1
|
Sachkova A, Andreas M, Heise D, Golinski M, Stephani C, Dickel S, Grimm C, Monsef I, Piechotta V, Skoetz N, Laudi S, Moerer O. Determination of positive end-expiratory pressure in COVID-19-related acute respiratory distress syndrome: A systematic review. EUROPEAN JOURNAL OF ANAESTHESIOLOGY AND INTENSIVE CARE 2024; 3:e0060. [PMID: 39917636 PMCID: PMC11798381 DOI: 10.1097/ea9.0000000000000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/22/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND The impact of high positive end-expiratory pressure (PEEP) ventilation and the optimization of PEEP titration in COVID-19-induced acute respiratory distress syndrome (ARDS) continues to be a subject of debate. In this systematic review, we investigated the effects of varying PEEP settings on patients with severe ARDS primarily resulting from COVID-19 (C-ARDS). OBJECTIVES Does higher or lower PEEP improve the outcomes in COVID-19 ARDS? Does individually titrated PEEP lead to better outcomes compared with PEEP set by standardised (low and high ARDS network PEEP tables) approaches? Does the individually set PEEP (best PEEP) differ from PEEP set according to the standardised approaches (low and high ARDS network PEEP tables)? DESIGN Systematic review of observational studies without metaanalysis. DATA SOURCES We performed an extensive systematic literature search in Cochrane COVID-19 Study Register (CCSR), PubMed, Embase.com, Web of Science Core Collection, World Health Organization COVID-19 Global literature on coronavirus disease, World Health Organization International Clinical Trials Registry Platform (ICTRP), medRxiv, Cochrane Central Register of Controlled Trials until 24/01/2024. ELIGIBILITY CRITERIA Ventilated adult patients (≧18 years) with C-ARDS. RESULTS We screened 16 026 records, evaluated 119 full texts, and included 12 studies (n = 1431 patients) in our final data synthesis, none of them being a randomised controlled trial. The heterogeneity of study procedures and populations did not allow conduction of a meta-analysis. The results of those studies that compared lower and higher PEEP strategies in C-ARDS were ambiguous pointing out either positive effects on oxygenation with high levels of PEEP, or negative changes in lung mechanics. CONCLUSION The available evidence does not provide sufficient guidance for recommendations on optimal PEEP settings in C-ARDS. In general, well designed platform studies are needed to answer the questions raised in this review and, in particular, to investigate the use of individualised PEEP titration techniques and the inclusion of patients with different ARDS entities, severities and disease stages. TITLE REGISTRATION Our systematic review protocol was registered with the international prospective register of systematic reviews (PROSPERO 2021: CRD42021260303).
Collapse
Affiliation(s)
- Alexandra Sachkova
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Marike Andreas
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Daniel Heise
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Martin Golinski
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Caspar Stephani
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Steffen Dickel
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Clemens Grimm
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Ina Monsef
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Vanessa Piechotta
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Nicole Skoetz
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Sven Laudi
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| | - Onnen Moerer
- From the Department of Anesthesiology, University Medical Center Göttingen, Göttingen (AS, DH, MG, CS, SD, CG, OM), Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne (IM, VP, NS), Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig (SL) and Center for Preventive Medicine and Digital Health (CPD), Division of Public Health, Social and Preventive Medicine, Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany (MA)
| |
Collapse
|
2
|
Conrad AM, Zimmermann J, Mohr D, Froelich MF, Hertel A, Rathmann N, Boesing C, Thiel M, Schoenberg SO, Krebs J, Luecke T, Rocco PRM, Otto M. Quantification of pulmonary edema using automated lung segmentation on computed tomography in mechanically ventilated patients with acute respiratory distress syndrome. Intensive Care Med Exp 2024; 12:95. [PMID: 39487874 PMCID: PMC11531458 DOI: 10.1186/s40635-024-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Quantification of pulmonary edema in patients with acute respiratory distress syndrome (ARDS) by chest computed tomography (CT) scan has not been validated in routine diagnostics due to its complexity and time-consuming nature. Therefore, the single-indicator transpulmonary thermodilution (TPTD) technique to measure extravascular lung water (EVLW) has been used in the clinical setting. Advances in artificial intelligence (AI) have now enabled CT images of inhomogeneous lungs to be segmented automatically by an intensive care physician with no prior radiology training within a relatively short time. Nevertheless, there is a paucity of data validating the quantification of pulmonary edema using automated lung segmentation on CT compared with TPTD. METHODS A retrospective study (January 2016 to December 2021) analyzed patients with ARDS, admitted to the intensive care unit of the Department of Anesthesiology and Critical Care Medicine, University Hospital Mannheim, who underwent a chest CT scan and hemodynamic monitoring using TPTD at the same time. Pulmonary edema was estimated using manually and automated lung segmentation on CT and then compared to the pulmonary edema calculated from EVLW determined using TPTD. RESULTS 145 comparative measurements of pulmonary edema with TPTD and CT were included in the study. Estimating pulmonary edema using either automated lung segmentation on CT or TPTD showed a low bias overall (- 104 ml) but wide levels of agreement (upper: 936 ml, lower: - 1144 ml). In 13% of the analyzed CT scans, the agreement between the segmentation of the AI algorithm and a dedicated investigator was poor. Manual segmentation and automated segmentation adjusted for contrast agent did not improve the agreement levels. CONCLUSIONS Automated lung segmentation on CT can be considered an unbiased but imprecise measurement of pulmonary edema in mechanically ventilated patients with ARDS.
Collapse
Affiliation(s)
- Alice Marguerite Conrad
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Julia Zimmermann
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - David Mohr
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Matthias F Froelich
- Department of Clinical Radiology and Nuclear Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Alexander Hertel
- Department of Clinical Radiology and Nuclear Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Nils Rathmann
- Department of Clinical Radiology and Nuclear Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Manfred Thiel
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Stefan O Schoenberg
- Department of Clinical Radiology and Nuclear Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, Brazil
| | - Matthias Otto
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany.
| |
Collapse
|
3
|
Santini A, Protti A, Pennati F, Dalla Corte F, Martinetti N, Pugliese L, Picardo G, Chiurazzi C, Ferrari M, Costantini E, Aliverti A, Cecconi M. Effect of decreasing PEEP on hyperinflation and collapse in COVID-19: A computed tomography study. Acta Anaesthesiol Scand 2024; 68:626-634. [PMID: 38425207 DOI: 10.1111/aas.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND High positive end-expiratory pressure (PEEP>10 cmH2O) is commonly used in mechanically ventilated hypoxemic patients with COVID-19. However, some epidemiological and physiological studies indirectly suggest that using a lower PEEP may primarily and beneficially decrease lung hyperinflation in this population. Herein we directly quantified the effect of decreasing PEEP from 15 to 10 cmH2O on lung hyperinflation and collapse in mechanically ventilated patients with COVID-19. METHODS Twenty mechanically ventilated patients with COVID-19 underwent a lung computed tomography (CT) at PEEP of 15 and 10 cmH2O. The effect of decreasing PEEP on lung hyperinflation and collapse was directly quantified as the change in the over-aerated (density below -900 HU) and non-aerated (density above -100 HU) lung volumes. The net response to decreasing PEEP was computed as the sum of the change in those two compartments and expressed as the change in the "pathologic" lung volume. If the pathologic lung volume decreased (i.e., hyperinflation decreased more than collapse increased) when PEEP was decreased, the net response was considered positive; otherwise, it was considered negative. RESULTS On average, the ratio of arterial tension to inspiratory fraction of oxygen (PaO2:FiO2) in the overall study population was 137 (119-162) mmHg. In 11 (55%) patients, the net response to decreasing PEEP was positive. Their over-aerated lung volume decreased by 159 (98-186) mL, while the non-aerated lung volume increased by only 58 (31-91) mL. In nine (45%) patients, the net response was negative. Their over-aerated lung volume decreased by 46 (18-72) mL, but their non-aerated lung volume increased by 107 (44-121) mL. CONCLUSION In 20 patients with COVID-19 the net response to decreasing PEEP, as assessed with lung CT, was variable. In approximately half of them it was positive (and possibly beneficial), with a decrease in hyperinflation larger than the increase in collapse.
Collapse
Affiliation(s)
- Alessandro Santini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Francesca Dalla Corte
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nicolò Martinetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Pugliese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Picardo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Chiurazzi
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michele Ferrari
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elena Costantini
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
4
|
Tonelli R, Castaniere I, Cortegiani A, Tabbì L, Fantini R, Andrisani D, Gozzi F, Moretti A, Bruzzi G, Manicardi L, Cerbone C, Nani C, Biagioni E, Cerri S, Samarelli V, Busani S, Girardis M, Marchioni A, Clini E. Inspiratory Effort and Respiratory Mechanics in Patients with Acute Exacerbation of Idiopathic Pulmonary fibrosis: A Preliminary Matched Control Study. Pulmonology 2023; 29:469-477. [PMID: 36180352 DOI: 10.1016/j.pulmoe.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Patients with acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) may experience severe acute respiratory failure, even requiring ventilatory assistance. Physiological data on lung mechanics during these events are lacking. METHODS Patients with AE-IPF admitted to Respiratory Intensive Care Unit to receive non-invasive ventilation (NIV) were retrospectively analyzed. Esophageal pressure swing (ΔPes) and respiratory mechanics before and after 2 hours of NIV were collected as primary outcome. The correlation between positive end-expiratory pressure (PEEP) levels and changes of in dynamic compliance (dynCRS) and PaO2/FiO2 ratio was assessed. Further, an exploratory comparison with a historical cohort of ARDS patients matched 1:1 by age, sequential organ failure assessment score, body mass index and PaO2/FiO2 level was performed. RESULTS At baseline, AE-IPF patients presented a high respiratory drive activation with ΔPes = 27 (21-34) cmH2O, respiratory rate (RR) = 34 (30-39) bpm and minute ventilation (VE) = 21 (20-26) L/min. Two hours after NIV application, ΔPes, RR and VE values showed a significant reduction (16 [14-24] cmH2O, p<0.0001, 27 [25-30] bpm, p=0.001, and 18 [17-20] L/min, p=0.003, respectively) while no significant change was found in dynamic transpulmonary pressure, expiratory tidal volume (Vte), dynCRS and dynamic mechanical power. PEEP levels negatively correlated with PaO2/FiO2 ratio and dynCRS (r=-0.67, p=0.03 and r=-0.27, p=0.4, respectively). When compared to AE-IPF, ARDS patients presented lower baseline ΔPes, RR, VE and dynamic mechanical power. Differently from AE-IPF, in ARDS both Vte and dynCRS increased significantly following NIV (p=0.01 and p=0.004 respectively) with PEEP levels directly associated with PaO2/FiO2 ratio and dynCRS (r=0.24, p=0.5 and r=0.65, p=0.04, respectively). CONCLUSIONS In this study, patients with AE-IPF showed a high inspiratory effort, whose intensity was reduced by NIV application without a significant improvement in respiratory mechanics. In an exploratory analysis, AE-IPF patients showed a different mechanical behavior under spontaneous unassisted and assisted breathing compared with ARDS patients of similar severity.
Collapse
Affiliation(s)
- R Tonelli
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - I Castaniere
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - A Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Italy; Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | - L Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - R Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - D Andrisani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - F Gozzi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - A Moretti
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - G Bruzzi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - L Manicardi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - C Cerbone
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - C Nani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - E Biagioni
- Intensive Care Unit, University Hospital of Modena, Italy
| | - S Cerri
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - V Samarelli
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| | - S Busani
- Intensive Care Unit, University Hospital of Modena, Italy
| | - M Girardis
- Intensive Care Unit, University Hospital of Modena, Italy
| | - A Marchioni
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy.
| | - E Clini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Italy
| |
Collapse
|
5
|
Tonelli R, Grasso S, Cortegiani A, Ball L, Castaniere I, Tabbì L, Fantini R, Andrisani D, Gozzi F, Moretti A, Bruzzi G, Manicardi L, Cerri S, Samarelli AV, Raineri G, Murgolo F, Carzoli A, Di Mussi R, Busani S, Rizzoni R, Grasselli G, Clini E, Marchioni A. Physiological effects of lung-protective ventilation in patients with lung fibrosis and usual interstitial pneumonia pattern versus primary ARDS: a matched-control study. Crit Care 2023; 27:398. [PMID: 37853480 PMCID: PMC10585808 DOI: 10.1186/s13054-023-04682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Although patients with interstitial pneumonia pattern (ILD-UIP) and acute exacerbation (AE) leading to severe acute respiratory failure may require invasive mechanical ventilation (MV), physiological data on lung mechanics during MV are lacking. We aimed at describing the physiological effect of lung-protective ventilation in patients with AE-ILD-UIP compared with primary ARDS. METHODS Partitioned lung and chest wall mechanics were assessed in a series of AE-ILD-UIP patients matched 1:1 with primary ARDS as controls (based on BMI and PaO2/FiO2 ratio). Three PEEP levels (zero = ZEEP, 4-8 cmH2O = PEEPLOW, and titrated to achieve positive end-expiratory transpulmonary pressure PL,EE = PEEPTITRATED) were used for measurements. RESULTS Ten AE-ILD-UIP patients and 10 matched ARDS were included. In AE-ILD-UIP median PL,EE at ZEEP was - 4.3 [- 7.6- - 2.3] cmH2O and lung elastance (EL) 44 [40-51] cmH2O/L. At PEEPLOW, PL,EE remained negative and EL did not change (p = 0.995) versus ZEEP. At PEEPTITRATED, PL,EE increased to 0.8 [0.3-1.5] cmH2O and EL to 49 [43-59] (p = 0.004 and p < 0.001 compared to ZEEP and PEEPLOW, respectively). ΔPL decreased at PEEPLOW (p = 0.018) and increased at PEEPTITRATED (p = 0.003). In matched ARDS control PEEP titration to obtain a positive PL,EE did not result in significant changes in EL and ΔPL. CONCLUSIONS In mechanically ventilated AE-ILD-UIP patients, differently than in patients with primary ARDS, PEEP titrated to obtain a positive PL,EE significantly worsened lung mechanics.
Collapse
Affiliation(s)
- Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Salvatore Grasso
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Ionica (DiMePre-J) Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Bari, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Ivana Castaniere
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Riccardo Fantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Dario Andrisani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Filippo Gozzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Antonio Moretti
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Linda Manicardi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Stefania Cerri
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Francesco Murgolo
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Ionica (DiMePre-J) Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Bari, Italy
| | - Andrea Carzoli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Rossella Di Mussi
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Ionica (DiMePre-J) Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Bari, Italy
| | | | - Raffaella Rizzoni
- Department of Engineering, University of Ferrara, Via Saragat 1, Ferrara, Italy
| | - Giacomo Grasselli
- Dipartimento di Anestesia, Rianimazione e Emergenza-Urgenza, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy.
