsPDA. Moreover, neonates with GA ≤ 30w developing hsPDA were characterized by lower Apgar scores at 1' and 5', higher rates of perinatal asphyxia, higher need of delivery room resuscitation and subsequent surfactant administration. Interestingly, metabolomics analysis at birth detected a clear separation between the 1H-NMR urinary spectra of subjects GA ≤ 30w not developing hsPDA (n = 19) and those of subjects born at GA ≤ 30w in which hsPDA was confirmed at 48-72 h of life (n = 5). Conclusions: This is the first study applying metabolomics to investigate the PDA condition. Although preliminary and conducted on a limited sample, our results reveal that metabolomics could be a promising tool in the early identification of hsPDA, potentially superior to the clinical or laboratory predictive tools explored to date and even to the clinical observations and correlations in our sample, through the detection of specific urinary metabolites.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliero-Universitaria and University of Cagliari, Cagliari, Italy
| | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandra Atzei
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliero-Universitaria and University of Cagliari, Cagliari, Italy
| | - Paola Neroni
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliero-Universitaria and University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Azienda Ospedaliero-Universitaria and University of Cagliari, Cagliari, Italy
| |
Collapse
|