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy.
- Laboratory of Experimental Pneumology, University Hospital of Modena, Policlinico, UNIMORE, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| |
Collapse
|
6
|
Wrigge H, Muders T, Petroff D. Electrical Impedance Tomography: The Electrocardiogram for the Lungs? Am J Respir Crit Care Med 2023; 208:3-5. [PMID: 37311244 PMCID: PMC10870851 DOI: 10.1164/rccm.202305-0810ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Affiliation(s)
- Hermann Wrigge
- Department of Anesthesiology, Intensive Care, Emergency Medicine, and Pain Therapy Bergmannstrost Hospital Halle, Germany and Medical Faculty Martin-Luther University Halle-Wittenberg Halle, Germany
| | - Thomas Muders
- Department of Anesthesiology and Intensive Care Medicine University Hospital Bonn Bonn, Germany
| | - David Petroff
- Clinical Trial Centre University of Leipzig Leipzig, Germany
| |
Collapse
|
7
|
Rodrigues de Moraes L, Robba C, Battaglini D, Pelosi P, Rocco PRM, Silva PL. New and personalized ventilatory strategies in patients with COVID-19. Front Med (Lausanne) 2023; 10:1194773. [PMID: 37332761 PMCID: PMC10273276 DOI: 10.3389/fmed.2023.1194773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Coronavirus disease (COVID-19) is caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus and may lead to severe respiratory failure and the need for mechanical ventilation (MV). At hospital admission, patients can present with severe hypoxemia and dyspnea requiring increasingly aggressive MV strategies according to the clinical severity: noninvasive respiratory support (NRS), MV, and the use of rescue strategies such as extracorporeal membrane oxygenation (ECMO). Among NRS strategies, new tools have been adopted for critically ill patients, with advantages and disadvantages that need to be further elucidated. Advances in the field of lung imaging have allowed better understanding of the disease, not only the pathophysiology of COVID-19 but also the consequences of ventilatory strategies. In cases of refractory hypoxemia, the use of ECMO has been advocated and knowledge on handling and how to personalize strategies have increased during the pandemic. The aims of the present review are to: (1) discuss the evidence on different devices and strategies under NRS; (2) discuss new and personalized management under MV based on the pathophysiology of COVID-19; and (3) contextualize the use of rescue strategies such as ECMO in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Lucas Rodrigues de Moraes
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Denise Battaglini
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Paolo Pelosi
- Unit of Anaesthesia and Intensive Care, San Martino Hospital (IRCCS), Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Silva PL, Cruz FF, Martins CM, Herrmann J, Gerard SE, Xin Y, Cereda M, Ball L, Pelosi P, Rocco PRM. A specific combination of laboratory data is associated with overweight lungs in patients with COVID-19 pneumonia at hospital admission: secondary cross-sectional analysis of a randomized clinical trial. Front Med (Lausanne) 2023; 10:1137784. [PMID: 37261117 PMCID: PMC10228825 DOI: 10.3389/fmed.2023.1137784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
Background Lung weight may be measured with quantitative chest computed tomography (CT) in patients with COVID-19 to characterize the severity of pulmonary edema and assess prognosis. However, this quantitative analysis is often not accessible, which led to the hypothesis that specific laboratory data may help identify overweight lungs. Methods This cross-sectional study was a secondary analysis of data from SARITA2, a randomized clinical trial comparing nitazoxanide and placebo in patients with COVID-19 pneumonia. Adult patients (≥18 years) requiring supplemental oxygen due to COVID-19 pneumonia were enrolled between April 20 and October 15, 2020, in 19 hospitals in Brazil. The weight of the lungs as well as laboratory data [hemoglobin, leukocytes, neutrophils, lymphocytes, C-reactive protein, D-dimer, lactate dehydrogenase (LDH), and ferritin] and 47 additional specific blood biomarkers were assessed. Results Ninety-three patients were included in the study: 46 patients presented with underweight lungs (defined by ≤0% of excess lung weight) and 47 patients presented with overweight lungs (>0% of excess lung weight). Leukocytes, neutrophils, D-dimer, and LDH were higher in patients with overweight lungs. Among the 47 blood biomarkers investigated, interferon alpha 2 protein was higher and leukocyte inhibitory factor was lower in patients with overweight lungs. According to CombiROC analysis, the combinations of D-dimer/LDH/leukocytes, D-dimer/LDH/neutrophils, and D-dimer/LDH/leukocytes/neutrophils achieved the highest area under the curve with the best accuracy to detect overweight lungs. Conclusion The combinations of these specific laboratory data: D-dimer/LDH/leukocytes or D-dimer/LDH/neutrophils or D-dimer/LDH/leukocytes/neutrophils were the best predictors of overweight lungs in patients with COVID-19 pneumonia at hospital admission. Clinical trial registration Brazilian Registry of Clinical Trials (REBEC) number RBR-88bs9x and ClinicalTrials.gov number NCT04561219.
Collapse
Affiliation(s)
- Pedro L. Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F. Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Sarah E. Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Yi Xin
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Maurizio Cereda
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Camporota L, Sanderson B, Worrall S, Ostermann M, Barrett NA, Retter A, Busana M, Collins P, Romitti F, Hunt BJ, Rose L, Gattinoni L, Chiumello D. Relationship between D-dimers and dead-space on disease severity and mortality in COVID-19 acute respiratory distress syndrome: A retrospective observational cohort study. J Crit Care 2023; 77:154313. [PMID: 37116437 PMCID: PMC10129848 DOI: 10.1016/j.jcrc.2023.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Despite its diagnostic and prognostic importance, physiologic dead space fraction is not included in the current ARDS definition or severity classification. ARDS caused by COVID-19 (C-ARDS) is characterized by increased physiologic dead space fraction and hypoxemia. Our aim was to investigate the relationship between dead space indices, markers of inflammation, immunothrombosis, severity and intensive care unit (ICU) mortality. RESULTS Retrospective data including demographics, gas exchange, ventilatory parameters, and respiratory mechanics in the first 24 h of invasive ventilation. Plasma concentrations of D-dimers and ferritin were not significantly different across C-ARDS severity categories. Weak relationships were found between D-dimers and VR (r = 0.07, p = 0.13), PETCO2/PaCO2 (r = -0.1, p = 0.02), or estimated dead space fraction (r = 0.019, p = 0.68). Age, PaO2/FiO2, pH, PETCO2/PaCO2 and ferritin, were independently associated with ICU mortality. We found no association between D-dimers or ferritin and any dead-space indices adjusting for PaO2/FiO2, days of ventilation, tidal volume, and respiratory system compliance. CONCLUSIONS We report no association between dead space and inflammatory markers in mechanically ventilated patients with C-ARDS. Our results support theories suggesting that multiple mechanisms, in addition to immunothrombosis, play a role in the pathophysiology of respiratory failure and degree of dead space in C-ARDS.
Collapse
Affiliation(s)
- Luigi Camporota
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK; Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Barnaby Sanderson
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK
| | - Stephanie Worrall
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK
| | - Marlies Ostermann
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK
| | - Nicholas A Barrett
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK
| | - Andrew Retter
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK
| | - Mattia Busana
- Department of Anesthesiology, University Medical Center of Göttingen, Germany
| | - Patrick Collins
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK
| | - Federica Romitti
- Department of Anesthesiology, University Medical Center of Göttingen, Germany
| | - Beverley J Hunt
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK
| | - Louise Rose
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London SE1 7EH, UK; Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, UK
| | - Luciano Gattinoni
- Department of Anesthesiology, University Medical Center of Göttingen, Germany
| | - Davide Chiumello
- Department of Anesthesiology and Intensive Care, ASST Santi e Paolo Hospital, University of Milan, Italy.
| |
Collapse
|
10
|
Lim MJ, Lakshminrusimha S, Hedriana H, Albertson T. Pregnancy and Severe ARDS with COVID-19: Epidemiology, Diagnosis, Outcomes and Treatment. Semin Fetal Neonatal Med 2023; 28:101426. [PMID: 36964118 PMCID: PMC9990893 DOI: 10.1016/j.siny.2023.101426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Pregnancy-related acute respiratory distress syndrome (ARDS) is fast becoming a growing and clinically relevant subgroup of ARDS amidst global outbreaks of various viral respiratory pathogens that include H1N1-influenza, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS), and the most recent COVID-19 pandemic. Pregnancy is a risk factor for severe viral-induced ARDS and commonly associated with poor maternal and fetal outcomes including fetal growth-restriction, preterm birth, and spontaneous abortion. Physiologic changes of pregnancy further compounded by mechanical and immunologic alterations are theorized to impact the development of ARDS from viral pneumonia. The COVID-19 sub-phenotype of ARDS share overlapping molecular features of maternal pathogenicity of pregnancy with respect to immune-dysregulation and endothelial/microvascular injury (i.e., preeclampsia) that may in part explain a trend toward poor maternal and fetal outcomes seen with severe COVID-19 maternal infections. To date, current ARDS diagnostic criteria and treatment management fail to include and consider physiologic adaptations that are unique to maternal physiology of pregnancy and consideration of maternal-fetal interactions. Treatment focused on lung-protective ventilation strategies have been shown to improve clinical outcomes in adults with ARDS but may have adverse maternal-fetal interactions when applied in pregnancy-related ARDS. No specific pharmacotherapy has been identified to improve outcomes in pregnancy with ARDS. Adjunctive therapies aimed at immune-modulation and anti-viral treatment with COVID-19 infection during pregnancy have been reported but data in regard to its efficacy and safety is currently lacking.
Collapse
Affiliation(s)
- Michelle J Lim
- UC Davis School of Medicine, UC Davis Children's Hospital, Department of Pediatrics, Division of Critical Care and Neonatology, Sacramento, CA, USA.
| | - Satyan Lakshminrusimha
- UC Davis School of Medicine, UC Davis Children's Hospital, Department of Pediatrics, Division of Critical Care and Neonatology, Sacramento, CA, USA
| | - Herman Hedriana
- UC Davis School of Medicine, UC Davis Medical Center, Department of Obstetrics and Gynecology, Sacramento, CA, USA
| | - Timothy Albertson
- UC Davis School of Medicine, UC Davis Medical Center, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Sacramento, CA, USA
| |
Collapse
|
11
|
Zubieta-Calleja GR, Zubieta-DeUrioste N, de Jesús Montelongo F, Sanchez MGR, Campoverdi AF, Rocco PRM, Battaglini D, Ball L, Pelosi P. Morphological and functional findings in COVID-19 lung disease as compared to Pneumonia, ARDS, and High-Altitude Pulmonary Edema. Respir Physiol Neurobiol 2023; 309:104000. [PMID: 36460252 PMCID: PMC9707029 DOI: 10.1016/j.resp.2022.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Coronavirus disease-2019 (COVID-19) may severely affect respiratory function and evolve to life-threatening hypoxia. The clinical experience led to the implementation of standardized protocols assuming similarity to severe acute respiratory syndrome (SARS-CoV-2). Understanding the histopathological and functional patterns is essential to better understand the pathophysiology of COVID-19 and then develop new therapeutic strategies. Epithelial and endothelial cell damage can result from the virus attack, thus leading to immune-mediated response. Pulmonary histopathological findings show the presence of Mallory bodies, alveolar coating cells with nuclear atypia, reactive pneumocytes, reparative fibrosis, intra-alveolar hemorrhage, moderate inflammatory infiltrates, micro-abscesses, microthrombus, hyaline membrane fragments, and emphysema-like lung areas. COVID-19 patients may present different respiratory stages from silent to critical hypoxemia, are associated with the degree of pulmonary parenchymal involvement, thus yielding alteration of ventilation and perfusion relationships. This review aims to: discuss the morphological (histopathological and radiological) and functional findings of COVID-19 compared to acute interstitial pneumonia, acute respiratory distress syndrome (ARDS), and high-altitude pulmonary edema (HAPE), four entities that share common clinical traits, but have peculiar pathophysiological features with potential implications to their clinical management.
Collapse
Affiliation(s)
| | | | - Felipe de Jesús Montelongo
- Critical and Neurointensive Care Unit and Pathology Department, Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México, México
| | - Manuel Gabriel Romo Sanchez
- Critical and Neurointensive Care Unit and Pathology Department, Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México, México
| | | | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Corresponding author
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
12
|
Penarrubia L, Verstraete A, Orkisz M, Davila E, Boussel L, Yonis H, Mezidi M, Dhelft F, Danjou W, Bazzani A, Sigaud F, Bayat S, Terzi N, Girard M, Bitker L, Roux E, Richard JC. Precision of CT-derived alveolar recruitment assessed by human observers and a machine learning algorithm in moderate and severe ARDS. Intensive Care Med Exp 2023; 11:8. [PMID: 36797424 PMCID: PMC9934943 DOI: 10.1186/s40635-023-00495-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Assessing measurement error in alveolar recruitment on computed tomography (CT) is of paramount importance to select a reliable threshold identifying patients with high potential for alveolar recruitment and to rationalize positive end-expiratory pressure (PEEP) setting in acute respiratory distress syndrome (ARDS). The aim of this study was to assess both intra- and inter-observer smallest real difference (SRD) exceeding measurement error of recruitment using both human and machine learning-made lung segmentation (i.e., delineation) on CT. This single-center observational study was performed on adult ARDS patients. CT were acquired at end-expiration and end-inspiration at the PEEP level selected by clinicians, and at end-expiration at PEEP 5 and 15 cmH2O. Two human observers and a machine learning algorithm performed lung segmentation. Recruitment was computed as the weight change of the non-aerated compartment on CT between PEEP 5 and 15 cmH2O. RESULTS Thirteen patients were included, of whom 11 (85%) presented a severe ARDS. Intra- and inter-observer measurements of recruitment were virtually unbiased, with 95% confidence intervals (CI95%) encompassing zero. The intra-observer SRD of recruitment amounted to 3.5 [CI95% 2.4-5.2]% of lung weight. The human-human inter-observer SRD of recruitment was slightly higher amounting to 5.7 [CI95% 4.0-8.0]% of lung weight, as was the human-machine SRD (5.9 [CI95% 4.3-7.8]% of lung weight). Regarding other CT measurements, both intra-observer and inter-observer SRD were close to zero for the CT-measurements focusing on aerated lung (end-expiratory lung volume, hyperinflation), and higher for the CT-measurements relying on accurate segmentation of the non-aerated lung (lung weight, tidal recruitment…). The average symmetric surface distance between lung segmentation masks was significatively lower in intra-observer comparisons (0.8 mm [interquartile range (IQR) 0.6-0.9]) as compared to human-human (1.0 mm [IQR 0.8-1.3] and human-machine inter-observer comparisons (1.1 mm [IQR 0.9-1.3]). CONCLUSIONS The SRD exceeding intra-observer experimental error in the measurement of alveolar recruitment may be conservatively set to 5% (i.e., the upper value of the CI95%). Human-machine and human-human inter-observer measurement errors with CT are of similar magnitude, suggesting that machine learning segmentation algorithms are credible alternative to humans for quantifying alveolar recruitment on CT.
Collapse
Affiliation(s)
- Ludmilla Penarrubia
- grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France
| | - Aude Verstraete
- grid.413852.90000 0001 2163 3825Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France
| | - Maciej Orkisz
- grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France
| | - Eduardo Davila
- grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France
| | - Loic Boussel
- grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France ,grid.413852.90000 0001 2163 3825Service de Radiologie, Hôpital De La Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Hodane Yonis
- grid.413852.90000 0001 2163 3825Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France
| | - Mehdi Mezidi
- grid.413852.90000 0001 2163 3825Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France
| | - Francois Dhelft
- grid.413852.90000 0001 2163 3825Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France ,grid.7849.20000 0001 2150 7757Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - William Danjou
- grid.413852.90000 0001 2163 3825Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France
| | - Alwin Bazzani
- grid.413852.90000 0001 2163 3825Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France
| | - Florian Sigaud
- grid.410529.b0000 0001 0792 4829Service de Médecine-Intensive Réanimation, CHU Grenoble-Alpes, Grenoble, France
| | - Sam Bayat
- grid.450307.50000 0001 0944 2786Synchrotron Radiation for Biomedicine Laboratory (STROBE), INSERM UA07, Univ. Grenoble Alpes, Grenoble, France ,grid.410529.b0000 0001 0792 4829Department of Pulmonology and Physiology, Grenoble University Hospital, Grenoble, France
| | - Nicolas Terzi
- grid.411154.40000 0001 2175 0984Maladies Infectieuses et Réanimation Médicale, CHU Rennes, Rennes, France ,grid.410368.80000 0001 2191 9284Faculté de Médecine, Biosit, Université Rennes1, Rennes, France ,grid.410368.80000 0001 2191 9284INSERM-CIC-1414, Faculté de Médecine, IFR 140, Université Rennes I, Rennes, France
| | - Mehdi Girard
- grid.413852.90000 0001 2163 3825Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France
| | - Laurent Bitker
- grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France ,grid.413852.90000 0001 2163 3825Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004 Lyon, France
| | - Emmanuel Roux
- grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France
| | - Jean-Christophe Richard
- Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France. .,Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.
| |
Collapse
|
13
|
Ciliberti P, Cardim D, Giardina A, Groznik M, Ball L, Giovannini M, Battaglini D, Beqiri E, Matta B, Smielewski P, Czosnyka M, Pelosi P, Robba C. Effects of short-term hyperoxemia on cerebral autoregulation and tissue oxygenation in acute brain injured patients. Front Physiol 2023; 14:1113386. [PMID: 36846344 PMCID: PMC9944047 DOI: 10.3389/fphys.2023.1113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: Potential detrimental effects of hyperoxemia on outcomes have been reported in critically ill patients. Little evidence exists on the effects of hyperoxygenation and hyperoxemia on cerebral physiology. The primary aim of this study is to assess the effect of hyperoxygenation and hyperoxemia on cerebral autoregulation in acute brain injured patients. We further evaluated potential links between hyperoxemia, cerebral oxygenation and intracranial pressure (ICP). Methods: This is a single center, observational, prospective study. Acute brain injured patients [traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracranial hemorrhage (ICH)] undergoing multimodal brain monitoring through a software platform (ICM+) were included. Multimodal monitoring consisted of invasive ICP, arterial blood pressure (ABP) and near infrared spectrometry (NIRS). Derived parameters of ICP and ABP monitoring included the pressure reactivity index (PRx) to assess cerebral autoregulation. ICP, PRx, and NIRS-derived parameters (cerebral regional saturation of oxygen, changes in concentration of regional oxy- and deoxy-hemoglobin), were evaluated at baseline and after 10 min of hyperoxygenation with a fraction of inspired oxygen (FiO2) of 100% using repeated measures t-test or paired Wilcoxon signed-rank test. Continuous variables are reported as median (interquartile range). Results: Twenty-five patients were included. The median age was 64.7 years (45.9-73.2), and 60% were male. Thirteen patients (52%) were admitted for TBI, 7 (28%) for SAH, and 5 (20%) patients for ICH. The median value of systemic oxygenation (partial pressure of oxygen-PaO2) significantly increased after FiO2 test, from 97 (90-101) mm Hg to 197 (189-202) mm Hg, p < 0.0001. After FiO2 test, no changes were observed in PRx values (from 0.21 (0.10-0.43) to 0.22 (0.15-0.36), p = 0.68), nor in ICP values (from 13.42 (9.12-17.34) mm Hg to 13.34 (8.85-17.56) mm Hg, p = 0.90). All NIRS-derived parameters reacted positively to hyperoxygenation as expected. Changes in systemic oxygenation and the arterial component of cerebral oxygenation were significantly correlated (respectively ΔPaO2 and ΔO2Hbi; r = 0.49 (95% CI = 0.17-0.80). Conclusion: Short-term hyperoxygenation does not seem to critically affect cerebral autoregulation.
Collapse
Affiliation(s)
- Pietro Ciliberti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, United States
| | - Alberto Giardina
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Matjaž Groznik
- Traumatology Department of the University Clinical Center Ljubljana, Ljubljana, Slovenia
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy,Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Martina Giovannini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy,Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy,Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy,*Correspondence: Chiara Robba,
| |
Collapse
|
14
|
Dillard JA, Martinez SA, Dearing JJ, Montgomery SA, Baxter AK. Animal Models for the Study of SARS-CoV-2-Induced Respiratory Disease and Pathology. Comp Med 2023; 73:72-90. [PMID: 36229170 PMCID: PMC9948904 DOI: 10.30802/aalas-cm-22-000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emergence of the betacoronavirus SARS-CoV-2 has resulted in a historic pandemic, with millions of deaths worldwide. An unprecedented effort has been made by the medical, scientific, and public health communities to rapidly develop and implement vaccines and therapeutics to prevent and reduce hospitalizations and deaths. Although SARS-CoV-2 infection can lead to disease in many organ systems, the respiratory system is its main target, with pneumonia and acute respiratory distress syndrome as the hallmark features of severe disease. The large number of patients who have contracted COVID-19 infections since 2019 has permitted a detailed characterization of the clinical and pathologic features of the disease in humans. However, continued progress in the development of effective preventatives and therapies requires a deeper understanding of the pathogenesis of infection. Studies using animal models are necessary to complement in vitro findings and human clinical data. Multiple animal species have been evaluated as potential models for studying the respiratory disease caused by SARSCoV-2 infection. Knowing the similarities and differences between animal and human responses to infection is critical for effective translation of animal data into human medicine. This review provides a detailed summary of the respiratory disease and associated pathology induced by SARS-CoV-2 infection in humans and compares them with the disease that develops in 3 commonly used models: NHP, hamsters, and mice. The effective use of animals to study SARS-CoV-2-induced respiratory disease will enhance our understanding of SARS-CoV-2 pathogenesis, allow the development of novel preventatives and therapeutics, and aid in the preparation for the next emerging virus with pandemic potential.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- agm, african green monkey
- ali, acute lung injury
- ards, acute respiratory distress syndrome
- balf, bronchoalveolar lavage fluid
- cards, covid-19-associated acute respiratory distress syndrome
- dad, diffuse alveolar damage
- dpi, days postinfection
- ggo, ground glass opacities
- s, spike glycoprotein
Collapse
Affiliation(s)
- Jacob A Dillard
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sabian A Martinez
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Justin J Dearing
- Biological and Biomedical Sciences Program, Office of Graduate Education, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie A Montgomery
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andvictoria K Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;,
| |
Collapse
|
15
|
Scaramuzzo G, Karbing DS, Fogagnolo A, Mauri T, Spinelli E, Mari M, Turrini C, Montanaro F, Volta CA, Rees SE, Spadaro S. Heterogeneity of Ventilation/Perfusion Mismatch at Different Levels of PEEP and in Respiratory Mechanics Phenotypes of COVID-19 ARDS. Respir Care 2023; 68:188-198. [PMID: 36347564 PMCID: PMC9994283 DOI: 10.4187/respcare.10242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND COVID-19-related ARDS is characterized by severe hypoxemia with initially preserved lung compliance and impaired ventilation/perfusion (V̇/Q̇) matching. PEEP can increase end-expiratory lung volume, but its effect on V̇/Q̇ mismatch in COVID-19-related ARDS is not clear. METHODS We enrolled intubated and mechanically ventilated subjects with COVID-19 ARDS and used the automatic lung parameter estimator (ALPE) to measure V̇/Q̇. Respiratory mechanics measurements, shunt, and V̇/Q̇ mismatch (low V̇/Q̇ and high V̇/Q̇) were collected at 3 PEEP levels (clinical PEEP = intermediate PEEP, low PEEP [clinical - 50%], and high PEEP [clinical + 50%]). A mixed-effect model was used to evaluate the impact of PEEP on V̇/Q̇. We also investigated if PEEP might have a different effect on V̇/Q̇ mismatch in 2 different respiratory mechanics phenotypes, that is, high elastance/low compliance (phenotype H) and low elastance/high compliance (phenotype L). RESULTS Seventeen subjects with COVID-related ARDS age 66 [60-71] y with a PaO2 /FIO2 of 141 ± 74 mm Hg were studied at low PEEP = 5.6 ± 2.2 cm H2O, intermediate PEEP = 10.6 ± 3.8 cm H2O, and high PEEP = 15 ± 5 cm H2O. Shunt, low V̇/Q̇, high V̇/Q̇, and alveolar dead space were not significantly influenced, on average, by PEEP. Respiratory system compliance decreased significantly when increasing PEEP without significant variation of PaO2 /FIO2 (P = .26). In the 2 phenotypes, PEEP had opposite effects on shunt, with a decrease in the phenotype L and an increase in phenotype H (P = .048). CONCLUSIONS In subjects with COVID-related ARDS placed on invasive mechanical ventilation for > 48 h, PEEP had a heterogeneous effect on V̇/Q̇ mismatch and, on average, higher levels were not able to reduce shunt. The subject's compliance could influence the effect of PEEP on V̇/Q̇ mismatch since an increased shunt was observed in subjects with lower compliance, whereas the opposite occurred in those with higher compliance.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Dan Stieper Karbing
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Alberto Fogagnolo
- Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Institute for Treatment and Research, Ca' Granda Maggiore Policlinico Hospital Foundation, Milan, Italy; and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Elena Spinelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Matilde Mari
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Cecilia Turrini
- Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Federica Montanaro
- Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Stephen Edward Rees
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Savino Spadaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; and Department of Anesthesia and Intensive Care Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy.
| |
Collapse
|
16
|
Richard JC, Sigaud F, Gaillet M, Orkisz M, Bayat S, Roux E, Ahaouari T, Davila E, Boussel L, Ferretti G, Yonis H, Mezidi M, Danjou W, Bazzani A, Dhelft F, Folliet L, Girard M, Pozzi M, Terzi N, Bitker L. Response to PEEP in COVID-19 ARDS patients with and without extracorporeal membrane oxygenation. A multicenter case–control computed tomography study. Crit Care 2022; 26:195. [PMID: 35780154 PMCID: PMC9250720 DOI: 10.1186/s13054-022-04076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background PEEP selection in severe COVID-19 patients under extracorporeal membrane oxygenation (ECMO) is challenging as no study has assessed the alveolar recruitability in this setting. The aim of the study was to compare lung recruitability and the impact of PEEP on lung aeration in moderate and severe ARDS patients with or without ECMO, using computed tomography (CT). Methods We conducted a two-center prospective observational case–control study in adult COVID-19-related patients who had an indication for CT within 72 h of ARDS onset in non-ECMO patients or within 72 h after ECMO onset. Ninety-nine patients were included, of whom 24 had severe ARDS under ECMO, 59 severe ARDS without ECMO and 16 moderate ARDS. Results Non-inflated lung at PEEP 5 cmH2O was significantly greater in ECMO than in non-ECMO patients. Recruitment induced by increasing PEEP from 5 to 15 cmH2O was not significantly different between ECMO and non-ECMO patients, while PEEP-induced hyperinflation was significantly lower in the ECMO group and virtually nonexistent. The median [IQR] fraction of recruitable lung mass between PEEP 5 and 15 cmH2O was 6 [4–10]%. Total superimposed pressure at PEEP 5 cmH2O was significantly higher in ECMO patients and amounted to 12 [11–13] cmH2O. The hyperinflation-to-recruitment ratio (i.e., a trade-off index of the adverse effects and benefits of PEEP) was significantly lower in ECMO patients and was lower than one in 23 (96%) ECMO patients, 41 (69%) severe non-ECMO patients and 8 (50%) moderate ARDS patients. Compliance of the aerated lung at PEEP 5 cmH2O corrected for PEEP-induced recruitment (CBABY LUNG) was significantly lower in ECMO patients than in non-ECMO patients and was linearly related to the logarithm of the hyperinflation-to-recruitment ratio. Conclusions Lung recruitability of COVID-19 pneumonia is not significantly different between ECMO and non-ECMO patients, with substantial interindividual variations. The balance between hyperinflation and recruitment induced by PEEP increase from 5 to 15 cmH2O appears favorable in virtually all ECMO patients, while this PEEP level is required to counteract compressive forces leading to lung collapse. CBABY LUNG is significantly lower in ECMO patients, independently of lung recruitability. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04076-z.
Collapse
|
17
|
Boffi A, Ravenel M, Lupieri E, Schneider A, Liaudet L, Gonzalez M, Chiche JD, Piquilloud L. Physiological response to prone positioning in intubated adults with COVID-19 acute respiratory distress syndrome: a retrospective study. Respir Res 2022; 23:320. [PMID: 36402990 DOI: 10.1186/s12931-022-02247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/09/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background
COVID-19 related acute respiratory distress syndrome (ARDS) has specific characteristics compared to ARDS in other populations. Proning is recommended by analogy with other forms of ARDS, but few data are available regarding its physiological effects in this population. This study aimed to assess the effects of proning on oxygenation parameters (PaO2/FiO2 and alveolo-arterial gradient (Aa-gradient)), blood gas analysis, ventilatory ratio (VR), respiratory system compliance (CRS) and estimated dead space fraction (VD/VT HB). We also looked for variables associated with treatment failure.
Methods
Retrospective monocentric study of intubated COVID-19 ARDS patients managed with an early intubation, low to moderate positive end-expiratory pressure and early proning strategy hospitalized from March 6 to April 30 2020. Blood gas analysis, PaO2/FiO2, Aa-gradient, VR, CRS and VD/VT HB were compared before and at the end of each proning session with paired t-tests or Wilcoxon tests (p < 0.05 considered as significant). Proportions were assessed using Fischer exact test or Chi square test.
Results
Forty-two patients were included for a total of 191 proning sessions, median duration of 16 (5–36) hours. Considering all sessions, PaO2/FiO2 increased (180 [148–210] vs 107 [90–129] mmHg, p < 0.001) and Aa-gradient decreased (127 [92–176] vs 275 [211–334] mmHg, p < 0.001) with proning. CRS (36.2 [30.0–41.8] vs 32.2 [27.5–40.9] ml/cmH2O, p = 0.003), VR (2.4 [2.0–2.9] vs 2.3 [1.9–2.8], p = 0.028) and VD/VT HB (0.72 [0.67–0.76] vs 0.71 [0.65–0.76], p = 0.022) slightly increased. Considering the first proning session, PaO2/FiO2 increased (186 [165–215] vs 104 [94–126] mmHg, p < 0.001) and Aa-gradient decreased (121 [89–160] vs 276 [238–321] mmHg, p < 0.001), while CRS, VR and VD/VT HB were unchanged. Similar variations were observed during the subsequent proning sessions. Among the patients who experienced treatment failure (defined as ICU death or need for extracorporeal membrane oxygenation), fewer expressed a positive response in terms of oxygenation (defined as increase of more than 20% in PaO2/FiO2) to the first proning (67 vs 97%, p = 0.020).
Conclusion
Proning in COVID-19 ARDS intubated patients led to an increase in PaO2/FiO2 and a decrease in Aa-gradient if we consider all the sessions together, the first one or the 4 subsequent sessions independently. When considering all sessions, CRS increased and VR and VD/VT HB only slightly increased.
Collapse
|
18
|
Yaroshetskiy AI, Avdeev SN, Krasnoshchekova AP, Nuralieva GS. Higher PEEP in intubated COVID-19-associated ARDS patients? We are not sure. Crit Care 2022; 26:327. [PMID: 36284355 PMCID: PMC9595075 DOI: 10.1186/s13054-022-04207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Andrey I. Yaroshetskiy
- grid.448878.f0000 0001 2288 8774Sechenov First Moscow State Medical University (Sechenov University), 8 bld 2, Trubetskaya Str, Moscow, Russia 119991 ,grid.78028.350000 0000 9559 0613Research Institution for Clinical Surgery Division, Anesthesiology and Critical Care Department, Pirogov Russian National Research Medical University, 1, Ostrovitianova str, Moscow, Russia 117997
| | - Sergey N. Avdeev
- grid.448878.f0000 0001 2288 8774Sechenov First Moscow State Medical University (Sechenov University), 8 bld 2, Trubetskaya Str, Moscow, Russia 119991
| | - Anna P. Krasnoshchekova
- grid.448878.f0000 0001 2288 8774Sechenov First Moscow State Medical University (Sechenov University), 8 bld 2, Trubetskaya Str, Moscow, Russia 119991 ,grid.78028.350000 0000 9559 0613Research Institution for Clinical Surgery Division, Anesthesiology and Critical Care Department, Pirogov Russian National Research Medical University, 1, Ostrovitianova str, Moscow, Russia 117997
| | - Galia S. Nuralieva
- grid.448878.f0000 0001 2288 8774Sechenov First Moscow State Medical University (Sechenov University), 8 bld 2, Trubetskaya Str, Moscow, Russia 119991
| |
Collapse
|
19
|
Shang Y, Wu J, Liu J, Long Y, Xie J, Zhang D, Hu B, Zong Y, Liao X, Shang X, Ding R, Kang K, Liu J, Pan A, Xu Y, Wang C, Xu Q, Zhang X, Zhang J, Liu L, Zhang J, Yang Y, Yu K, Guan X, Chen D. Expert consensus on the diagnosis and treatment of severe and critical coronavirus disease 2019 (COVID-19). JOURNAL OF INTENSIVE MEDICINE 2022; 2:199-222. [PMID: 36785648 PMCID: PMC9411033 DOI: 10.1016/j.jointm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Affiliation(s)
- You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510010, China
| | - Jinglun Liu
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dong Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yuan Zong
- Department of Critical Care Medicine, Shaanxi Provincial Hospital, Xi'an, Shannxi 710068, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian 350001, China
| | - Renyu Ding
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aijun Pan
- Department of Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yonghao Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150001, China
| | - Qianghong Xu
- Department of Critical Care Medicine, Zhejiang Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Jicheng Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ling Liu
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yi Yang
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Corresponding authors: Dechang Chen, Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Xiangdong Guan, Department of Critical Care Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China. Kaijiang Yu, Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510010, China
- Corresponding authors: Dechang Chen, Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Xiangdong Guan, Department of Critical Care Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China. Kaijiang Yu, Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding authors: Dechang Chen, Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Xiangdong Guan, Department of Critical Care Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China. Kaijiang Yu, Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| | | |
Collapse
|
20
|
COVID-19-Related ARDS: Key Mechanistic Features and Treatments. J Clin Med 2022; 11:jcm11164896. [PMID: 36013135 PMCID: PMC9410336 DOI: 10.3390/jcm11164896] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome historically characterized by the presence of severe hypoxemia, high-permeability pulmonary edema manifesting as diffuse alveolar infiltrate on chest radiograph, and reduced compliance of the integrated respiratory system as a result of widespread compressive atelectasis and fluid-filled alveoli. Coronavirus disease 19 (COVID-19)-associated ARDS (C-ARDS) is a novel etiology caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may present with distinct clinical features as a result of the viral pathobiology unique to SARS-CoV-2. In particular, severe injury to the pulmonary vascular endothelium, accompanied by the presence of diffuse microthrombi in the pulmonary microcirculation, can lead to a clinical presentation in which the severity of impaired gas exchange becomes uncoupled from lung capacity and respiratory mechanics. The purpose of this review is to highlight the key mechanistic features of C-ARDS and to discuss the implications these features have on its treatment. In some patients with C-ARDS, rigid adherence to guidelines derived from clinical trials in the pre-COVID era may not be appropriate.
Collapse
|
21
|
Ball L, Robba C, Herrmann J, Gerard SE, Xin Y, Pigati M, Berardino A, Iannuzzi F, Battaglini D, Brunetti I, Minetti G, Seitun S, Vena A, Giacobbe DR, Bassetti M, Rocco PRM, Cereda M, Castellan L, Patroniti N, Pelosi P. Early versus late intubation in COVID-19 patients failing helmet CPAP: A quantitative computed tomography study. Respir Physiol Neurobiol 2022; 301:103889. [PMID: 35307564 PMCID: PMC8928743 DOI: 10.1016/j.resp.2022.103889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE To describe the effects of timing of intubation in COVID-19 patients that fail helmet continuous positive airway pressure (h-CPAP) on progression and severity of disease. METHODS COVID-19 patients that failed h-CPAP, required intubation, and underwent chest computed tomography (CT) at two levels of positive end-expiratory pressure (PEEP, 8 and 16 cmH2O) were included in this retrospective study. Patients were divided in two groups (early versus late) based on the duration of h-CPAP before intubation. Endpoints included percentage of non-aerated lung tissue at PEEP of 8 cmH2O, respiratory system compliance and oxygenation. RESULTS Fifty-two patients were included and classified in early (h-CPAP for ≤2 days, N = 26) and late groups (h-CPAP for >2 days, N = 26). Patients in the late compared to early intubation group presented: 1) lower respiratory system compliance (median difference, MD -7 mL/cmH2O, p = 0.044) and PaO2/FiO2 (MD -29 mmHg, p = 0.047), 2) higher percentage of non-aerated lung tissue (MD 7.2%, p = 0.023) and 3) similar lung recruitment increasing PEEP from 8 to 16 cmH2O (MD 0.1%, p = 0.964). CONCLUSIONS In COVID-19 patients receiving h-CPAP, late intubation was associated with worse clinical presentation at ICU admission and more advanced disease. The possible detrimental effects of delaying intubation should be carefully considered in these patients.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy.
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sarah E Gerard
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Yi Xin
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Pigati
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Andrea Berardino
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Francesca Iannuzzi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Giuseppe Minetti
- Radiology Department, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Sara Seitun
- Radiology Department, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lucio Castellan
- Radiology Department, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Nicolò Patroniti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| |
Collapse
|
22
|
Hohmann F, Wedekind L, Grundeis F, Dickel S, Frank J, Golinski M, Griesel M, Grimm C, Herchenhahn C, Kramer A, Metzendorf MI, Moerer O, Olbrich N, Thieme V, Vieler A, Fichtner F, Burns J, Laudi S. Early spontaneous breathing for acute respiratory distress syndrome in individuals with COVID-19. Cochrane Database Syst Rev 2022; 6:CD015077. [PMID: 35767435 PMCID: PMC9242537 DOI: 10.1002/14651858.cd015077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) represents the most severe course of COVID-19 (caused by the SARS-CoV-2 virus), usually resulting in a prolonged stay in an intensive care unit (ICU) and high mortality rates. Despite the fact that most affected individuals need invasive mechanical ventilation (IMV), evidence on specific ventilation strategies for ARDS caused by COVID-19 is scarce. Spontaneous breathing during IMV is part of a therapeutic concept comprising light levels of sedation and the avoidance of neuromuscular blocking agents (NMBA). This approach is potentially associated with both advantages (e.g. a preserved diaphragmatic motility and an optimised ventilation-perfusion ratio of the ventilated lung), as well as risks (e.g. a higher rate of ventilator-induced lung injury or a worsening of pulmonary oedema due to increases in transpulmonary pressure). As a consequence, spontaneous breathing in people with COVID-19-ARDS who are receiving IMV is subject to an ongoing debate amongst intensivists. OBJECTIVES To assess the benefits and harms of early spontaneous breathing activity in invasively ventilated people with COVID-19 with ARDS compared to ventilation strategies that avoid spontaneous breathing. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (which includes CENTRAL, PubMed, Embase, Clinical Trials.gov WHO ICTRP, and medRxiv) and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies from their inception to 2 March 2022. SELECTION CRITERIA Eligible study designs comprised randomised controlled trials (RCTs) that evaluated spontaneous breathing in participants with COVID-19-related ARDS compared to ventilation strategies that avoided spontaneous breathing (e.g. using NMBA or deep sedation levels). Additionally, we considered controlled before-after studies, interrupted time series with comparison group, prospective cohort studies and retrospective cohort studies. For these non-RCT studies, we considered a minimum total number of 50 participants to be compared as necessary for inclusion. Prioritised outcomes were all-cause mortality, clinical improvement or worsening, quality of life, rate of (serious) adverse events and rate of pneumothorax. Additional outcomes were need for tracheostomy, duration of ICU length of stay and duration of hospitalisation. DATA COLLECTION AND ANALYSIS We followed the methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions. Two review authors independently screened all studies at the title/abstract and full-text screening stage. We also planned to conduct data extraction and risk of bias assessment in duplicate. We planned to conduct meta-analysis for each prioritised outcome, as well as subgroup analyses of mortality regarding severity of oxygenation impairment and duration of ARDS. In addition, we planned to perform sensitivity analyses for studies at high risk of bias, studies using NMBA in addition to deep sedation level to avoid spontaneous breathing and a comparison of preprints versus peer-reviewed articles. We planned to assess the certainty of evidence using the GRADE approach. MAIN RESULTS We identified no eligible studies for this review. AUTHORS' CONCLUSIONS We found no direct evidence on whether early spontaneous breathing in SARS-CoV-2-induced ARDS is beneficial or detrimental to this particular group of patients. RCTs comparing early spontaneous breathing with ventilatory strategies not allowing for spontaneous breathing in SARS-CoV-2-induced ARDS are necessary to determine its value within the treatment of severely ill people with COVID-19. Additionally, studies should aim to clarify whether treatment effects differ between people with SARS-CoV-2-induced ARDS and people with non-SARS-CoV-2-induced ARDS.
Collapse
Affiliation(s)
- Friedrich Hohmann
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Lisa Wedekind
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
- Institute of Medical Statistics, Computer and Data Sciences, University Hospital Jena, Jena, Germany
| | - Felicitas Grundeis
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Steffen Dickel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Goettingen, Goettingen, Germany
| | - Johannes Frank
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Golinski
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Goettingen, Goettingen, Germany
| | - Mirko Griesel
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Clemens Grimm
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Goettingen, Goettingen, Germany
| | - Cindy Herchenhahn
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Andre Kramer
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Maria-Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Onnen Moerer
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Goettingen, Goettingen, Germany
| | - Nancy Olbrich
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Volker Thieme
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Astrid Vieler
- Medicine and Sciences Library, Leipzig University, Leipzig, Germany
| | - Falk Fichtner
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
| | - Sven Laudi
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
23
|
Ball L, Scaramuzzo G, Herrmann J, Cereda M. Lung aeration, ventilation, and perfusion imaging. Curr Opin Crit Care 2022; 28:302-307. [PMID: 35653251 PMCID: PMC9178949 DOI: 10.1097/mcc.0000000000000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Lung imaging is a cornerstone of the management of patients admitted to the intensive care unit (ICU), providing anatomical and functional information on the respiratory system function. The aim of this review is to provide an overview of mechanisms and applications of conventional and emerging lung imaging techniques in critically ill patients. RECENT FINDINGS Chest radiographs provide information on lung structure and have several limitations in the ICU setting; however, scoring systems can be used to stratify patient severity and predict clinical outcomes. Computed tomography (CT) is the gold standard for assessment of lung aeration but requires moving the patients to the CT facility. Dual-energy CT has been recently applied to simultaneous study of lung aeration and perfusion in patients with respiratory failure. Lung ultrasound has an established role in the routine bedside assessment of ICU patients, but has poor spatial resolution and largely relies on the analysis of artifacts. Electrical impedance tomography is an emerging technique capable of depicting ventilation and perfusion at the bedside and at the regional level. SUMMARY Clinicians should be confident with the technical aspects, indications, and limitations of each lung imaging technique to improve patient care.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l’Oncologia e le Neuroscienze, Genoa, Italy
| | - Gaetano Scaramuzzo
- Department of Translational medicine, University of Ferrara, Ferrara, Italy
- Anesthesia and intensive care, Arcispedale Sant’Anna, Ferrara, Italy
| | - Jake Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, United States of America
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Lovas A, Chen R, Molnár T, Benyó B, Szlávecz Á, Hawchar F, Krüger-Ziolek S, Möller K. Differentiating Phenotypes of Coronavirus Disease-2019 Pneumonia by Electric Impedance Tomography. Front Med (Lausanne) 2022; 9:747570. [PMID: 35665323 PMCID: PMC9161711 DOI: 10.3389/fmed.2022.747570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Coronavirus disease-2019 (COVID-19) pneumonia has different phenotypes. Selecting the patient individualized and optimal respirator settings for the ventilated patient is a challenging process. Electric impedance tomography (EIT) is a real-time, radiation-free functional imaging technique that can aid clinicians in differentiating the "low" (L-) and "high" (H-) phenotypes of COVID-19 pneumonia described previously. Methods Two patients ("A" and "B") underwent a stepwise positive end-expiratory pressure (PEEP) recruitment by 3 cmH2O of steps from PEEP 10 to 25 and back to 10 cmH2O during a pressure control ventilation of 15 cmH2O. Recruitment maneuvers were performed under continuous EIT recording on a daily basis until patients required controlled ventilation mode. Results Patients "A" and "B" had a 7- and 12-day long trial, respectively. At the daily baseline, patient "A" had significantly higher compliance: mean ± SD = 53 ± 7 vs. 38 ± 5 ml/cmH2O (p < 0.001) and a significantly higher physiological dead space according to the Bohr-Enghoff equation than patient "B": mean ± SD = 52 ± 4 vs. 45 ± 6% (p = 0.018). Following recruitment maneuvers, patient "A" had a significantly higher cumulative collapse ratio detected by EIT than patient "B": mean ± SD = 0.40 ± 0.08 vs. 0.29 ± 0.08 (p = 0.007). In patient "A," there was a significant linear regression between the cumulative collapse ratios at the end of the recruitment maneuvers (R 2 = 0.824, p = 0.005) by moving forward in days, while not for patient "B" (R 2 = 0.329, p = 0.5). Conclusion Patient "B" was recognized as H-phenotype with high elastance, low compliance, higher recruitability, and low ventilation-to-perfusion ratio; meanwhile patient "A" was identified as the L-phenotype with low elastance, high compliance, and lower recruitability. Observation by EIT was not just able to differentiate the two phenotypes, but it also could follow the transition from L- to H-type within patient "A." Clinical Trial Registration www.ClinicalTrials.gov, identifier: NCT04360837.
Collapse
Affiliation(s)
- András Lovas
- Department of Anesthesiology and Intensive Therapy, Kiskunhalas Semmelweis Hospital, Kiskunhalas, Hungary
| | - Rongqing Chen
- Institute of Technical Medicine, Furtwangen University, VS-Schwenningen, Germany
| | - Tamás Molnár
- Department of Anesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| | - Balázs Benyó
- Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ákos Szlávecz
- Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Fatime Hawchar
- Department of Anesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| | - Sabine Krüger-Ziolek
- Institute of Technical Medicine, Furtwangen University, VS-Schwenningen, Germany
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, VS-Schwenningen, Germany
| |
Collapse
|
25
|
Battaglini D, Pelosi P, Rocco PRM. Prone positioning in COVID-19 ARDS: more pros than cons. J Bras Pneumol 2022; 48:e20220065. [PMID: 35584468 PMCID: PMC9064653 DOI: 10.36416/1806-3756/e20220065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Denise Battaglini
- . Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS - per l'Oncologia e le Neuroscienze, Genova, Italia
| | - Paolo Pelosi
- . Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS - per l'Oncologia e le Neuroscienze, Genova, Italia
- . Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genova, Italia
| | - Patricia R M Rocco
- . Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ - Rio de Janeiro (RJ) Brasil
| |
Collapse
|
26
|
Ball L, Silva PL, Giacobbe DR, Bassetti M, Zubieta-Calleja GR, Rocco PRM, Pelosi P. Understanding the pathophysiology of typical acute respiratory distress syndrome and severe COVID-19. Expert Rev Respir Med 2022; 16:437-446. [PMID: 35341424 PMCID: PMC9115784 DOI: 10.1080/17476348.2022.2057300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction Typical acute respiratory distress syndrome (ARDS) and severe coronavirus-19 (COVID-19) pneumonia share complex pathophysiology, a high mortality rate, and an unmet need for efficient therapeutics. Areas covered This review discusses the current advances in understanding the pathophysiologic mechanisms underlying typical ARDS and severe COVID-19 pneumonia, highlighting specific aspects of COVID-19-related acute hypoxemic respiratory failure that require attention. Two models have been proposed to describe the mechanisms of respiratory failure associated with typical ARDS and severe COVID-19 pneumonia. Expert opinion ARDS is defined as a syndrome rather than a distinct pathologic entity. There is great heterogeneity regarding the pathophysiologic, clinical, radiologic, and biological phenotypes in patients with ARDS, challenging clinicians, and scientists to discover new therapies. COVID-19 has been described as a cause of pulmonary ARDS and has reopened many questions regarding the pathophysiology of ARDS itself. COVID-19 lung injury involves direct viral epithelial cell damage and thrombotic and inflammatory reactions. There are some differences between ARDS and COVID-19 lung injury in aspects of aeration distribution, perfusion, and pulmonary vascular responses.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | | | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| |
Collapse
|
27
|
Pelosi P, Tonelli R, Torregiani C, Baratella E, Confalonieri M, Battaglini D, Marchioni A, Confalonieri P, Clini E, Salton F, Ruaro B. Different Methods to Improve the Monitoring of Noninvasive Respiratory Support of Patients with Severe Pneumonia/ARDS Due to COVID-19: An Update. J Clin Med 2022; 11:1704. [PMID: 35330029 PMCID: PMC8952765 DOI: 10.3390/jcm11061704] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
The latest guidelines for the hospital care of patients affected by coronavirus disease 2019 (COVID-19)-related acute respiratory failure have moved towards the widely accepted use of noninvasive respiratory support (NIRS) as opposed to early intubation at the pandemic onset. The establishment of severe COVID-19 pneumonia goes through different pathophysiological phases that partially resemble typical acute respiratory distress syndrome (ARDS) and have been categorized into different clinical-radiological phenotypes. These can variably benefit on the application of external positive end-expiratory pressure (PEEP) during noninvasive mechanical ventilation, mainly due to variable levels of lung recruitment ability and lung compliance during different phases of the disease. A growing body of evidence suggests that intense respiratory effort producing excessive negative pleural pressure swings (Ppl) plays a critical role in the onset and progression of lung and diaphragm damage in patients treated with noninvasive respiratory support. Routine respiratory monitoring is mandatory to avoid the nasty continuation of NIRS in patients who are at higher risk for respiratory deterioration and could benefit from early initiation of invasive mechanical ventilation instead. Here we propose different monitoring methods both in the clinical and experimental settings adapted for this purpose, although further research is required to allow their extensive application in clinical practice. We reviewed the needs and available tools for clinical-physiological monitoring that aims at optimizing the ventilatory management of patients affected by acute respiratory distress syndrome due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (D.B.)
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Chiara Torregiani
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Elisa Baratella
- Department of Radiology, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy;
| | - Marco Confalonieri
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Denise Battaglini
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (D.B.)
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
| | - Paola Confalonieri
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Enrico Clini
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
| | - Francesco Salton
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Barbara Ruaro
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| |
Collapse
|
28
|
Ball L, Rocco PRM, Pelosi P. Editorial: Lung Imaging in Respiratory Failure. Front Physiol 2022; 13:862647. [PMID: 35309051 PMCID: PMC8927979 DOI: 10.3389/fphys.2022.862647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
- *Correspondence: Lorenzo Ball
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| |
Collapse
|
29
|
Effects of Prone Position on Lung Recruitment and Ventilation-Perfusion Matching in Patients With COVID-19 Acute Respiratory Distress Syndrome. Crit Care Med 2022; 50:723-732. [PMID: 35200194 PMCID: PMC9005091 DOI: 10.1097/ccm.0000000000005450] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prone positioning allows to improve oxygenation and decrease mortality rate in COVID-19–associated acute respiratory distress syndrome (C-ARDS). However, the mechanisms leading to these effects are not fully understood. The aim of this study is to assess the physiologic effects of pronation by the means of CT scan and electrical impedance tomography (EIT).
Collapse
|
30
|
Mega C, Cavalli I, Ranieri VM, Tonetti T. Protective ventilation in patients with acute respiratory distress syndrome related to COVID-19: always, sometimes or never? Curr Opin Crit Care 2022; 28:51-56. [PMID: 34813522 PMCID: PMC8711310 DOI: 10.1097/mcc.0000000000000904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To review current evidence on the pathophysiology of COVID-19-related acute respiratory distress syndrome (ARDS) and on the implementation of lung protective ventilation. RECENT FINDINGS Although multiple observations and physiological studies seem to show a different pathophysiological behaviour in COVID-19-ARDS compared with 'classical' ARDS, numerous studies on thousands of patients do not confirm these findings and COVID-19-ARDS indeed shares similar characteristics and interindividual heterogeneity with ARDS from other causes. Although still scarce, present evidence on the application of lung protective ventilation in COVID-19-ARDS shows that it is indeed consistently applied in ICUs worldwide with a possible signal towards better survival at least in one study. The levels of positive end-expiratory pressure (PEEP) usually applied in these patients are higher than in 'classical' ARDS, proposing once again the issue of PEEP personalization in hypoxemic patients. In the absence of robust evidence, careful evaluation of the patient is needed, and empiric settings should be oriented towards lower levels of PEEP. SUMMARY According to the present evidence, a lung protective strategy based on low tidal volume and plateau pressures is indicated in COVID-19-ARDS as in ARDS from other causes; however, there are still uncertainties on the appropriate levels of PEEP.
Collapse
Affiliation(s)
- Chiara Mega
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Scienze Mediche e Chirurgiche, Anesthesia and Intensive Care Medicine, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | | | | | | |
Collapse
|
31
|
Effects of positive end-expiratory pressure on lung ultrasound patterns and their correlation with intracranial pressure in mechanically ventilated brain injured patients. Crit Care 2022; 26:31. [PMID: 35090525 PMCID: PMC8796179 DOI: 10.1186/s13054-022-03903-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/30/2022] Open
Abstract
Background The effects of positive end-expiratory pressure (PEEP) on lung ultrasound (LUS) patterns, and their relationship with intracranial pressure (ICP) in brain injured patients have not been completely clarified. The primary aim of this study was to assess the effect of two levels of PEEP (5 and 15 cmH2O) on global (LUStot) and regional (anterior, lateral, and posterior areas) LUS scores and their correlation with changes of invasive ICP. Secondary aims included: the evaluation of the effect of PEEP on respiratory mechanics, arterial partial pressure of carbon dioxide (PaCO2) and hemodynamics; the correlation between changes in ICP and LUS as well as respiratory parameters; the identification of factors at baseline as potential predictors of ICP response to higher PEEP. Methods Prospective, observational study including adult mechanically ventilated patients with acute brain injury requiring invasive ICP. Total and regional LUS scores, ICP, respiratory mechanics, and arterial blood gases values were analyzed at PEEP 5 and 15 cmH2O. Results Thirty patients were included; 19 of them (63.3%) were male, with median age of 65 years [interquartile range (IQR) = 66.7–76.0]. PEEP from 5 to 15 cmH2O reduced LUS score in the posterior regions (LUSp, median value from 7 [5–8] to 4.5 [3.7–6], p = 0.002). Changes in ICP were significantly correlated with changes in LUStot (rho = 0.631, p = 0.0002), LUSp (rho = 0.663, p < 0.0001), respiratory system compliance (rho = − 0.599, p < 0.0001), mean arterial pressure (rho = − 0.833, p < 0.0001) and PaCO2 (rho = 0.819, p < 0.0001). Baseline LUStot score predicted the increase of ICP with PEEP. Conclusions LUS-together with the evaluation of respiratory and clinical variables-can assist the clinicians in the bedside assessment and prediction of the effect of PEEP on ICP in patients with acute brain injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03903-7.
Collapse
|
32
|
Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia. Intensive Care Med 2022; 48:56-66. [PMID: 34825929 PMCID: PMC8617364 DOI: 10.1007/s00134-021-06562-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/19/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE This study aimed at investigating the mechanisms underlying the oxygenation response to proning and recruitment maneuvers in coronavirus disease 2019 (COVID-19) pneumonia. METHODS Twenty-five patients with COVID-19 pneumonia, at variable times since admission (from 1 to 3 weeks), underwent computed tomography (CT) lung scans, gas-exchange and lung-mechanics measurement in supine and prone positions at 5 cmH2O and during recruiting maneuver (supine, 35 cmH2O). Within the non-aerated tissue, we differentiated the atelectatic and consolidated tissue (recruitable and non-recruitable at 35 cmH2O of airway pressure). Positive/negative response to proning/recruitment was defined as increase/decrease of PaO2/FiO2. Apparent perfusion ratio was computed as venous admixture/non aerated tissue fraction. RESULTS The average values of venous admixture and PaO2/FiO2 ratio were similar in supine-5 and prone-5. However, the PaO2/FiO2 changes (increasing in 65% of the patients and decreasing in 35%, from supine to prone) correlated with the balance between resolution of dorsal atelectasis and formation of ventral atelectasis (p = 0.002). Dorsal consolidated tissue determined this balance, being inversely related with dorsal recruitment (p = 0.012). From supine-5 to supine-35, the apparent perfusion ratio increased from 1.38 ± 0.71 to 2.15 ± 1.15 (p = 0.004) while PaO2/FiO2 ratio increased in 52% and decreased in 48% of patients. Non-responders had consolidated tissue fraction of 0.27 ± 0.1 vs. 0.18 ± 0.1 in the responding cohort (p = 0.04). Consolidated tissue, PaCO2 and respiratory system elastance were higher in patients assessed late (all p < 0.05), suggesting, all together, "fibrotic-like" changes of the lung over time. CONCLUSION The amount of consolidated tissue was higher in patients assessed during the third week and determined the oxygenation responses following pronation and recruitment maneuvers.
Collapse
|
33
|
Chiumello D, Bonifazi M, Pozzi T, Formenti P, Papa GFS, Zuanetti G, Coppola S. Positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome: the heterogeneous effects. Crit Care 2021; 25:431. [PMID: 34915911 PMCID: PMC8674862 DOI: 10.1186/s13054-021-03839-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We hypothesized that as CARDS may present different pathophysiological features than classic ARDS, the application of high levels of end-expiratory pressure is questionable. Our first aim was to investigate the effects of 5-15 cmH2O of PEEP on partitioned respiratory mechanics, gas exchange and dead space; secondly, we investigated whether respiratory system compliance and severity of hypoxemia could affect the response to PEEP on partitioned respiratory mechanics, gas exchange and dead space, dividing the population according to the median value of respiratory system compliance and oxygenation. Thirdly, we explored the effects of an additional PEEP selected according to the Empirical PEEP-FiO2 table of the EPVent-2 study on partitioned respiratory mechanics and gas exchange in a subgroup of patients. METHODS Sixty-one paralyzed mechanically ventilated patients with a confirmed diagnosis of SARS-CoV-2 were enrolled (age 60 [54-67] years, PaO2/FiO2 113 [79-158] mmHg and PEEP 10 [10-10] cmH2O). Keeping constant tidal volume, respiratory rate and oxygen fraction, two PEEP levels (5 and 15 cmH2O) were selected. In a subgroup of patients an additional PEEP level was applied according to an Empirical PEEP-FiO2 table (empirical PEEP). At each PEEP level gas exchange, partitioned lung mechanics and hemodynamic were collected. RESULTS At 15 cmH2O of PEEP the lung elastance, lung stress and mechanical power were higher compared to 5 cmH2O. The PaO2/FiO2, arterial carbon dioxide and ventilatory ratio increased at 15 cmH2O of PEEP. The arterial-venous oxygen difference and central venous saturation were higher at 15 cmH2O of PEEP. Both the mechanics and gas exchange variables significantly increased although with high heterogeneity. By increasing the PEEP from 5 to 15 cmH2O, the changes in partitioned respiratory mechanics and mechanical power were not related to hypoxemia or respiratory compliance. The empirical PEEP was 18 ± 1 cmH2O. The empirical PEEP significantly increased the PaO2/FiO2 but also driving pressure, lung elastance, lung stress and mechanical power compared to 15 cmH2O of PEEP. CONCLUSIONS In COVID-19 ARDS during the early phase the effects of raising PEEP are highly variable and cannot easily be predicted by respiratory system characteristics, because of the heterogeneity of the disease.
Collapse
Affiliation(s)
- Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy.
- Department of Health Sciences, University of Milan, Milan, Italy.
- Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy.
| | - Matteo Bonifazi
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy
| | - Tommaso Pozzi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Paolo Formenti
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy
| | - Giuseppe Francesco Sferrazza Papa
- Department of Health Sciences, University of Milan, Milan, Italy
- Dipartimento di Scienze Neuroriabilitative, Casa di Cura del Policlinico, Milan, Italy
| | | | - Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy
| |
Collapse
|
34
|
Orlandi D, Battaglini D, Robba C, Viganò M, Bergamaschi G, Mignatti T, Radice ML, Lapolla A, Turtulici G, Pelosi P. Coronavirus Disease 2019 Phenotypes, Lung Ultrasound, Chest Computed Tomography and Clinical Features in Critically Ill Mechanically Ventilated Patients. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3323-3332. [PMID: 34551862 PMCID: PMC8302846 DOI: 10.1016/j.ultrasmedbio.2021.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 05/12/2023]
Abstract
Chest computed tomography (CT) may provide insights into the pathophysiology of coronavirus disease 2019 (COVID-19), although it is not suitable for a timely bedside dynamic assessment of patients admitted to intensive care unit (ICU); therefore, lung ultrasound (LUS) has been proposed as a complementary diagnostic tool. The aims of this study were to investigate different lungs phenotypes in patients with COVID-19 and to assess the differences in CT and LUS scores between ICU survivors and non-survivors. We also explored the association between CT and LUS, and oxygenation (arterial partial pressure of oxygen [PaO2]/fraction of inspired oxygen [FiO2]) and clinical parameters. The study included 39 patients with COVID-19. CT scans revealed types 1, 2 and 3 phenotypes in 62%, 28% and 10% of patients, respectively. Among survivors, pattern 1 was prevalent (p < 0.005). Chest CT and LUS scores differed between survivors and non-survivors both at ICU admission and 10 days after and were associated with ICU mortality. Chest CT score was positively correlated with LUS findings at ICU admission (r = 0.953, p < 0.0001) and was inversely correlated with PaO2/FiO2 (r = -0.375, p = 0.019) and C-reactive protein (r = 0.329, p = 0.041). LUS score was inversely correlated with PaO2/FiO2 (r = -0.345, p = 0.031). COVID-19 presents distinct phenotypes with differences between survivors and non-survivors. LUS is a valuable monitoring tool in an ICU setting because it may correlate with CT findings and mortality, although it cannot predict oxygenation changes.
Collapse
Affiliation(s)
- Davide Orlandi
- Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy.
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) for Oncology and Neurosciences, Genoa, Italy; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) for Oncology and Neurosciences, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Genoa, Italy
| | - Marco Viganò
- Orthopedics Biotechnology Laboratory, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giulio Bergamaschi
- Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Tiziana Mignatti
- Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Maria Luisa Radice
- Anesthesia and Intensive Care, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Antonio Lapolla
- Anesthesia and Intensive Care, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Giovanni Turtulici
- Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) for Oncology and Neurosciences, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
35
|
Valk CMA, Tsonas AM, Botta M, Bos LDJ, Pillay J, Serpa Neto A, Schultz MJ, Paulus F. Association of early positive end-expiratory pressure settings with ventilator-free days in patients with coronavirus disease 2019 acute respiratory distress syndrome: A secondary analysis of the Practice of VENTilation in COVID-19 study. Eur J Anaesthesiol 2021; 38:1274-1283. [PMID: 34238782 PMCID: PMC8630930 DOI: 10.1097/eja.0000000000001565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is uncertainty about how much positive end-expiratory pressure (PEEP) should be used in patients with acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19). OBJECTIVE To investigate whether a higher PEEP strategy is superior to a lower PEEP strategy regarding the number of ventilator-free days (VFDs). DESIGN Multicentre observational study conducted from 1 March to 1 June 2020. SETTING AND PATIENTS Twenty-two ICUs in The Netherlands and 933 invasively ventilated COVID-19 ARDS patients. INTERVENTIONS Patients were categorised retrospectively as having received invasive ventilation with higher (n=259) or lower PEEP (n=674), based on the high and low PEEP/FiO2 tables of the ARDS Network, and using ventilator settings and parameters in the first hour of invasive ventilation, and every 8 h thereafter at fixed time points during the first four calendar days. We also used propensity score matching to control for observed confounding factors that might influence outcomes. MAIN OUTCOMES AND MEASURES The primary outcome was the number of VFDs. Secondary outcomes included distant organ failures including acute kidney injury (AKI) and use of renal replacement therapy (RRT), and mortality. RESULTS In the unmatched cohort, the higher PEEP strategy had no association with the median [IQR] number of VFDs (2.0 [0.0 to 15.0] vs. 0.0 [0.0 to 16.0] days). The median (95% confidence interval) difference was 0.21 (-3.34 to 3.78) days, P = 0.905. In the matched cohort, the higher PEEP group had an association with a lower median number of VFDs (0.0 [0.0 to 14.0] vs. 6.0 [0.0 to 17.0] days) a median difference of -4.65 (-8.92 to -0.39) days, P = 0.032. The higher PEEP strategy had associations with higher incidence of AKI (in the matched cohort) and more use of RRT (in the unmatched and matched cohorts). The higher PEEP strategy had no association with mortality. CONCLUSION In COVID-19 ARDS, use of higher PEEP may be associated with a lower number of VFDs, and may increase the incidence of AKI and need for RRT. TRIAL REGISTRATION Practice of VENTilation in COVID-19 is registered at ClinicalTrials.gov, NCT04346342.
Collapse
Affiliation(s)
- Christel M A Valk
- From the Department of Intensive Care & Laboratory of Experimental Intensive Care and Anaesthesiology (LEICA), Amsterdam UMC, Location AMC, Amsterdam (CMAV, AMT, MB, LDJB, ASN, MJS, FP), Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (JP), Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil (ASN), Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University (ASN), Data Analytics Research & Evaluation (DARE) Centre, Austin Hospital and University of Melbourne, Melbourne, Victoria, Australia (ASN), Nuffield Department of Medicine, Oxford University, Oxford, UK (MJS), Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand (MJS) and ACHIEVE Centre of Expertise, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands (FP)
| | | | | | | | | | | | | | | |
Collapse
|
36
|
De Cassai A, Longhini F, Romagnoli S, Cavaliere F, Caroleo A, Foti L, Furlani E, Gianoli S, Monteleone F, Saraco G, Villa G, Conti G, Navalesi P. Research on SARS-COV-2 pandemic: a narrative review focused on the Italian contribution. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2021. [PMCID: PMC8596088 DOI: 10.1186/s44158-021-00017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Since late 2019, a severe acute respiratory syndrome, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread with overwhelming speed causing over 214 million confirmed infections and more than 4.5 million deaths worldwide. In this framework, Italy had the second highest number of SARS-CoV-2 infections worldwide, and the largest number of deaths. A global effort of both the scientific community and governments has been undertaken to stem the pandemic. The aim of this paper is to perform a narrative review of the Italian contribution to the scientific literature regarding intensive care management of patients suffering from COVID-19, being one of the first western countries to face an outbreak of SARS-CoV-2 infection.
Main body
We performed a narrative review of the literature, dedicating particular attention and a dedicated paragraph to ventilatory support management, chest imaging findings, biomarkers, possible pharmacological interventions, bacterial superinfections, prognosis and non-clinical key aspects such as communication and interaction with relatives.
Conclusions
Many colleagues, nurses and patients died leaving their families alone. To all of them, we send our thoughts and dedicate these pages.
Collapse
|
37
|
Vetrugno L, Mojoli F, Cortegiani A, Bignami EG, Ippolito M, Orso D, Corradi F, Cammarota G, Mongodi S, Boero E, Iacovazzo C, Vargas M, Poole D, Biasucci DG, Persona P, Bove T, Ball L, Chiumello D, Forfori F, de Robertis E, Pelosi P, Navalesi P, Giarratano A, Petrini F. Italian Society of Anesthesia, Analgesia, Resuscitation, and Intensive Care expert consensus statement on the use of lung ultrasound in critically ill patients with coronavirus disease 2019 (ITACO). JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2021; 1:16. [PMID: 37386555 PMCID: PMC8611396 DOI: 10.1186/s44158-021-00015-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND To produce statements based on the available evidence and an expert consensus (as members of the Lung Ultrasound Working Group of the Italian Society of Analgesia, Anesthesia, Resuscitation, and Intensive Care, SIAARTI) on the use of lung ultrasound for the management of patients with COVID-19 admitted to the intensive care unit. METHODS A modified Delphi method was applied by a panel of anesthesiologists and intensive care physicians expert in the use of lung ultrasound in COVID-19 intensive critically ill patients to reach a consensus on ten clinical questions concerning the role of lung ultrasound in the following: COVID-19 diagnosis and monitoring (with and without invasive mechanical ventilation), positive end expiratory pressure titration, the use of prone position, the early diagnosis of pneumothorax- or ventilator-associated pneumonia, the process of weaning from invasive mechanical ventilation, and the need for radiologic chest imaging. RESULTS A total of 20 statements were produced by the panel. Agreement was reached on 18 out of 20 statements (scoring 7-9; "appropriate") in the first round of voting, while 2 statements required a second round for agreement to be reached. At the end of the two Delphi rounds, the median score for the 20 statements was 8.5 [IQR 8.9], and the agreement percentage was 100%. CONCLUSION The Lung Ultrasound Working Group of the Italian Society of Analgesia, Anesthesia, Resuscitation, and Intensive Care produced 20 consensus statements on the use of lung ultrasound in COVID-19 patients admitted to the ICU. This expert consensus strongly suggests integrating lung ultrasound findings in the clinical management of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Luigi Vetrugno
- Department of Medicine, University of Udine, Via Colugna n 50, 33100, Udine, Italy.
- University-Hospital of Friuli Centrale, ASU FC, Udine, Italy.
| | - Francesco Mojoli
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | - Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mariachiara Ippolito
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | - Daniele Orso
- University-Hospital of Friuli Centrale, ASU FC, Udine, Italy
| | - Francesco Corradi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Department of Anesthesia and Intensive Care, "Ente Ospedaliero Ospedali Galliera", Genova, Italy
| | | | - Silvia Mongodi
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Enrico Boero
- Anesthesia and Intensive Care Unit, San Giovanni Bosco Hospital, Turin, Italy
| | - Carmine Iacovazzo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Maria Vargas
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Daniele Poole
- Anesthesia and Intensive Care Operative Unit, S. Martino Hospital, Belluno, Italy
| | - Daniele Guerino Biasucci
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Paolo Persona
- UOC Anesthesia and Intensive Care Unit, University Hospital of Padua, Padua, Italy
| | - Tiziana Bove
- University-Hospital of Friuli Centrale, ASU FC, Udine, Italy
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Francesco Forfori
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Paolo Navalesi
- UOC Anesthesia and Intensive Care Unit, University Hospital of Padua, Padua, Italy
| | - Antonino Giarratano
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | - Flavia Petrini
- Italian Society of Anesthesia, Analgesia, Resuscitation, and Intensive Care (SIAARTI), Rome, Italy
| |
Collapse
|
38
|
Robba C, Ball L, Nogas S, Battaglini D, Messina A, Brunetti I, Minetti G, Castellan L, Rocco PRM, Pelosi P. Effects of Positive End-Expiratory Pressure on Lung Recruitment, Respiratory Mechanics, and Intracranial Pressure in Mechanically Ventilated Brain-Injured Patients. Front Physiol 2021; 12:711273. [PMID: 34733173 PMCID: PMC8558243 DOI: 10.3389/fphys.2021.711273] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Background: The pathophysiological effects of positive end-expiratory pressure (PEEP) on respiratory mechanics, lung recruitment, and intracranial pressure (ICP) in acute brain-injured patients have not been completely elucidated. The primary aim of this study was to assess the effects of PEEP augmentation on respiratory mechanics, quantitative computed lung tomography (qCT) findings, and its relationship with ICP modifications. Secondary aims included the assessment of the correlations between different factors (respiratory mechanics and qCT features) with the changes of ICP and how these factors at baseline may predict ICP response after greater PEEP levels. Methods: A prospective, observational study included mechanically ventilated patients with acute brain injury requiring invasive ICP and who underwent two-PEEP levels lung CT scan. Respiratory system compliance (Crs), arterial partial pressure of carbon dioxide (PaCO2), mean arterial pressure (MAP), data from qCT and ICP were obtained at PEEP 5 and 15 cmH2O. Results: Sixteen examinations (double PEEP lung CT and neuromonitoring) in 15 patients were analyzed. The median age of the patients was 54 years (interquartile range, IQR = 39–65) and 53% were men. The median Glasgow Coma Scale (GCS) at intensive care unit (ICU) admission was 8 (IQR = 3–12). Median alveolar recruitment was 2.5% of total lung weight (−1.5 to 4.7). PEEP from 5 to 15 cmH2O increased ICP [median values from 14.0 (11.2–17.5) to 23.5 (19.5–26.8) mmHg, p < 0.001, respectively]. The amount of recruited lung tissue on CT was inversely correlated with the change (Δ) in ICP (rho = −0.78; p = 0.0006). Additionally, ΔCrs (rho = −0.77, p = 0.008), ΔPaCO2 (rho = 0.81, p = 0.0003), and ΔMAP (rho = −0.64, p = 0.009) were correlated with ΔICP. Baseline Crs was not predictive of ICP response to PEEP. Conclusions: The main factors associated with increased ICP after PEEP augmentation included reduced Crs, lower MAP and lung recruitment, and increased PaCO2, but none of these factors was able to predict, at baseline, ICP response to PEEP. To assess the potential benefits of increased PEEP in patients with acute brain injury, hemodynamic status, respiratory mechanics, and lung morphology should be taken into account.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Stefano Nogas
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Antonio Messina
- Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Giuseppe Minetti
- Radiology Department San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Lucio Castellan
- Radiology Department San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
39
|
Chen R, Lovas A, Benyó B, Möller K. Detection of Different COVID-19 Pneumonia Phenotypes with Estimated Alveolar Collapse and Overdistention by Bedside Electrical Impedance Tomography. IFAC-PAPERSONLINE 2021; 54:269-274. [PMID: 38620949 PMCID: PMC8562158 DOI: 10.1016/j.ifacol.2021.10.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
COVID-19 induced acute respiratory distress syndrome (ARDS) could have two different phenotypes, which was reported to have different response and outcome to the typical ARDS positive end-expiration pressure (PEEP) treatment. The identification of the different phenotypes in terms of the recruitability can help improve the patient outcome. In this contribution we conducted alveolar overdistention and collapse analysis with the long term electrical impedance tomography monitoring data on two severe COVID-19 pneumonia patients. The result showed different patient reactions to the PEEP trial, revealed the progressive change in the patient status, and indicted a possible phenotype transition in one patient. It might suggest that EIT can be a practical tool to identify phenotypes and to provide progressive information of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Rongqing Chen
- Institute of Technical Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, VS-Schwenningen, Germany
| | - András Lovas
- Kiskunhalas Semmelweis Hospital, Department of Anaesthesiology and Intensive Therapy, H-6400, Dr. Monszpart L. u. 1, Hungary
| | - Balázs Benyó
- Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, 1117 Budapest, Magyar tudósok krt. 2, Hungary
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, VS-Schwenningen, Germany
| |
Collapse
|
40
|
Protti A, Santini A, Pennati F, Chiurazzi C, Cressoni M, Ferrari M, Iapichino GE, Carenzo L, Lanza E, Picardo G, Caironi P, Aliverti A, Cecconi M. Lung response to a higher positive end-expiratory pressure in mechanically ventilated patients with COVID-19. Chest 2021; 161:979-988. [PMID: 34666011 PMCID: PMC8520168 DOI: 10.1016/j.chest.2021.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Background International guidelines suggest using a higher (> 10 cm H2O) positive end-expiratory pressure (PEEP) in patients with moderate-to-severe ARDS due to COVID-19. However, even if oxygenation generally improves with a higher PEEP, compliance, and Paco2 frequently do not, as if recruitment was small. Research Question Is the potential for lung recruitment small in patients with early ARDS due to COVID-19? Study Design and Methods Forty patients with ARDS due to COVID-19 were studied in the supine position within 3 days of endotracheal intubation. They all underwent a PEEP trial, in which oxygenation, compliance, and Paco2 were measured with 5, 10, and 15 cm H2O of PEEP, and all other ventilatory settings unchanged. Twenty underwent a whole-lung static CT scan at 5 and 45 cm H2O, and the other 20 at 5 and 15 cm H2O of airway pressure. Recruitment and hyperinflation were defined as a decrease in the volume of the non-aerated (density above −100 HU) and an increase in the volume of the over-aerated (density below −900 HU) lung compartments, respectively. Results From 5 to 15 cm H2O, oxygenation improved in 36 (90%) patients but compliance only in 11 (28%) and Paco2 only in 14 (35%). From 5 to 45 cm H2O, recruitment was 351 (161-462) mL and hyperinflation 465 (220-681) mL. From 5 to 15 cm H2O, recruitment was 168 (110-202) mL and hyperinflation 121 (63-270) mL. Hyperinflation variably developed in all patients and exceeded recruitment in more than half of them. Interpretation Patients with early ARDS due to COVID-19, ventilated in the supine position, present with a large potential for lung recruitment. Even so, their compliance and Paco2 do not generally improve with a higher PEEP, possibly because of hyperinflation.
Collapse
Affiliation(s)
- Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Anesthesia and Intensive Care Units, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.
| | - Alessandro Santini
- Department of Anesthesia and Intensive Care Units, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Chiara Chiurazzi
- Department of Anesthesia and Intensive Care Units, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Massimo Cressoni
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Michele Ferrari
- Department of Anesthesia and Intensive Care Units, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Giacomo E Iapichino
- Department of Anesthesia and Intensive Care Units, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Luca Carenzo
- Department of Anesthesia and Intensive Care Units, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Ezio Lanza
- Department of Radiology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Giorgio Picardo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Pietro Caironi
- Department of Oncology, University of Turin, Turin, Italy; Department of Anesthesia and Critical Care, Azienda Ospedaliero-Universitaria S. Luigi Gonzaga, Orbassano, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Anesthesia and Intensive Care Units, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
41
|
Xin Y, Martin K, Morais CC, Delvecchio P, Gerard SE, Hamedani H, Herrmann J, Abate N, Lenart A, Humayun S, Sidhu U, Petrov M, Reutlinger K, Mandelbaum T, Duncan I, Tustison N, Kadlecek S, Chatterjee S, Gee JC, Rizi RR, Berra L, Cereda M. Diminishing Efficacy of Prone Positioning With Late Application in Evolving Lung Injury. Crit Care Med 2021; 49:e1015-e1024. [PMID: 33938714 PMCID: PMC8448902 DOI: 10.1097/ccm.0000000000005071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN Prospective, longitudinal imaging study. SETTING Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.
Collapse
Affiliation(s)
- Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Martin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Caio C.A. Morais
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Delvecchio
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Gerard
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Nicholas Abate
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Austin Lenart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiraz Humayun
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Uday Sidhu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Mihail Petrov
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristan Reutlinger
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Tal Mandelbaum
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James C. Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Mendes JJ, Paiva JA, Gonzalez F, Mergulhão P, Froes F, Roncon R, Gouveia J. Update of the recommendations of the Sociedade Portuguesa de Cuidados Intensivos and the Infection and Sepsis Group for the approach to COVID-19 in Intensive Care Medicine. Rev Bras Ter Intensiva 2021; 33:487-536. [PMID: 35081236 PMCID: PMC8889599 DOI: 10.5935/0103-507x.0103-507x-rbti-20210080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The Sociedade Portuguesa de Cuidados Intensivos and the Infection and Sepsis Group have previously issued health service and management recommendations for critically ill patients with COVID-19. Due to the evolution of knowledge, the panel of experts was again convened to review the current evidence and issue updated recommendations. METHODS A national panel of experts who declared that they had no conflicts of interest regarding the development of the recommendations was assembled. Operational questions were developed based on the PICO methodology, and a rapid systematic review was conducted by consulting different bibliographic sources. The panel determined the direction and strength of the recommendations using two Delphi rounds, conducted in accordance with the principles of the GRADE system. A strong recommendation received the wording "is recommended", and a weak recommendation was written as "is suggested." RESULTS A total of 48 recommendations and 30 suggestions were issued, covering the following topics: diagnosis of SARS-CoV-2 infection, coinfection and superinfection; criteria for admission, cure and suspension of isolation; organization of services; personal protective equipment; and respiratory support and other specific therapies (antivirals, immunomodulators and anticoagulation). CONCLUSION These recommendations, specifically oriented to the Portuguese reality but that may also apply to Portuguese-speaking African countries and East Timor, aim to support health professionals in the management of critically ill patients with COVID-19. They will be continuously reviewed to reflect the progress of our understanding and the treatment of this pathology.
Collapse
Affiliation(s)
- João João Mendes
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Hospital Prof. Doutor
Fernando da Fonseca EPE - Lisboa, Portugal
| | - José Artur Paiva
- College of Specialties of Intensive Care Medicine, Ordem dos
Médicos- Lisboa, Portugal
- Infection and Sepsis Group - Lisboa, Portugal
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de São João EPE, Faculdade de Medicina da Universidade do Porto -
Porto, Portugal
| | - Filipe Gonzalez
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Hospital Garcia de Orta EPE -
Lisboa, Portugal
| | - Paulo Mergulhão
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Infection and Sepsis Group - Lisboa, Portugal
- Polyvalent Intensive Care Unit, Hospital Lusíadas Porto - Porto,
Portugal
| | - Filipe Froes
- Medical-Surgical Intensive Care Unit, Hospital de Pulido Valente,
Centro Hospitalar Universitário de Lisboa Norte EPE - Lisboa, Portugal
| | - Roberto Roncon
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de São João EPE, Faculdade de Medicina da Universidade do Porto -
Porto, Portugal
| | - João Gouveia
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de Lisboa Norte EPE - Lisboa, Portugal
| |
Collapse
|
43
|
Busana M, Giosa L. The knowns and unknowns of perfusion disturbances in COVID-19 pneumonia. Crit Care 2021; 25:352. [PMID: 34583761 PMCID: PMC8476978 DOI: 10.1186/s13054-021-03742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mattia Busana
- Department of Anesthesiology, University Medical Center Göttingen, Robert Koch Straße 40, 37075, Göttingen, Germany.
| | - Lorenzo Giosa
- Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Cronin JN, Camporota L, Formenti F. Mechanical ventilation in COVID-19: A physiological perspective. Exp Physiol 2021; 107:683-693. [PMID: 34541721 PMCID: PMC8667647 DOI: 10.1113/ep089400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
New Findings What is the topic of this review? This review presents the fundamental concepts of respiratory physiology and pathophysiology, with particular reference to lung mechanics and the pulmonary phenotype associated with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection and subsequent coronavirus disease 2019 (COVID‐19) pneumonia. What advances does it highlight? The review provides a critical summary of the main physiological aspects to be considered for safe and effective mechanical ventilation in patients with severe COVID‐19 in the intensive care unit.
Abstract Severe respiratory failure from coronavirus disease 2019 (COVID‐19) pneumonia not responding to non‐invasive respiratory support requires mechanical ventilation. Although ventilation can be a life‐saving therapy, it can cause further lung injury if airway pressure and flow and their timing are not tailored to the respiratory system mechanics of the individual patient. The pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection can lead to a pattern of lung injury in patients with severe COVID‐19 pneumonia typically associated with two distinct phenotypes, along a temporal and pathophysiological continuum, characterized by different levels of elastance, ventilation‐to‐perfusion ratio, right‐to‐left shunt, lung weight and recruitability. Understanding the underlying pathophysiology, duration of symptoms, radiological characteristics and lung mechanics at the individual patient level is crucial for the appropriate choice of mechanical ventilation settings to optimize gas exchange and prevent further lung injury. By critical analysis of the literature, we propose fundamental physiological and mechanical criteria for the selection of ventilation settings for COVID‐19 patients in intensive care units. In particular, the choice of tidal volume should be based on obtaining a driving pressure < 14 cmH2O, ensuring the avoidance of hypoventilation in patients with preserved compliance and of excessive strain in patients with smaller lung volumes and lower lung compliance. The level of positive end‐expiratory pressure (PEEP) should be informed by the measurement of the potential for lung recruitability, where patients with greater recruitability potential may benefit from higher PEEP levels. Prone positioning is often beneficial and should be considered early. The rationale for the proposed mechanical ventilation settings criteria is presented and discussed.
Collapse
Affiliation(s)
- John N Cronin
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK.,Department of Anaesthetics, Royal Brompton and Harefield, part of Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Luigi Camporota
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK.,Intensive Care Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Federico Formenti
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK.,Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK.,Department of Biomechanics, University of Nebraska Omaha, Omaha, Nebraska, USA
| |
Collapse
|
45
|
Battaglini D, Robba C, Ball L, Silva PL, Cruz FF, Pelosi P, Rocco PRM. Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. Br J Anaesth 2021; 127:353-364. [PMID: 34217468 PMCID: PMC8173496 DOI: 10.1016/j.bja.2021.05.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/17/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 pneumonia is associated with hypoxaemic respiratory failure, ranging from mild to severe. Because of the worldwide shortage of ICU beds, a relatively high number of patients with respiratory failure are receiving prolonged noninvasive respiratory support, even when their clinical status would have required invasive mechanical ventilation. There are few experimental and clinical data reporting that vigorous breathing effort during spontaneous ventilation can worsen lung injury and cause a phenomenon that has been termed patient self-inflicted lung injury (P-SILI). The aim of this narrative review is to provide an overview of P-SILI pathophysiology and the role of noninvasive respiratory support in COVID-19 pneumonia. Respiratory mechanics, vascular compromise, viscoelastic properties, lung inhomogeneity, work of breathing, and oesophageal pressure swings are discussed. The concept of P-SILI has been widely investigated in recent years, but controversies persist regarding its mechanisms. To minimise the risk of P-SILI, intensivists should better understand its underlying pathophysiology to optimise the type of noninvasive respiratory support provided to patients with COVID-19 pneumonia, and decide on the optimal timing of intubation for these patients.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil.
| |
Collapse
|
46
|
Smit MR, Beenen LF, Valk CM, de Boer MM, Scheerder MJ, Annema JT, Paulus F, Horn J, Vlaar AP, Kooij FO, Hollmann MW, Schultz MJ, Bos LD. Assessment of Lung Reaeration at 2 Levels of Positive End-expiratory Pressure in Patients With Early and Late COVID-19-related Acute Respiratory Distress Syndrome. J Thorac Imaging 2021; 36:286-293. [PMID: 34081643 PMCID: PMC8386391 DOI: 10.1097/rti.0000000000000600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE Patients with novel coronavirus disease (COVID-19) frequently develop acute respiratory distress syndrome (ARDS) and need invasive ventilation. The potential to reaerate consolidated lung tissue in COVID-19-related ARDS is heavily debated. This study assessed the potential to reaerate lung consolidations in patients with COVID-19-related ARDS under invasive ventilation. MATERIALS AND METHODS This was a retrospective analysis of patients with COVID-19-related ARDS who underwent chest computed tomography (CT) at low positive end-expiratory pressure (PEEP) and after a recruitment maneuver at high PEEP of 20 cm H2O. Lung reaeration, volume, and weight were calculated using both CT scans. CT scans were performed after intubation and start of ventilation (early CT), or after several days of intensive care unit admission (late CT). RESULTS Twenty-eight patients were analyzed. The median percentages of reaerated and nonaerated lung tissue were 19% [interquartile range, IQR: 10 to 33] and 11% [IQR: 4 to 15] for patients with early and late CT scans, respectively (P=0.049). End-expiratory lung volume showed a median increase of 663 mL [IQR: 483 to 865] and 574 mL [IQR: 292 to 670] after recruitment for patients with early and late CT scans, respectively (P=0.43). The median decrease in lung weight attributed to nonaerated lung tissue was 229 g [IQR: 165 to 376] and 171 g [IQR: 81 to 229] after recruitment for patients with early and late CT scans, respectively (P=0.16). CONCLUSIONS The majority of patients with COVID-19-related ARDS undergoing invasive ventilation had substantial reaeration of lung consolidations after recruitment and ventilation at high PEEP. Higher PEEP can be considered in patients with reaerated lung consolidations when accompanied by improvement in compliance and gas exchange.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fabian O. Kooij
- Anesthesiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | | | - Marcus J. Schultz
- Departments of Intensive Care
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
47
|
Diaz RA, Graf J, Zambrano JM, Ruiz C, Espinoza JA, Bravo SI, Salazar PA, Bahamondes JC, Castillo LB, Gajardo AIJ, Kursbaum A, Ferreira LL, Valenzuela J, Castillo RE, Pérez-Araos RA, Bravo M, Aquevedo AF, González MG, Pereira R, Ortega L, Santis C, Fernández PA, Cortés V, Cornejo RA. Extracorporeal Membrane Oxygenation for COVID-19-associated Severe Acute Respiratory Distress Syndrome in Chile: A Nationwide Incidence and Cohort Study. Am J Respir Crit Care Med 2021; 204:34-43. [PMID: 33823118 PMCID: PMC8437120 DOI: 10.1164/rccm.202011-4166oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rationale: The role of and needs for extracorporeal membrane oxygenation (ECMO) at a population level during the coronavirus disease (COVID-19) pandemic have not been completely established. Objectives: To identify the cumulative incidence of ECMO use in the first pandemic wave and to describe the Nationwide Chilean cohort of ECMO-supported patients with COVID-19. Methods: We conducted a population-based study from March 3 to August 31, 2020, using linked data from national agencies. The cumulative incidence of ECMO use and mortality risk of ECMO-supported patients were calculated and age standardized. In addition, a retrospective cohort analysis was performed. Outcomes were 90-day mortality after ECMO initiation, ECMO-associated complications, and hospital length of stay. Cox regression models were used to explore risk factors for mortality in a time-to-event analysis. Measurements and Main Results: Ninety-four patients with COVID-19 were supported with ECMO (0.42 per population of 100,000, 14.89 per 100,000 positive cases, and 1.2% of intubated patients with COVID-19); 85 were included in the cohort analysis, and the median age was 48 (interquartile range [IQR], 41-55) years, 83.5% were men, and 42.4% had obesity. The median number of pre-ECMO intubation days was 4 (IQR, 2-7), the median PaO2/FiO2 ratio was 86.8 (IQR, 64-99) mm Hg, 91.8% of patients were prone positioned, and 14 patients had refractory respiratory acidosis. Main complications were infections (70.6%), bleeding (38.8%), and thromboembolism (22.4%); 52 patients were discharged home, and 33 died. The hospital length of stay was a median of 50 (IQR, 24-69) days. Lower respiratory system compliance and higher driving pressure before ECMO initiation were associated with increased mortality. A duration of pre-ECMO intubation ≥10 days was not associated with mortality. Conclusions: Documenting nationwide ECMO needs may help in planning ECMO provision for future COVID-19 pandemic waves. The 90-day mortality of the Chilean cohort of ECMO-supported patients with COVID-19 (38.8%) is comparable to that of previous reports.
Collapse
Affiliation(s)
- Rodrigo A Diaz
- Unidad de Oxigenación por Membrana Extracorpórea, Clínica Las Condes, Santiago, Chile
| | - Jerónimo Graf
- Departamento de Paciente Crítico, Clínica Alemana de Santiago, Santiago, Chile.,Facultad de Medicina, Clínica Alemana-Universidad de Desarrollo, Santiago, Chile
| | | | - Carolina Ruiz
- Unidad de Paciente Crítico, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile.,Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Sebastian I Bravo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Salazar
- Equipo de Oxigenación por Membrana Extracorpórea, Hospital de Las Higueras de Talcahuano, Talcahuano, Chile
| | - Juan C Bahamondes
- Servicio de Cirugía Cardiovascular and.,Departamento de Cirugía, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Luis B Castillo
- Unidad de Pacientes Críticos, Hospital Barros Luco Trudeau, Santiago, Chile
| | | | - Andrés Kursbaum
- Departamento de Cirugía Cardiaca, Clínica Dávila, Santiago, Chile
| | - Leonila L Ferreira
- Unidad de Pacientes Críticos, Hospital Regional de Concepción, Concepción, Chile
| | | | - Roberto E Castillo
- Unidad de Oxigenación por Membrana Extracorpórea, Clínica Las Condes, Santiago, Chile
| | - Rodrigo A Pérez-Araos
- Departamento de Paciente Crítico, Clínica Alemana de Santiago, Santiago, Chile.,Facultad de Medicina, Clínica Alemana-Universidad de Desarrollo, Santiago, Chile
| | | | - Andrés F Aquevedo
- Unidad de Paciente Crítico, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile.,Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio G González
- Departamento de Anestesiología y Medicina Perioperatoria, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Rodrigo Pereira
- Equipo de Oxigenación por Membrana Extracorpórea, Hospital de Las Higueras de Talcahuano, Talcahuano, Chile
| | - Leandro Ortega
- Unidad de Pacientes Críticos, Hospital Regional de Temuco, Temuco, Chile
| | - César Santis
- Unidad de Pacientes Críticos, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Paula A Fernández
- Unidad de Pacientes Críticos, Hospital Regional de Concepción, Concepción, Chile
| | - Vilma Cortés
- División de Gestión de Redes Asistenciales, Ministerio de Salud de Chile, Santiago, Chile; and
| | - Rodrigo A Cornejo
- Unidad de Pacientes Críticos, Departamento de Medicina, and.,Center of Acute Respiratory Critical Illness, Santiago, Chile
| |
Collapse
|
48
|
Gold AK, Scantling DR, Brundidge DA, Cereda MF, Scott MJ, Gaulton TG. Respiratory mechanics and mortality in coronavirus disease 2019 acute respiratory distress syndrome: A retrospective cohort study. Int J Crit Illn Inj Sci 2021; 11:51-55. [PMID: 34395204 PMCID: PMC8318169 DOI: 10.4103/ijciis.ijciis_171_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The association between commonly monitored respiratory parameters, including compliance and oxygenation and clinical outcomes in acute respiratory distress syndrome (ARDS) from coronavirus disease 2019 (COVID-19) remains unclear, limiting prognostication and the delivery of targeted treatments. Our project aim was to identify if any such associations exist between clinical outcomes and respiratory parameters. Methods: We performed a retrospective observational cohort study of confirmed COVID-19 positive patients admitted to a single dedicated intensive care unit at a university hospital from March 27 to April 26, 2020. We collected information on baseline clinical and demographic characteristics and initial respiratory parameters. Our primary outcome was in-hospital mortality. Results: A total of 22 patients met criteria for ARDS and were included in our study. Nine of the 22 (40.9%) patients with ARDS died during hospitalization. The initial static respiratory system compliance of survivors was 39 (interquartile range [IQR] 34, 55) and nonsurvivors was 27 (IQR 24, 33, P < 0.01). A lower respiratory system compliance was associated with an increased adjusted odd of in-hospital mortality (odds ratio 1.2, 95% confidence interval 1.01, 1.45 P = 0.04). Conclusion: In our cohort of 22 patients mechanically ventilated with ARDS from COVID-19, having lower respiratory system compliance after intubation was associated with an increased risk of in-hospital mortality, consistent with ARDS from non-COVID etiologies.
Collapse
Affiliation(s)
- Andrew K Gold
- Department of Anesthesiology and Critical Care Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dane R Scantling
- Department of Traumatology, Emergency Surgical Services, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominique A Brundidge
- Department of Anesthesiology and Critical Care Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maurizio F Cereda
- Department of Anesthesiology and Critical Care Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Scott
- Department of Anesthesiology and Critical Care Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy G Gaulton
- Department of Anesthesiology and Critical Care Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Ball L, Robba C, Herrmann J, Gerard SE, Xin Y, Mandelli M, Battaglini D, Brunetti I, Minetti G, Seitun S, Bovio G, Vena A, Giacobbe DR, Bassetti M, Rocco PRM, Cereda M, Rizi RR, Castellan L, Patroniti N, Pelosi P. Lung distribution of gas and blood volume in critically ill COVID-19 patients: a quantitative dual-energy computed tomography study. Crit Care 2021; 25:214. [PMID: 34154635 PMCID: PMC8215486 DOI: 10.1186/s13054-021-03610-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Critically ill COVID-19 patients have pathophysiological lung features characterized by perfusion abnormalities. However, to date no study has evaluated whether the changes in the distribution of pulmonary gas and blood volume are associated with the severity of gas-exchange impairment and the type of respiratory support (non-invasive versus invasive) in patients with severe COVID-19 pneumonia. METHODS This was a single-center, retrospective cohort study conducted in a tertiary care hospital in Northern Italy during the first pandemic wave. Pulmonary gas and blood distribution was assessed using a technique for quantitative analysis of dual-energy computed tomography. Lung aeration loss (reflected by percentage of normally aerated lung tissue) and the extent of gas:blood volume mismatch (percentage of non-aerated, perfused lung tissue-shunt; aerated, non-perfused dead space; and non-aerated/non-perfused regions) were evaluated in critically ill COVID-19 patients with different clinical severity as reflected by the need for non-invasive or invasive respiratory support. RESULTS Thirty-five patients admitted to the intensive care unit between February 29th and May 30th, 2020 were included. Patients requiring invasive versus non-invasive mechanical ventilation had both a lower percentage of normally aerated lung tissue (median [interquartile range] 33% [24-49%] vs. 63% [44-68%], p < 0.001); and a larger extent of gas:blood volume mismatch (43% [30-49%] vs. 25% [14-28%], p = 0.001), due to higher shunt (23% [15-32%] vs. 5% [2-16%], p = 0.001) and non-aerated/non perfused regions (5% [3-10%] vs. 1% [0-2%], p = 0.001). The PaO2/FiO2 ratio correlated positively with normally aerated tissue (ρ = 0.730, p < 0.001) and negatively with the extent of gas-blood volume mismatch (ρ = - 0.633, p < 0.001). CONCLUSIONS In critically ill patients with severe COVID-19 pneumonia, the need for invasive mechanical ventilation and oxygenation impairment were associated with loss of aeration and the extent of gas:blood volume mismatch.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy.
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sarah E Gerard
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Yi Xin
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maura Mandelli
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Giuseppe Minetti
- Oncology and Interventional Radiology Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Sara Seitun
- Oncology and Interventional Radiology Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Giulio Bovio
- Oncology and Interventional Radiology Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim R Rizi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucio Castellan
- Radiology Department, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Nicolò Patroniti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| |
Collapse
|
50
|
Wang YC, Lu MC, Yang SF, Bien MY, Chen YF, Li YT. Respiratory care for the critical patients with 2019 novel coronavirus. Respir Med 2021; 186:106516. [PMID: 34218168 PMCID: PMC8215880 DOI: 10.1016/j.rmed.2021.106516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through respiratory droplets, aerosols and close contact. Cross infections occur because viruses spread rapidly among humans. Nineteen percent (19%) of the infected patients developed severe pneumonia and acute respiratory distress syndrome (ARDS). Hypoxemia usually occurs and patients may require oxygen therapy or mechanical ventilation (MV) support. In this article, recently published clinical experience and observational studies were reviewed. Corresponding respiratory therapy regarding different stages of infection is proposed. Infection control principles and respiratory strategies including oxygen therapy, non-invasive respiratory support (NIRS), intubation evaluation, equipment preparation, ventilator settings, special maneuvers comprise of the prone position (PP), recruitment maneuver (RM), extracorporeal membrane oxygenation (ECMO), weaning and extubation are summarized. Respiratory equipment and device disinfection recommendations are worked up. We expect this review article could be used as a reference by healthcare workers in patient care while minimizing the risk of environmental contamination.
Collapse
Affiliation(s)
- Yao-Chen Wang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 402306, Taiwan.
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, 404332, Taiwan; Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, 406040, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung San Medical University, Taichung, 402306, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan.
| | - Mauo-Ying Bien
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei, 116081, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| | - Yi-Fang Chen
- Division of Respiratory Therapy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan.
| | - Yia-Ting Li
- Institute of Medicine, Chung San Medical University, Taichung, 402306, Taiwan; Division of Respiratory Therapy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan.
| |
Collapse
|